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1. INTRODUCTION

The superposition of two or more stochastic streams to form a single
stream has been examined in previous research. The paper by Cinlar [6]
is an excellent review of this area. Most of this previous work has been
concerned with the superposition of the renewal process and attention
has been focused on the counting processes. In this paper* we provide
a structure for the interval process which results when two independent
Markov renewal processes defined on countable state spaces are super-
posed. The corresponding process obtained by superposing independent
renewal processes follows from these results. However, Cherry and Disney
[3] provide a study of that problem. The usefulness of the characterization
is related to the theory of queueing networks, as well as to reliability
problems as is shown in Section 4.

2. BACKGROUND AND PREVIOUS RESULTS

2.0. Introduction. This section presents a discussion of pertinent
aspects of the theory of semi-Markov or Markov renewal processes defined
on a state space which is the cross product of a denumerable set and the
non-negative real numbers. For the most part the discussion is a presen-
tation of results from the literature which is useful in establishing the
characteristics of the particular processes we examine. However, we
Include a brief discussion of some of the difficulties or pathologies that
can be associated with the stochastic processes studied and an explana-
tion of how these difficulties can be avoided. In addition, in this section
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we define formally Markov renewal processes, and then describe the assump-
tions which are made throughout. The implications of these assumptions
are briefly outlined. None of the results in this section is new; for a more
complete discussion the works of Breiman [1], Cinlar [5], Doob [8], and
Serfozo [13] are useful.

2.1. The state space. The most familiar examples of Markov renewal
processes are those defined on countable state spaces. Informally, such
a process is a stochastic process in which the sequence of ‘states visited
is determined by a homogenecus Markov chain, while the time spent
in a particular state between transitions is & random variable with distribu-
tion function dependent on both the current state and the state reached
at the next transition. A thorough discussion of the theory of Markov
renewal processes defined on countable state spaces is available in [4].
The most significant feature of the countable state space is that renewal
theory can be used to prove many of the results connected with such
processes, since the recurrence times of any particular state form a (possibly
delayed) renewal process.

The Markov renewal processes studied in this paper are defined
on a state space which is the cross product of a countable set with the
non-negative real numbers. The countable set, denoted in this section
by J, may itself be the cross product of. several countable sets, i.e.,
J =dJ,xJ,xJ;. In any case, for purposes of discussion, by a suitable
ordering scheme we may represent the elements of this space by ordered
number pairs (j, #), where j is an integer and % is a non-negative real
number. In order to make statements about the probability of events in
this state space we must construct a suitable o-algebra, that is, we cannot
divorce the state space from considerations of measurability. This o-algebra
can be constructed in a natural way. Associate with J the distance function
|7 —J.) and with R* the distance function |u; —u,|. On J x BR* the distance
function given by

d((jn %)y (J2) '“2)) = |Jy —Jal -+ 4y —u,|

induces a toI,)ology on the space J x R*. The topology is the “product”
of the discrete topology on J and the open sets of R*. The smallest o-
algebra generated by the open sets of this topology is easily seen to be
the product c-algebra 27 @ R, where 27 is simply the power c-algebra
on J and R* is the Borel algebra generated by the open sets of R*. This
c-algebra has an attractive property. First, if A is any element of the
o-algebra, we may decompose A into a countable disjoint union (see [10])

A = Z(jXAj)7

jed 4
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where J, is the projection of A on J, A, is the “j section” of 4, and >
indicates disjoint union. It is clear that A; is a measurable set in R*.
Second, since this o-algebra is generated by the open sets of J XxR™, it
suffices in dealing with probabilities defined on the space to restrict
attention to sets of the form 4 = j X (u,, 4,), that is, A is the cross product
of j with an open interval of non-negative real numbers. This property
is utilized throughout the paper. For convenience we denote, where
possible, the state space of any process being considered by E and the
associated c-algebra by Z, that is, stochastic processes are defined on
the measurable space (E, Z).

Finally, it should be noted that state spaces of the form outlined
above are metric and, moreover, are Hausdorff, locally compact, com-
Dlete, separable, and have a countable base. The significance of these
Properties [11] is that probabilities defined on such spaces are regular, i.e.,

Pr[A] = sup[Pr[C]; O < A, C closed, 0, A e 5]
C
and

Pr[A] = inf[Pr[U]; A < U, U open, U, A e &].
U

Thus it is possible to restrict attention to sequences of events, and
in these sequences to sets of the form A = j X (u,, %,) or A = j X [y, Uy].

2.2. Markov renewal processes on (E, Z). In this section we give
a formal definition of a Markov renewal process defined on (¥, Z). We
assume that F = J xR* and £ = 2@ R*, where J is some countable
set, i.e., F is the space and Z the associated o-algebra. We also state
without proof several properties of such a process. The definition and
Properties are analogous to those of a Markov renewal process defined
on a countable state space; the primary differences being due to the
absence of renewal properties present when the state space is countable.
The definition follows those of Cinlar [5] and Serfozo [13].

Let (2, &/, P) be a complete probability space and suppose the
following functions are defined:

(1) A measurable function §,: Q—F defined for 0 < n < oo.

(2) A measurable function T,: Q—>R™ defined for 0 <#n < oo such
that

0 = Ty(w) < Ty (w) < ...

Definition 2.1. The stochastic process {S,,T,; n >0} is called
& Markov remewal process induced by the kernel Q if

Pr(8, .64, T, ,<t|8...;8:; Tyy...,T,]
= Pr[sn+l E-A’ Tn+1 gt I Sn’ Tn] = Q(A X [07 t—Tn] l Sn)’
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where A € 5, t € [0, ), and n > 0. We assume @ does not depend on =.
'The process is homogeneous.
The kernel @: (EQ R*) x E—[0, 1] has the following properties:
(1) for any y e FE, Q(-|vy) is a probability on EQ R,
(2) for any G e EQR™, Q(G | *) is E-measurable.

Note that in Definition 2.1 the state of the process is represented
by 8, while the corresponding transition times are given by I,. This
notation is followed throughout, provided that a more precise notation
is not more convenient. Referring to the informal definition in Section 2.1,
we see that the process proceeds along its trajectories, entering the state
8, at time T,. The trajectories are thus right continuous.

The following propositions can be shown to apply to Markov renewal

p—

processes defined on (Z, Z).

ProposITION 2.1. The stochastic process {S,, T,; » = 0} is a Markov
chain defined on E X R* with transition probabilities given by

Pri8,,,6 4, T, .1 <tI8, =y] = Q" (A x[0,t]11y),

where Q™(- | ) s defined recursively by

euxwo, g ={g Ty
and
QA X[0,t]1y) = [ QAX[0,1—u]|2)Q(d(2x [0,%]) |y).

Ex[o,t)

ProposiTION 2.2. Let Xy, =Ty =0and X, =T,—T,_,, n= 1. Then,
given ny, ..., n, and iy, ..., 1, we have

k
PriX, <ty ..oy Xo, <t | 8p; n>0] = [[PrX, <t;18,. 1,8,
i=1
that is, the sojourn times {Xﬂ 3 1 =1, ..., k} are conditionally independent
given {8,,_1,8,; i =1, k}
Note that we may speak of the process {S,, X,; n =0} or {8,,T,;
> 0} equivalently in light of the above definition. Depending upon
methods to be used either notation is applied.
PROPOSITION 2.3. The stochastic process {S,; n > 0} s a time homo-
geneous Markov chain defined on (E, E) with transition probabilities given by
Pr(8,,1€4 |8, =y] =tlimQ(A x[0,t]]y) = Q(4x[0, o) | y).

The stochastic process {S,; n > 0} is referred to as the underlying
Markov chain of the Markov renewal process. Its importance is outlined
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in the following section. With a slight change in notation the contents
of the preceding two propositions may be clarified. Without loss of gen-
erality let

QAX[0,t]1y) = [E(y,de)F,,(1).
A

With this notation the transition probability of the underlying
Markov chain {8,; » > 0} is given by

Pr[8,,, €418, =91 = [K(y,d) = K(y, 4).
A

The kernel K is a mapping from E x & to [0, 1] and, in addition,

(1) K(y, ) is a probability on (E, E) for all z € E,

(2) K(-, A) is E-measurable for any A e Z.

The function F,,(f) defined on the non-negative real numbers for
all (y, 2) € E X F becomes then the distribution function for the sojourn
in state gy, conditional on the next transition being to state z. In the de-
velopments that follow we make frequently use of this notation. '

Without additional assumptions Markov renewal processes as defined
above may be subject to certain “pathologies”. We outline those which
may be directly ascribed to the underlying Markov chain in Section 2.3.
First we list three properties which are assumed to hold for the processes
studied.

Definition 2.2. Let { be the random variable defined by
£ = sup {Tn}
‘ n

for the Markov renewal process {S,, T,; n=> 0}. The process {S,,T,;
7 > 0} is called conservative if

Pril< o] =0.

Assuming that sojourn times are finite with probability one, a con-
Servative process is one in which an infinite number of transitions take
Place, constrained by the fact that in any finite time interval only a finite
humber of transitions occur, that is, the process cannot “explode” in
a finite time period. Note that this excludes neither instantaneous states
nor the absorption of the process into a single state. A remewal process
I3 an example of the latter situation.

Definition 2.3. For the Markov renewal process {8,,T,; n > 0}
define the random process N(¢) by N(0) =0 and N(f) == for T,<?
<T,,,. The process {S,,T,; n= 0} is called regular if

E[N(@#)]< oo for all i< oo.

3 — Zastos. Mat. 17.4
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Note that although regularity does not exclude the possibility of
instantaneous states, it does ensure that if such states exist on any tra-
jectory, only a finite number may be visited between visits to non-instan-
taneous states. Moreover, regularity implies that the expected number
of transitions in any bounded time interval is bounded.

One further property is defined here for Markov renewal processes
with countable state spaces.

Definition 2.4. Let N,(f) be the random process which counts
the number of entrances to state k¥ during the interval [0, ?) including,
if applicable, the initial state at T, = 0. The Markov renewal process
{8, T,; n> 0} with countable state space is said to be normal if, re-
gardless of initial state,

E[N,(#)]< oo for all te[0, o).

A normal process may not be conservative, but the trajectory which
“explodes” must do so without revisiting any state an infinite number
of times. Almost all physical processes may be described as conservative,
and non-normal processes on countable state spaces are rare in a physical
sense. Regularity, however, need not be fulfilled, in particular, if instan-
taneous states are possible. In this paper we exclude conditions which
could cause non-regularity and, in particular, instantaneous states, and
assume that the Markov renewal processes to be studied are eonservative.

As a consequence of the assumed absence of instantaneous states
we may assert that to each Markov renewal process there corresponds
a unique semi-Markov process {S(f); ¢{> 0} defined by §(0) = §, and
8@) =8, for T, <t<T,,,-

Cinlar [5] has shown that the Markov renewal process is conser-
vative if and only if the minimal solution of the equation

(2.1) Pr[S(t)eA|8(0) =y] = 14(y) Q(E X (2, ) | y) +
+ [ @(@(zxu) | y)Pr[S(t—u)e A|8(0) =]
ExR*
'has the property
Pr[8(t)e B |8(0) =y] =1,
where y,(-) is the indicator function of A € &, and @(- | -) is the Markov
renewal kernel.

2.3. The underlying Markov chain. Proposition 2.3 establishes that
with the Markov remewal process {8,,T,; n»>0} we have associated
a time homogeneous Markov chain {S,; n > 0}. Throughout this section
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we represent the transition probability of this underlying chain by
Pr(8,eA |8, 1 =y9]= [K(y,de) = E(y, 4)
A
for all y e F and all 4 e 5.

The significance of the underlying Markov chain of a Markov renewal
process defined on a countable state space is related to two types of
properties. The first of these comprises the recurrence properties of states.
A state in a normal Markov renewal process occurs infinitely often or
finitely often in the Markov renewal process if it is persistent or transient,
respectively, in the underlying chain [4]. The second type of these prop-
erties is connected with the existence of limits for the probability asso-
ciated with the semi-Markov process, namely

lim Pr{S(t) =j | 8(0) = <],

t—>00
and involves the existence of a unique stationary distribution for the
underlying Markov chain. In this section we discuss briefly the extensions
of these coneepts, recurrence and stationarity, to Markov chains defined
on non-countable state spaces. The primary references are [1] and [8].

We begin by assuming that the Markov chain {S,; n > 0} is defined
on the measurable space (¥, £) and first give two definitions analogous
to those for irreducible closed sets of a Markov chain defined on a count-
able state space.

Definition 2.5. The set A e Z is called closed if
Pr[S,eA |8,y =y]=1 forall yeAd.

Definition 2.6. The Markov chain {8,; n > 0} is called 4ndecom-
posable if there are no two disjoint closed sets 4, and 4, belonging to Z.

It is obvious that every Markov chain has at least one closed set,
namely the state space E. For an indecompcsable chain on a general
State space, however, problems arise. In some sense we require the exist-
ence of a minimal closed set, analogous to the set of persistent states
in the countable state space of a Markov chain with a single closed set
of persistent states, and a set of transient states, each leading to the closed
set. In a general case, it is possible only to define such a closed set up
to an equivalence relationship depending on sets of zero measure where
the zero measure in question is with respect to some auxiliary measure.
The state space with which we deal in this paper and the associated
transition probabilities do not in general meet the conditions under which
Such an auxiliary measure exists. However, and this overcomes a second
Problem, all open sets of the .state spaces cccur infinitely often with
Probability zero or one, regardless of initial state. This removes from
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consideration the problem of a trajectory remaining outside a “minimal”
closed set for more than a finite number of transitions. Thus we may
label each open set in the state space as persistent or transient depending
upon whether it is visited infinitely often or not. Instead of referring to
points as being persistent or transient we refer to sets as having one or
the other of these properties.

The primary objective of studies of Markov chains which make use
of an auxiliary measure has been to determine conditions under which
there exists a distribution I7(A) defined on (E, E) such that

lim Pr[S,ed |8, =y] =1I(4).
n—00

Doob [8] devotes a chapter to this problem using Doeblin’s con-
dition as an assumption, namely:

There are a finite-valued measure @ defined on =& with &(F) > 0,
an integer » > 1, and an &> 0 such that

Pr(S,ed |8, =yl<l—e¢ if &(4)<e.

The auxiliary measure &(-) thus imposes a uniformity on the transi-
tion probability. For our purposes, however, we require only that if
a distribution II(-) defined on (E, £) is stationary for the Markov chain
{8,; m> 0}, that is

(2.2) I(4) = [Pr[S,e 4|8, , =yl(dy)
E

for all A e X and n>1,

then that distribution is unique. We obtain this result from [1] by suitably

modifying the state space. ,
THEOREM 2.1. Let the Markov chain {8,; n > 0} defined on (E, E

be indecomposable. Then if a stationary distribution exists, it is unique.

When dealing with a stationary distribution in the paper we take
advantage of the definition (2.2) to assume that II(-) is an initial dis-
tribution:

IT(A) =Pr[S,e A].

2.4. Limiting results. We have already defined the semi-Markov
process {S(?); t > 0} associated with the Markov renewal process {S,, T,;
n > 0}. For any state space two results are associated with the semi-
Markov process. The first is the solution of equation (2.1) and the second
is the existence of the limit

Iim Pr[S() e d | S(0) = y]

f—o0

of the solution to (2.1).
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Cinlar [56] examines both results for semi-Markov processes defined
on arbitrary state spaces. As mentioned previously, the following result
was proved:

The solution to (2.1) is unique if and only if the Markov renewal
process {8,, T,; »=> 0} is conservative.

In the case of the limiting result, by modifying Cinlar’s work slightly
we obtain the following

THEOREM 2.2. Suppose the semi-Markov process {S(t), t = 0} is con-
servative and that, for any open set A of the topological state space (E, Z),

Pr[8, € A infinitely often] =1

regardless of imitial state. In addition, suppose that for any A € £ and any
bounded time interval the expected number of visits to A by the Markov renewal
process {8S,,T,; n= 0} during the time inierval is bounded. Then if the
process {8S,,T,; n>=> 0} is aperiodic, if the limit

lim E [number of transitions in (t —t,, t —1,)]

{—>o00
exists for 0 <t, <t,< oo, and if II(-) is a wunmique stationary measure
Sor the underlying Markov chain {S,; n > 0}, then

lim Pr[S() e 4 | 5(0) = 9] = fm (dw) ( [ m(u) I (du))”,
E
where y e B, A € E, and

m(y) = [ [E(y,d)(1—F,)d.
t=0 E
Note that m(y) is the mean time spent between transitions in state y.
This result applies to the limit of the probability that S(f) € A and implies
that this limit is independent of initial conditions.

3. THE SUPERPOSITION OF TWO INDEPENDENT
MARKOV RENEWAL PROCESSES

3.0. Introduction. In this section we study the superposition of two
independent Markov renewal processes. Our approach involves the use of
Markov renewal processes defined on state spaces which include a random
variable corresponding to backward recurrence time. Several applica-
tions are suggested.

3.1. Assumptions and notation. In this section we examine the super-
position of two independent Markov renewal processes

(Z,,X,; n>0 and {3Z,, Y,; m>0},
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subject to the constraints outlined. The processes are defined on countable
state spaces J, and J,, respectively, and assumed to be normal, regular,
and conservative. We assume further that the state spaces J; and J,
consist of a single closed set of persistent states with a finite number
(possibly zero) of transient states, and that the two processes {'Z,, X, ;
n >0} and {°Z,, Y,,; m > 0} are aperiodic. Transition probabilities and
associated quantltles are denoted as follows: "

1) Pr['Z,,, =j, X, <w|'Z, =1i] = A;(x),
Pr[2 mi1 = b Y <9 | Z = k] = By (¥).
2) Pr['Z,,; =jy Xpyi €@, v+dm) |'Z, = i| = ay(z)da,
Pr[Z, =1 Yoo cly,y+dy) |°Z, = k| = by(y)dy.
(3) Pr(X,,,<w|'Z, =i] = ZAu = Fy(@),

Pr(¥,: <Y |Z, = k] = ZBM?/) (y)-

(4) Pr[X, .. <®|'Z,,, =}, 'Z, =] = A (2)[Ay;(00) = Fy(w),
Where A (oo) # 0,

PriY,., <yl 2Zm+1 =1, 2Zm = k] = By (y) /By (00) = G4 (y),
where Bj;(o0) # 0.

(5) Let 'N,(t) be the number of visits to j in time ¢ in process 1,
and let *,(¢) be the number of visits to I in time ¢ in process 2. Then

E['N;(t) |'Z, =] = B;(t) with derivative r;(t),
E[N;(t) |°Z, = k] = S (1) with derivative 8,1(1).

(6) E[X,,: 12, f (1 —F,(2)dz = m,,

E[Ypi |2, =F] = f (1—6:(9)dy = m.
0

We assume that all sojourn time probability distributions are non-
singular and that the probability density functions corresponding to
F(x) and Gy (y) are continuous on the intervals on which the distribu-
1:1on functions are not constant when F;(x) and G (y) are defined, that
is, where the transitions 'Z, =4 to 'Z,,, =j and *Z,, =k to *Z,,,, =1
have non-zero probability. Further, we suppose that m,; and n, are bounded
for all ¢ and k belonging to J, and J,, respectively. Finally, we assume
that instantaneous transitions are impossible, that is, 4,(0) and By (0)

are equal to zero for all transitions.



Superposition of Markov processes 677

Associated with the irreducible persistent classes of states, say J; and
dJ,, respectively, in the underlying Markov chains of the two processes
{Z,, X,; n> 0} and {*Z,, X,,; m > 0} are unique stationary probability
vectors [9] which will be denoted by {ai}ie.}'l and {ﬁk}keJ’z’ i.e.,

a4 = Z%‘Aﬁ(w) and B = ZﬁkBkl(oo)'

’L'EJ:'[ kEJ'2

The process to be modelled is illustrated in Fig. 3.1. The times to
the n-th and m-th events in the two processes are denoted by

n m
Mx, =T, and DY, ='T,,
=1 =1
where 'T, =T, = 0.

Two realizations {!Z,,'T,; n> 0} and {*Z,,,*T,,; m > 0} are super-
Dosed by re-ordering the union of the two sequences {'T,; » > 0} and
{*T,,; m > 0} to form a single monotone increasing sequence {Uy; k > 0},

1 T2 Iz
ZO 12 3
1 X, | process 1

]
7. 1~ 1 2 1
20, T, 4z 3 2
Jo 7z 2 2, %4

I D A ) _ l process 2
2 -

2 .. 2. 2 2
To “1, T T3 T

P W - superposed

I | | 6 process
b 4 Y Y % Y% % 4

Fig. 3.1. The superposition of two Markov renewal processes

Where the random variable U, is the time of the k-th event in the super-
Posed process. We then associate with U, the following random variables:

'Z,: the state of the first process at time Uj,

*Zy: the state of the second process at time Uj,

I,: the index of the process which produced the k-th event in the
Superposed process,

V,: the time elapsed since the last event in the process which did
not produce the k-th event of the superposed process,

W,: the difference between U,,, and U,.
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As a consequence of the non-singularity of the distributions F(x)
and G (y) in the component processes, simultaneous transitions cannot
take place in either process, i.e., with probability one a non-zero time is
spent between transitions. Furthermore, the simultaneous occurrence of
events in both processes has probability zero as a consequence of inde-
pendence and non-singularity of distributions. Again therefore, we ignore
the initial situation illustrated in Fig. 3.1 and take as initial conditions
any event not corresponding to “start up” with T, = *T,, and take
as a model of the superposition of two Markov independent renewal
processes the stochastic process

(3.1) {IZm 2Zm L, V,, Uy; n>0}.

3.2. Structure and properties. In this section we characterize the
process (3.1) and examine certain properties which result from the assump-
tions made in the previous section. We begin with a characterization
of the process.

THEOREM 3.1. The stochastic process (3.1) is a Markov renewal process
defined on the state space

(J,xdJy % {1,2} x B*, 21 @ 272 @ 2% @ RY).

Proof. The state space of the process clearly corresponds to that
given in the theorem (Section 2.1). Referring to Fig. 3.2 and recalling

v A process 1

MM < process 2

suyperposed
process

(6&1,Vp) (6m2v,) (Sn2,v,)
(i, l,Q,V]) (j‘; m,1, Va)

Fig. 3.2. The superposed process

from the previous section that the simultaneous occurrence of events in
both processes {!Z,,'T,; n> 0} and {*Z,,>T,; m > 0} has probability
zero, we find that it is sufficient to consider two cases:
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(i) Pr[lzn =54, °2, =1, I, =1, V, e[v, v+dv), W,<w|
(IZn-—l = 1, 2Zn—l =k I, ,=2,V, 1 =0_1, Wy =w,_1),...
ceey (lZoy *Zy, I, V,, Wo)]

Pr(Zy =J) Xni1 € [0+ 01,0+ 01+ d0) 1'Z,, =4, Xy > 0,4 X
XPr[Y,,, >0|*Z, =k]6, for v<w,
0 for v > w,

where J,; is the Kronecker delta and m,p are arbitrary indices. This
follows from the independence of the two Markov renewal processes.

(i) Pr['Z,=j,’2,=1,1,=1,V,e[v,v+dv), W, <w|

(Zpr =8y °Zpy =8, Ly =1, Vo =0y, Wyoy = w,,),...
eery "2y, *Zyy Iy, Vo, W]

Pr['Z, =j, Xpe0—0,_y,0—0,_+dv) |'Z,,_, =i] X

XPr[Y, . >v|°Z, =k, ¥Y,>0,_,16, for v—v, ,<w,
0 for v —v,_, > w.

Again the result follows from the independence of the two component
processes.
Similar results may be shown for those states in which I,,, =2
for I, = 1 or 2. Thus we have, with g equal to 1 or 2,
PI'[IZ,H_I =j’ 2Zn_1 == Z, In+1 = q, Vn+1 (3 [’0, 'v","d'v),
Wn+1 <w | (lZm 2Zm In’ Vm Wn)) eeey (IZM 2Z0’ Io’ Vo, Wo)l
= Pr[IZn“ =y Zpsr =1 Inys = @5 Vpya € [0, 0+dv),
Wn+l < w l (IZrn 2Zn7 In’ Vn)] ’
and the stochastic process (3.1) is a Markov renewal process.

With reference to the notation in Section 3.1, Theorem 3.1, and
making use of symmetry we obtain the following

COROLLARY 3.1. The transition probabilities of the stochastic process
$Z,,°Z,, 1,y Vyy Wy5 0> 0}
are given by
A, L g, v, w5, 8,,0,) =Pr['Z, =5, 2, =1, 1,1, =4,
Vo €lo,vo4dv), W, .. <wl|'Z, =i,°Z, =k, I, = q,, V, = 0,],
where

G, (v
32) A(,1,1,0,015,k,1,5) = ay(0—0,)d0 5= 2 4Dl —(v—1,),
k\Yn
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. . ai~(v+';)n —
(3.3) A(5,L, 1,0, wli,k,2,v,) = —Lﬁm‘l dv Gy, (v) 6,3 D (w —v),
. b —
A(,1,2,0,w 14, %, 1,0,) = 222 gy 7 5) 5, D(w—0),
’ Gk('vn)
. . Fi v
A(G,1,2,v,w]|4,k,2,9,) = by(v—ov,)dv 'f((T))— 6ij-D(w—('0_vn))7

D(s) being the Heaviside unit step function:

_J1  for s=0,
D(S)_{o for s<0.

Theorem 3.1 and Corollary 3.1 completely specify the “motion” of
the process (3.1). To describe the complete behavior of the trajectories
we require only an initial distribution, that is, a probability measure
over ('Z,, *Z,, I,, V,). This corresponds to selection of a state and a back-
ward recurrence time for that state in one process, and to selection
of a state alone in the other process.

We now turn to the properties of the Markov renewal process (3.1),
beginning with an investigation of the underlying Markov chain {Z,,
Z,,1,, V,; n>0}. Many of the properties of the Markov renewal process
result from the behavior of the underlying Markov chain. The transition
probabilities of the chain are given in the following

PROPOSITION 3.1. The transition probabilities of the underlying Markov
chain {*Z,,°Z,,1,, V,; n=> 0} are given by the funmction A(j,1, ¢y, v |1,
k, g4, v,), where

A(G; 0, @uiry v ]9y Ky gy, 0,) —Pr[lZn+1 =3, nt1 = Uy Lnpr = Qi
Vn+1 € [v, v+dv) | (lzn = ":72Z'n = k’In = qn» Vn = 'Un)]

and
A(j,1,1,v|,k,1,0,) = aij('v—vn)dv—c%(% 011y
A, 1,04, k,2,9,) = —ﬁi,—(—:%)—dv(—}’k(v) Okt
A5, 2,0, k,2,0,) = bkl(v—vn)dv%éﬁ,
A, 1,2,0i,k,1,0,) -———Md F,(0) 3.

G ()
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The transition probability is defined for i, jed,, k, ledy, @, @pss
{1, 2}, and v, v, € RT.

Proof. By Proposition 2.3 the transition probabilities of the under-
lying Markov chain are the limits as w tends to infinity of the transition
probabilities of the Markov renewal process. The proposition then follows
from Corollary 3.1.

In determining the recurrence properties of the elements of the
o-algebra 219 2”2 @ 208 @ Rt we can initially make use of the structures
of the component processes. We first dispose of those sets which are
entered finitely cften with probability one.

THEOREM 3.2. Any event of the form {Z, =j,’Z, =1,1,,V,} in
which either one or both of the states j and 1 are transient in the component
processes {'Z,,'T,; n>= 0} and {*Z,,,>T,; m > 0} is entered finitely often
with probability one.

Proof. Let us denote the persistent classes of {'Z,; n> 0} and
{*Z,; m >0} by J, and J,, respectively. Then with probability one the
number of transitions N, in J, prior to absorption into J; is finite regardless
of initial state j e J,. Similarly, with probability one the number of transi-
tions N, in J, prior to absorption into J, is finite regardless of initial
state 1 e J,. Hence the random variable N = max{N,, N,} is finite with
probability one, and N is clearly the number of transitions in the under-
lying chain prior to absorption in J; X J;.

To investigate the recurrence properties of events of the form

{IZn =j7 2Zn = l’ In =y, Vn € [’0—37 ’U—I—b‘]}

for states j and [ persistent in their respective underlying process, we
make use of the fact that the event {'Z, = j} occurs infinitely often
with probability one in the Markov chain {*Z,; » > 0}, and thus infinitely
often with probability one in the underlying chain of the superposed
process.

THEOREM 3.3. If j and 1 are persistent in the underlying Markov chains
{'Z,; n > 0} and {°Z,,; m > 0}, respectively, then the state {12, = j,’Z, =1,
I, =q, V, = v} is persistent in the sense that the event {'Z, = j,*Z, =1,
I, =q,V,e[v—e,v+e]} occurs infinitely often with probability one,
regardless of initial state. Here q € {1,2}, v >0 is an admissible value,
and ¢ s arbitrarily small.

Proof. Suppose the initial state of the proce\ss is (2,=3,2, =k,
I, =1,V, =), and denote by f;(t) the probability density function
of the first passage time from j to j in the process {!Z,, 'T,; n > 0}. Since
J is persistent, the number of transitions between visits to j in the first
component process is finite with probability one.
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Then in the filtered process (see [4]) {'H,,*H,, I,, V,; » > 0} with
H = {'Z = j} we have
PrIIHI = J, Hy =1,1, = 1,V,e[v—e,v+e] IIHO =7, 2H’0 =k,

v+5—1, —
, G (v, +u
=1,V —ul = [ gyt
0

U=v—8&—7g

du 6+

vts oo

+ [ [ Host-nG@ana,

u=v—=eil=u

where

kl(y) bkr(vo'l'w)
Su(y) = a + Zz f @, (0) by —w)dw.

n=1 reJ, w=0

The function si;(y) is simply the derivative of the Markov renewal
function for the modified or delayed process {*Z,,,*T,,; m > 0} in which
the first transition is biased by the presence of V,, the backward recurrence
time. Cinlar [4] shows that

lim s3,(y) = I,

y—00
where I7, is the inverse of the mean recurrence time of state ! in the Markov
renewal process {*Z,,,>T,,; m > 0}. Since 1l is persistent and the process
is normal, II; < oo. Smce by assumption #; is bounded, II; > 0. We have

Pr[IHl =j,’H, =1,1, =1,V,e[v—s,v+¢] | 'H, = j,H, =k,
v-+e )

I,=1,V,=9]|> f ffjf,-(t)s;d(t—u)@(u)dtdu,

u=v—e i=u

which, after selecting Y* such that |s;;(y) —IT;| < 6 for y > Y", is greater
than or equal to

Go+e)(Ih,—0)-2¢ [ fi(h)dt =1—g>0.
Y*+vte

That is, the transition probability in the filtered process has a non-zero
lower bound independent of the initial state k& and the initial backward
recurrence time v,.

Let P, be the probability that the first entrance to (5,1, 1, [v —e, v+ €])
takes place after N transitions in the filtered process. Then Py << of¥
regardless of the initial state (j, k,1,v,) and 1 —Py>1—g}.
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Taking limits as N—oco we infer that with probability one the number
of steps in the filtered process {'H, = j,*H,, I, =1, V,; n > 0} between
occurrences of {'H, =j,’H, =1,I, =1,V, € [v—e, v+¢]} is finite.

We now must show that regardless of initial state the event {'Z, = j,
I, = 1} is reached in a finite number of steps with probability one. First
suppose (‘Z, =1,%Z, =k,I, =1, V, = v, is the initial state. Since j
is persistent in {*Z,; n > 0}, the number of steps from % to j is finite with
probability one. Let f;;(¢f) be the probability density function for the
first passage time from ¢ to j in the Markov renewal process {'Z,,'T,;

n > 0}. We consider only ¢ # j. Then in the filtered process H = {IZ,,
€ {1, j}} we have

PI'[I-H1=.7.72H'1=Z I, =1, Vlg'vllﬂo=i:2Ho=kon=1aVo='vo]

G " v o ' , )
ffu % (0 + ) TR T by, f ffij(t)skl(t—‘u)al(u)dudt

u=0 G"( %) u=0 t=u
>0G0)L—8) [ i@ =1—g>0,
Yo+

where Y* and II, are defined above. Arguing as previously, we infer
that the number of transitions prior to entrance to the event {'Z, = j,
gz, =1,I, =1, V,<w}, given the initial state ('Z, =14,Z, =k, I, =1,
V, = v,), is finite with probability one.

Finally, given the initial state (‘Z, =4,%Z, =k, I, =2, V, = v,) it
is clear that the event {I, = 1} is reached in a finite number of transitions
with probability one, since Pr['T, < oo | 'Z, = ¢, 'T; > v,] is one regard-
less of v,, the initial backward recurrence time.

We have shown that regardless of initial state the event {'Z, = j,
*2, =1,I,=1,V,e[v—e,v+e]} is reached in a finite number of
transitions with probability one and that the event re-occurs after a finite
number of steps with probability one. For the event {Z, =j,%Z, =1,
I, =2,v,e[v—e,v+¢]} we apply identical arguments to the filtered
process with H = {*Z, = k}. Thus for j and ! persistent in their respective
component Markov renewal processes the events {Z, =j,%2, =1,1, =1,
Voe[v—e,v+el} and {{Z, =34,%2Z, =1,I, =2,V, e [v—s, v+¢]} occur
infinitely often with probability one regardless of initial state.

Theorem 3.2 suggests that the states of the superposed process behave
much like those of a discrete Markov chain, in that persistence and tran-
sience are in some sense “preserved” by superposition. The infinitely

often occurrence of the events contained in 2J’1®2Jé®2{1'2}®R+ also
suggests the existence of a stationary probability measure for the Markov
chain {'Z,,*Z,,1,, V,; n > 0}; it is given in the following
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THEOREM 3.4. The Markov chain {*Z,,%Z,, I,, V,; 1= 0} has a unique
stationary distribution givem by

(3.4) Pr['Z,=14,Z, =k, I, =1, V, € [v,, 0+ dn,)]
a.Bk

% () dv,
and
(3.8) Pr['z, =4,%Z, =k, I, = 2, V, € [v,, v, + dv,)]
aiﬂk =
== .BY' d
Eaimi+25j”j 1,('00) 'v07

where a;, By, m;, and n; are defined in Section 3.1.
Proof. By definition II(-) is stationary for the process {8,; » > 0}:

m(4) = [Pr[8, e |8, =] (d).
B

Due to symmetry we need to consider only one case:

Pr[Z, =j,%, =1,I, =1, V, < 7]

"22 fPr[lz —j,2Z, =1,I, =1, 7V,

00—0
xPr[IZ =1,%2Zy =k, I, =1, V4 e [y, 9+ dv,)| +

+22 fPr[lz =2, =1,1, =1,

1’0’0
Vi<wvl|'Z, =4,°2, =k,1, =2, V, e["’o’”o+dvo)]x
XPr['Zy =1i,*Z, =k, I, = 2, V, € [0, v,+ dv,)]

= Z 2 f j i 7 ((@Z)) Z Za,-mjf’czﬂjnj G (00) du oy +

vo=0 u=vp
%(’“-l-'vo) aiﬁk B
+ 2 Z j;uf F;(v,) G (%) Oy Sam+ Shm, Fi(vy) dudv,
’00= =0

= Y‘ami—ZﬁJan fGl ( f @ (1 —vo)dvo)adu—l—

’Uo=l0
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+ Z'aim,iil—zlgjn. Z fgl(’“ ( foo (u—[—vo)d%)a du
B ZaimiffZﬂjnj Z f”é’(u) (Aif(“) "‘Aij(o)) adv -+

T u=0

+ Za.m.il-zls.%. 2 fél(“)(Az‘j(“’)—Az’j(“))aidu

1

ZamiZﬂ,,ufG’ )[D) ady(e0 )]du

i
B 0y

20m+2/3; iy

The equality holds since A4;(0) =0 by assumption. An identical
argument suffices for I, = 2. The uniqueness of the distribution follows
from the indecomposability of the state space and Theorem 2.1.

Comparison of the distribution exhibited in Theorem 3.4 with its
counterpart for the renewal case given by Theorem 3.2 in [3] reveals
that the quantity (Ya;m;+ 3 B;m,;)~" plays the part of the renewal density
function, and that the distribution is formed by multiplying this “density”
function first by the stationary, in this case, equilibrium probabilities
a; and f; of being in states j and I, respectively, and then by an analogue
of the equilibrium backward recurrence time distribution. The only
noticeable relationship between the two processes occurs in the selection
of the backward recurrence time distribution which establishes the value
of I,.

We now turn to the semi-Markov process {'Z(1),°Z(t), I(t), V(1);
t > 0} associated with the Markov renewal process (3.1). In particular,
we derive the limit of the probability as ¢ grows large:

Pr['Z(t) =3,°Z(t) =1,1I(t) = q, V() e (v—s,v+¢) | 'Z, =1,
Zy = kyI =gy, Vo =].

THEOREM 3.5. For the semi-Markov process {!Z(t),%Z(t), I(t), V();
t> 0} we have

EmPr[Z(t) =j,2Z() =1,I(t) =q,

t—>00

fal Yau =Pr[*Z, =j,%, = 1,1, =1, V, < v].

Vit)ye(v—e,v+e) |'Z, =4,2Z) =k, I, = q,, Vo = 0,]
= [ m@ dw)(fm dw)) ,

(4.5.0,(v—&,v+8))
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where m((z, k,q, 'vn)) = E[Wn+1 | IZn = 1, 2Zn =k, I,=q,V,=0,], and
II(-) is a stationary distribution for the underlying Markov chain.
Proof. By Theorem 3.4 the stationary distribution I7(-) exists and
is unique. Moreover, II(-) is non-zero only on sets which occur infinitely
often with probability one, hence the limit in question is non-zero only
on the set {jed;,led,}.
Let

Tf(,1) = [ f(y,t—w) K (®, dy)G,y(du)

ExRt

for f(x,t) bounded and measurable and let

Tfa,b) = ST, 1),

k=0

Then for f(#,?) = Xax,.,)(%,?) we have
Tf(®, 1) = Xax@ty)t ZPI'[Sn €ed, 1L, <Tp<t—1 |8 = 2]
E=1

O T ¥ ax(t,ty) (%, 1) is the expected number of visits to the set A in the
interval [t —1,, ¢ —t,]. Due to the structure of the state space it is suffi-
cient to consider the set

A=0Z,=5,"2,=1,I, = ¢, V, e (v—s,0+8)

and the initial state = (¢, k, ¢4, v,). Then Jf(z, t) becomes the expected
number of visits to the set A in the interval (¢ —#%,,t—1t,) if the initial
state is (¢, k, qo, v). This function is clearly bounded by the expected
number of visits to the state j in the first component process during the
same interval, and by Section 3.1 this bound is finite since {*Z,,'T,;
n>1} is normal. Jf(z,t) is clearly measurable.

Now we have

PI‘[Sl EA’ t'—t2< Vlgt—tl ISO = ﬂ?]

v4-8

G
= f“ij(’”/—”o) —@%akzp((t—tl)—(u—%))du—
V48 é
= [ ayumm) e 4D () — (w—v)da

U=v—¢&
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and, for n > 2,
Pr[8,ed,t—t,<U,<t—1t |8 =]

t—ty n—1 v+-8
= fz fa;?,-(w)b;c’{"“’(w—u)@,(u)dudw—l—

w=t—{; s=1 u=v—s

+ T‘a@.(u_fv) G (w) 8D ((t —1,) — (u —v,)) du —
ot T G () : ’

v+e @
- fa;;(u—'vo)%%D((t—tl)—(u—%))du.

U=V—8

Thus

ZPI[SneA,t—t2< U,<t—t, |8, =]

n=1
oo v+-s

G
_Z f a;(u —v,) k((u)) 8 [D (8 =) — (u —,)) =D ((t —1,) —

o« n-—1 -t v+-s

— (%=1, )]du+22 f f ol (w) b= (w — ) G, (w) du duo

n=2 8=1 w=i—i{y u=v—8

n=1 U=v—8

T G, (u)
= [ rotu—n) G5 dalP (=4~ ~00) =D (4 —t)

-4 v4-8
—(u —v,))] du + f f 755 (W) 85 (w —u) G, (w) dudw

w=i—t; Umy-—-8

U=v—8

As y grows large, we have (see [4]) 7,(y)->1/u; and s (y)—1/w,
where yu; and », are the mean recurrence times of states j and I, respectively.
Further

D((t —t)—(w —"‘70)) —D((t—tz) —(u —"70)) =1

only for ¢t —t,< u —v,<t—%,. But the variable « is restricted by v—e
< # < v-+¢ implying

lim ' PriS,ed,t—t,<U,<t—t |8, =]

t—»00 n=1

-ty v4e _
= lim f f 7y (W) 857 (w —u) Gy (w) dudw.
b0 p—t—ty u=v—se

For ¢ sufficiently large, r,;(w) and s;;(w —u) are arbitrarily close to

1/u; and 1/v;, respectively. Thus the limit is independent of the initial

4 — Zastos, Mat. 17.4
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conditions. Applying Theorem 2.2 we obtain
im Pr['Z(t) =4§,2Z(@) =1,I(t) =1,V(t)e(v—e,v+¢)|'Z, =1,

t—>00
27 =k, I, =1, V, = v,] = [ m@I@( [ m(w)ﬂ(dw))“
(4,1,1,(v—8,0+¢)) E

Identical arguments apply to the initial state (¢, k, 2, v,) and the
terminal state (j, k,2,(v—e¢, 'v—]—e)) taken together or paired with the
states above and the theorem follows.

We now derive the distribution of the mean time spent in any state
and then combine this distribution with Theorem 3.5 to obtain the limit-
ing probability results.

PROPOSITION 3.2. The distribution function for the sojourn time in
state (\Z, =1,*Z, =k,1, =q,V, = v,) is given by

Pr(W,, <wl|Z, =,2, =k, I, =1,V, =,]

1 _ -
- ék('vn) z;[o (Fz(dZ) Gk(z + ’vn) + Gk (d(z + 'v")) _F';(Z))?

and

Pr[W,, <w|'Z, =i,%Z, =k, I, =2,V, =0,]

w

1

= Foy | (B et 0) +F, (04 0) Fu(a)-

Proof. We have
Pr[w,,, < wl|'Z, =14,"2, =k, I,=1,7, =v,]

g=0

_ ZZ‘ .,w.,f:vn } Gk(( )) 8D (10— (0—v,) do+
+ Z Z ”I%Fi(v) 8;D(w —v)dv
— Z j" a(v—n,) g"((;’:) v+ Zv ;[ b"’—g:—(ij)Fi(v)dv
- _67;6(1%) [2 ,Ia (2) G (24-0,) de - Z z_fo b (24 0,) Fy(z )\dz]
_ éjvn) z I (Fs(d2) G(e+0,) + G (d(2+,)) Fi(2).
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By symmetry we obtain the second equality.

Examination of the distributions given in Proposition 3.2 reveals
that the random variable in question, namely W,,,, is simply the mini-
mum of two independent random variables — the sojourn times in states ¢
and k, respectively, with the appropriate bias introduced by the presence
of a backward recurrence time for one of the two. Thus we obtain

f o) Sl z”") & for & = (i,k,1,0,),

=0

ka() z+”)dz for @ = (i, k, 2, 0,).

2=0

The limiting probability for the event {’Z(t) = ¢,2Z(t) =k, I(t) = ¢,
V(t) e (v—e, v+¢)} will now be explicitly derived.

PROPOSITION 3.3. The limiting probability given by Theorem 3.5 takes
the form |

(3.6) limPr[’Z(t) =1,%2() = k,“I(t) =1,
{—00

V(t)e(v—e,v+e)| 'Z, =j,2Z0 =1,I, =q,V, =]

© v+te

zﬁk
=4 L TS T

and

(3.7)  lim Pr['Z(t) = 4,%2(1) = k, I(t) = 2,

t—>00

V(t)e(v—e,v+e) |1Zo =]"2Zo =1,I, =¢, Vo= 9]

-] v+
f fFi(z+u G,(2) e m')ﬂ(" S )dudz.
£2=0 u=v—8 < F§70

Proof. Let I({) = 1. Then by Theorem 3.5 and Proposition 3.2 we
have

lim Pr['Z (1) =1,2Z(1) = k,I(t) =1,
t—>o0
V()e(w—e,v+e) | 'Z, =j72Zo =1,I, =q,V, = 9]

= f I (dx) ( f m () [ (dw)) "

(i.k,l,(v—s,v+s))
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Moreover, we obtain

v+8 oo

J‘ f G’k 2+ u) a; Bk 9
(i, k,1,(v—e,v+8)) u=p—8 2=0 Gk(u) 2 a; My + Zﬁjnj
(2] v+8
A _ 2l Wal a; B

x Gy (w) dedu = Jo ML Fie)Bulet ) A b dedu

and
. C (= Gr(2+u) a; 8G (%)

Ef m (o) T (dz) = 2 ;’u =fo zl B ) o Samet Sy Wi+

N
o;p
- 22 Za m, —l—kZﬂjnj [

f f F,(z+u)6f,,(z)dudz].

2u=0 =0

%3

f 1(2) Gp (2 +w) dudz+
0

=0 g=

Changing the variables of integration we obtain

fm(a,-)ﬂ(da;) =ZZ Za-wziﬁkZﬂj% [f fF(z)Gk(w)dwdz+
E i k v

g=0 W=z

(=]

+ f f F}(w)@k(z)dwdz]

=Z‘2 Za.mflszﬁ'nj[ fm foFi(z)@k(w)dwdz—{—
ik L 375 Tp=0 w=z
+ ffFi(z)(—ik(w)dwdz]

-3 3 santganl [ ] Foowiens
ik LA 779 Tz=0 w=z

7 7 _ (2“1"’”1‘)(25 ’"')
+ J w;[ ,-(z)Gk(w)dwdz] = Zaimrl'zg,-’nl; .
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Hence
Lim Pr{’Z () =, Z(t) =k, I(t) =1, V(t)e(v—e¢, v+6)]
- fm TGFi(z)ék(z+u) %P dzdu.
2=0 u=v—e (E aimi) (2 ﬁJ‘ n.‘i)

A similar result for I(f) = 2 follows by symmetry.
Allowing % to vary betwecen zero and infinity and summing over
the values of I(f) we obtain the following

COROLLARY 3.2. The limit of the marginal joint probability on 'Z(t)
and *Z(t) takes the form

. . a;m; Py
Im Pr[2Z(t) =1,2Z(t) = k] = .
t->o0 ’ ) 2 aimy D By

Obviously, this result, the product of the limiting probabilities for
the two component processes, follows directly from the independence
of the component processes.

4. APPLICATIONS AND ILLUSTRATIONS OF SUPERPOSITION

4.0. Introduction. In this section we illustrate the use of the theory
developed in the preceding chapters with two examples. We first examine
the superposition of the departure processes from two independent M /G/1
queues and give some specific results for the M /M /1 queue. We then
turn to a reliability and maintenance model and illustrate the errors
which can be introduced by approximating a Markov renewal process
on a complex state space with a Markov renewal process on a countable
State space.

4.1. Merging the outputs of two independent M /G/1 queues. The
Problem is illustrated in Fig. 4.1. The merged output stream is clearly
a point process, that is, a sequence of departures separated by random

server1 merged oufput
\
arrival streams
= server 2 merge point

Fig. 4.1. Merging the outputs of two independent M/G/1 queues
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time intervals. The departures may be homogeneous or may be charac-
terized by the component process in which they receive service. We give
a characterization of the merged output stream that establishes its struc-
ture and retains the ability to differentiate between customers depending
upon the queue from which any particular customer departs.

We make the following assumptions:

(1) the arrival streams to servers 1 and 2 are Poisson with parameters
A, and 1,, respectively;

(2) the service times for servers 1 and 2 are random variables with
non-singular distribution functions F(x) and G(y), respectively;

(3) the expected service times u, and u, for servers 1 and 2 are finite
and the products A,u; and A,u, are strictly less than one;

(4) the two queues are independent.

The departure processes or output streams from the two queues
are denoted by {'Z,,T,; »> 0} and {*Z,,%T,; m > 0}, where T, and
*T,. are the epochs of the n-th and m-th departures from servers 1 and 2,
respectively, and 'Z, and ?Z,, are the numbers of customers in systems 1
and 2 at times T and T, respectively.

It is well known [7] that the stochastic processes {!Z,,'T,; n > 0}
and {*%,,,%T,; m> 0} are Markov renewal processes with transition
probabilities given by

Aij(t) =Pr[1Zn =.7.a1Tn"'lTn—1<HlZn—1 =1}, mn=1,
Bkl(t) = Pr[zzm =1, 2Tm—_2Tm—1 <
The matrices of transition probabilities are given by

( )

Ay(t) = f(l—exp[—llt—y)])exp[ —MY for j>0

Y=

(Ay)y _ o
f (J @_{_1)' exP[”‘Z-ly]F(d?/) for ’b}l’ J?@_l,

for j<i—1
and

( )’
(dy) for1>=0,

Bul) f (L —exp[—Aa(t—9)])

y=0

t (22?/)1—“-1
By, (1) = A (I—k+1)!
0 for I<k—1.

xp[—2,y1G(dy) for k>1, 1>Fk—1,
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By summation we obtain

t
Fo(t) = [ (1—exp[—h(t—y)]) F(dy),

y=0

t
F(t) = [F(dy) =F@) forix>1

y=0

and

t
G(t) = [ (L—exp[—2:(t—9)]) F(dy),

Yy

¢
G.(t) = [G(dy) =@() for k>1.

y=0

We now superpose the sequence of departure times {!T,,#n > 0}
and {*T,,,m > 0} to obtain a single monotone sequence {U,, k> 0}
and define

1Z,: the number of customers in system 1 at time Uj,

*Z,.: the number of customers in system 2 at time U},

I,: the index of the server which had a departure at epoch U,,

V,: the time elapsed since the last departure from the server which
did not complete a service at Uj.

PROPOSITION 4.1. The superposition or merger of the departure processes
Jrom two independent M |G[1 queues is a Markov renewal process defined
on the stalte space

(J xJ x{1,2}x R+, 2'® 2" 2" Rt),

where J is the set of mon-negative iniegers.
The proposition follows directly from Theorem 3.1.

Note that the assumption of non-singular probability distribution
functions ensures that the superposition of the two output processes is
regular, that is, the probability of simultaneous transitions in the two
departure processes is zero. The chief significance of Proposition 4.1 is
structural, that is, it establishes the structure of the superposition or
merging of the two output processes and suggests that, conceptually,
the merged process is not difficult to deal with. The transition probabil-
ities for the process can be determined by Corollary 3.1. Unfortunately,
examination of this corollary suggests that computationally the merged
Process is very unwieldy.

From Theorem 3.3 we may infer that the event

{IZn = 7:72Zn = k? In ={q, Vn € (’0—‘8, ’0-]—8)}
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occurs infinitely often with probability one regardless of initial state.
Moreover, the assumption that A;u, and A,u, are strictly less than one
implies that stationary distributions {e;};.; and {f;}.c; exist for the under-
lying Markov chains of the two independent departure processes. These
distributions have generating functions [12] given by

Sa'zi— (1 =2 p0)( "1)f (A2 —112)
’ z—f* (A —21;2)

and

o — (1 —2Ap0) (2 —1) g% (A — A,2)
2—g" (Ay—252) ’

?:'M
[ Nk
>

where f*(s) and ¢*(s) are the Laplace-Stieltjes transforms of F(x) and
G(y), the service time probability distribution functions for server 1 and
server 2, respectively. If the stationary distributions {e;};;; and {Bi}icr
exist, then Theorem 3.4 implies that a stationary distribution exists for
the underlying Markov chain {*Z,,%Z,,1,, V,; n> 0} and is given by
(3.4) and (3.5). For simplification we cvaluate

0

1
D am =a, (7 i)+ 1=
1

=0

1
= (1— 11/‘1)( +l‘1)+l1/‘1'—7
1

and, similarly,

Thus, from (3.4) and (3.5) we obtain

ai —_
Pr [lZo =14,°Zy =k, I, =1, V, € [v, '00+d”o)] = My 'Z—_%—Gk(’vo)d'”o
17T A2
and

y
Pr[lzo =1,Zy =k, I, =2, Vg € [vy, '”o""d'vo)] = 7 —!—l aiﬁlcFi('vo )dv, .
For the superposition of two M /M /1 queues, with service time dis-
tributions 1 —exp[ —»,t] and 1 —exp[ —»,t], respectively, we define g,
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and g, to be 4,/»; and 4,/v, and obtain, for the stationary distribution
with I, =1,

Pr|'Z, =,2Z, = 0,1, =1, V, € [, v+ dv,)]

— zfi:: (1—o)el(1— 92)( — exx)[—l Y
— _z exp[ vz'vo])dvo, 1>=0,
and
Pr[Z, =i,%Z, =k, I, =1, V, € [0, 0+ dv,)]
;11_;12 (1—ey)of(1—@:)(0,)exp[ —v,0]dv,, k>1, i>1.

Similar results follow for I, = 2.
Now we may infer that the limiting probability

Lm Pr['Z(t) =4,°Z(t) =k, I(}) = ¢, V(t) e (v—e,v+¢)]
t—>00

exists by Theorem 3.5 since the departure processes are normal. The
limits are given by

lim Pr[*Z(t) = i,22(8) =k, I(§) =1, V({) e (v —¢, 0+¢)]
t—>o0

[} v48 _ _ l ﬂ,
=B=_[u=”[. Fi@)Guletw) 7 o,B dedu
and
lti_)m Pr['Z(¢) =1,’Z(1) =k, I(}) =2,V (¢) e (v—s,v+¢)]
*© -] v+8

A2
f f Fy(z+u) G, (2) —222_ o oPudadu.

2=0 u=v-—-e
Thus, with o, = 4,/», and ¢, = 4,/», we obtain from Proposition 3.3
for an arbitrary (4,1, ¢, v,):
im Pr['Z(#) =0,%Z(t) =0,I(t) =1,V({)=v|Z, =j,%Z, =1,

t—00
2,2,

L=a V=0l =00

(1—g)(1—g) X%

exp[ —4,v] ( 41 A ) ( " M )]
X — — 0,6Xp[ — 1,0 —
[ @2 A+ 2 A+, e,exp[ —,7] A+ 2 At ’
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Lim Pr['Z(t) = 0,%2(t) =k, I(t) =1, V(&) >v |2, =j,2Z, =1,

t—>00
I, =¢q,V, =]
ll 12 k exp [ "—1’2'0] ( 'Vl }.1 )
Ty ( 1)( 02) 0 " A+, v+, ’ ’

lim Pr['Z(¢) =4,%2() =0,I(t) =1, V)= v |Z, =j,%Z, =1,

{—00
I, =¢q,V, =]
M, - (eXp[—zzv] exp[ —,0] ) .
= 1— (1 — —_— —py ——— 1>=1
v — 1, ( 01) a1 ( 02) 0, (4 +9,) 2 v, -7, ) )
limPr[IZ(t) = 'i,2Z(t) = k71(t) =1, V(t)>'v“lzo =j7 2Zo = ly
t—>00

Iy =q, 7V, = 1]

exp[—»o] 1
Yy "+, ’

= hA(1—e)ei(1—0) e} i>1, k>1.

Similar results hold for the case I(t) = 2.

It is interesting to observe the form of the marginal distribution
of the backward recurrence time in the limiting results. Summing over
the indices ¢ and ¥ we obtain

: A
= > = —_—
tlgg Pr(I(t) =1, V() =] A exp[ —4,v]

and

: A
= 2 = —_ .
}1m Pr{I(t) =2, V() =] RN exp[ —A,7]

The result implies that in equilibrium the superposed system behaves
like a Poisson process with parameter A,-+ 1, with backward recurrence
time distribution functions 1 —exp[—A2,v] and 1 —exp[ —A,v] chosen if
the last event was from process 1 or process 2, respectively. The service
time parameters »; and », do not appear. Obviously, this result follows
directly from [2] and the independence of the two queues.

4.2, A reliability and maintenance model. In this section we consider
a system consisting of two independent components in parallel. One
might think of these components as generators supplying power; each
can meet system requirements alone, but a backup is provided which
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Tuns continuously between breakdowns. We suppose that each component
operates for a random amount of time and then requires minor repair
or major repair. Minor repair may lead to major repair, but following
a major repair the component is again serviceable. We assume that the
operating-repair cycle of the component can be modelled as a Markov
renewal process with the following states: 1 — operating, 2 — undergoing
minor repair, and 3 — undergoing major repair. We denote the transition
probabilities for the two components by the matrices (4, (1)) and (B, (1)),
where

0 A (1) Ayt
(Aij(t)) = A21(t) 0 Aza(t)
A5, (%) 0 0

and

0 By (t) Bys(?)
(Bkz(t)) = le(t) 0 st(t) .
By 0 Y

The Markov renewal processes {Z,,'T,; n»>0} and {3Z,,*T,;
m > 0} describing the operating-repair cycles of components 1 and 2,
respectively, are assumed to be aperiodic, normal, and conservative.
Furthermore, the conditional probability distribution functions of sojourn
times are assumed to be mnon-singular with A4,;,(0) = By(0) = 0 for all
i, j, k, and 1. The process to be modelled is illustrated in Fig. 4.2.

Superposing the sequences {'T,; n>0} and {*T,; m>0} and
re-ordering the indices we obtain the sequence of epoch times {U,; k > 0}.
We then define

1Z, to be the state of component 1 at time U},

2%, to be the state of component 2 at time Uj,

I, to be the index of the component whose status changed at U,,

V, to be the time elapsed since the last change of status of the com-
ponent which does not change at epoch U,.

3
2
R T L T

L

T 1 1 1 1 1
3 o) 2 7y T3 72} 7,
2
1 | : : : : I

2
2 2 2 2
o T h 73 Ts

Fig. 4.2. The superposition of the operating-repair cycles of two independent com-
ponents with states 1, 2, 3
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Then by Theorem 3.1 the stochastic process (3.1) is a Markov renewal
process defined on

[{1, 2,3} x {1, 2, 3} x {1, 2} X B+, 223 g o232l B B+,

From Corollary 3.1 we obtain the transition probabilities (3.2) and
(3.3).

Similar results follow for the cases I,,, =2,I, =2 and I,,, =1,
I, =2.

The assumed aperiodicity of {Z,,'T,; n> 0} and {*Z,,,°T,; m > 0}
implies that the transition probability matrices for the underlying Markov
chains of the component processes take the forms

[0 a, 1—a,]
(Aij(°°)) =la 0 1l—a,
|1 0 0 |
and
[0 b, 1—b,]
(Bu(o0)) =] b, 0 1—b,].
|1 0 0 |

Hence both underlying Markov chains have stationary probability
vectors, 8ay {a;}i13 804 {fy}r—y3, Where

a, = ad, = a, = —m0m
' 24a,—aya,’ 27 24a,—age,’ P 24a,—aya
and
1 b 1—-b,b
B = i) B = - "y Bs = o,

Thus, provided that both component processes are normal, we obtain
from Theorem 3.5, regardless of the initial state (j, 1, q, v,), the limiting
probabilities (3.6) and (3.7), where 4, k € {1, 2, 3}, and

Fyt) = D 4,00,  G(t) = D) Byult),

J=1 =1
0 0

Again the limiting probability that both components are undergoing
repair is the product of the limiting probabilities that each component
is undergoing repair, i.e.,
ay My +aymy Py, + Byns

2 a;m; 2 Bimy

lim Pr[*Z(t) € {2, 3}, 2Z(t) € {2, 3}] =
{00
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That the limiting probability has the product form is not surprising
since the components are independent. However, this form does not
justify the following model which has been used in the past for investi-
gations of systems such as that described above. In the model, a Markov
renewal process on a countable state space is used under the assumption
that backward recurrence times can be neglected. To illustrate this model,
suppose that the two components are identical. The state space becomes
{1, 2,3} x {1, 2, 3} and the probability transition mechanism is given by

Pr[(IZ”, 2 W) =0, W< w| (IZn—l’ 2Zn—l) = (¢, k)]

w

( [ 6y Gu(m)dy for k =1,
y=0
—{ » _
[ bu) Fiy)dy  for i = j,
y=0
\o otherwise.

This model neglects the backward recurrence time or, equivalently,
assumes that an event in one process resets to zero the clock in the second
Process without a state tramnsition. Clearly, if the sojourn times in the
component processes have increasing failure rates, i.e.,

Pr[X,.>2+%, | Xppy 2 ]l < PrX,,, > 2],

the use of this model is not without danger. In particular, limiting results
derived from this structure may not agree with those obtained from the
superposition model. Consider, e.g., two identical processes with Markov
renewal transition matrix

0 $(1—exp[—a?/4]) (1 —exp[—2?/64])
§(1 —exp[ —2?]) 0 $(1 —exp[ —1622])
1 —exp[ —?/16] 0 0

Note that the sojourn times have Weibull distributions and increasing
failure rates. The two processes satisfy the assumptions of Theorem 3.1
and we may, therefore, assert that the process (3.1) is a Markov renewal
Process where the random variables 'Z,,*Z,, I, V,, and U, have their
usual meanings.

The component processes are clearly normal. Thus, by Proposi-
tion 3.3, regardless of initial state,

: ;2 g am By
Eglo Pr’Z(t) =1,%Z(t) = k] = ——(Zai'm’i)z .
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As before {a;}iq,0,5 18 @ stationary distribution for the underlying
Markov chain of the component process and m;, © € {1, 2, 3}, is the mean
sojourn time in state 4.

Approximating the process with the model outlined above we obtain
a nine-state Markov renewal process with limiting probabilities

BT

Zj: ; Burn ’

where {Bi}ikeqt,2,31x0,2,3 1S @ stationary distribution of the underlying
Markov chain of the approximation and n, are the appropriate sojourn
times.

For the numerical example above the true model of superposition
and the approximate model have the limiting probabilities as given in
Table 4.1. '

lim Pr[('Z(t),%2 (1)) =i, k] =
t—00

TABLE 4.1. Comparison of limiting probabilities of

two models
Superposition :

State model | Approximate model
11 0.397024 0.383957
13 0.155974 0.147734
31 0.155974 0.147734
33 0.061275 0.049079
23 0.030290 0.037973
32 0.030290 0.037973
12 0.077101 0.089302
21 0.077101 0.089302
22 0.014973 0.016948

5. SUMMARY, COMMENTS AND TWO PROBLEMS

5.0. Summary and comments. In this paper we have been concerned
with the interval process occurring in the superposition of two independent
Markov renewal processes. A complete structure has been given for this
process as well as transition functions. With these results one can now,
in principle, explore the superposed process in detail using adaptations
of the well-known results of Markov renewal theory. To proceed with that
in practice, however, seems to be a formidable task simply due to the
dimensionality of the problem. Thus, while it is clear how to proceed to
the study of the superposition of any finite number of independent Markov
renewal processes, detailed investigations appear to be facing a monu-
mental problem of computation. This is unfortunate since in the study
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of most flow processes (e.g., road traffic processes, queueing network
flow) one is concerned with properties of the stream of events obtained
by superposing a few streams. Whether the study of such processes is
made simpler by examining the related counting processes, as has been
done in most previous studies of superposition, will have to be seen.

5.1. Two problems. There are two problems that occur to one in
pursuing this superposition topic. To the best of our knowledge all known
superposition results assume the processes to be superposed are indepen-
dent. Yet in studies of flow in queueing networks it appears that flows
along alternate routes may not be independent. In the simplest case
that we have encountered, one takes the output of a server and splits
it into two processes using a Bernoulli process to decide which subprocess
each output joins. One of these two substreams departs from the system.
The other returns units to the tail of the queue for more service. In this
Process the returning stream and the arrival process are superposed to
form the stream of inputs to the server. This superposed stream of inputs
is not a renewal process even in the case of M/M[1 queues. Very little
else is known about that process. Further research could be useful.

A corollary problem to that above occurs in many practical situations
when streams of events are merged. While the various streams may be
independent, the merging is not a superposition problem as normally
defined. For example, the merging of side street traffic into traffic on
a limited access highway is not a superposition problem. We know of no
results on the properties of the merged stream.
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SUPERPOZYCJA DWOCH NIEZALEZNYCH PROCESOW ODNOWY
TYPU MARKOWA

STRESZCZENIE

Przy badaniu superpozycji dwéch lub wiecej strumieni stochastycznych dotych-
czas zwracano gléwnie uwage na superpozycje proceséw odnowy, traktowanych jako
procesy licznikowe (counting processes). Niniejsza praca podaje strukture procesu
przedziatowego (interval process), bedacego wynikiem superpozycji dwéch niezalez-
nych markowowskich proceséw odnowy, ktére maja przeliczalnie wiele stanéw. Roz-

dzial 4 przytacza zastosowania takiej charakterystyki do teorii obslugi masowej i do
zagadnien niezawodnosci.



