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AN INTEGRAL EQUATION TECHNIQUE
FOR SOLVING MIXED BOUNDARY VALUE PROBLEMS

_ We discuss here the solution of » (n > 1) simultaneous Fredholm
Integral equations of the first kind which cannot be solved directly and
bresent an integral equation method to convert them into 4n Volterra
Integral equations of the first kind and 4n Fredholm integral equations
of the second kind. The 4n Volterra integral equations have simple kernels
and can therefore be easily inverted whereas the 4n Fredholm integral
equations of the second kind can be solved approximately by .iteration.
Finally, we illustrate our method by considering an electrostatic potential

Problem involving two annular coaxial concentric spherical eaps in a free
Space.

1. Introduction. Various methods have been developed to solve
mixed boundary value problems in mechanics and mathematical physies
(see [1], [2], [8], [13]-[15], [191, [20]). One of the methols was originated
by Williams [19] and [20] and was later modified by Jain and Kanwal [8].
In this method the solution of a mixed boundary value problem is expres-
Sed in terms of the solution of a Fredholm integral equation of the first
kind. Later, by using an interesting technique, the integral equation is
converted into a set of Fredholm integral equation of the second kind
and Volterra integral equations of the first kind. Using this technique,
several mixed boundary value problems were solved successfully (see [4]-[7]
and [9]-[11]). All these boundary value problems were associated with
only one object. Vaid and Jain [16] presented an integral equation tech-
nique to consider 2n part boundary value problems which arise in connec-
tion with » coaxial disks or n coaxial concentric spherical caps. They
have solved various boundary value problems involving two coaxial disks
or two concentric coaxial spherical caps (see [17] and [18]).

. The objective of this paper is to connect the integral equation tech-
niques given in [8] and [16]. We propose to develop an integral equation
method which is useful in discussing mixed boundary value problems
which arise in connection with » coaxial annular disks or n annular coaxial
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concentric spherical caps. Thus it represents a development of Williams
work [19].

By following Green’s function approach [12], we express the solution
of the problem in terms of the solution of » simultaneous Fredholm integ-
ral equations of the first kind which cannot be solved directly. Following
the techniques of [8] and [16] and splitting the kernels in the given =
Fredholm integral equations of the first kind, we readily convert their
solutions to the solutions of 4n Fredholm integral equations of the second
kind and 4n Volterra integral equations of the first kind. The Volterra
integral equations have simple kernels and thus can be easily inverted,
and the Fredholm integral equations of the second kind can be solved
approximately by standard iterations in terms of small perturbation
parameters.

The scheme of this paper is as follows. In Section 2 we present the
method of solving the generalized 3n part boundary value problems.
In order to illustrate the method we consider the electrostatic potential
problem of two coaxial concentric annular spherical caps charged to
prescribed potentials in a free space. By using this method we can solve
many problems occurring in electrostatics, acoustics as well as in electro-
magnetic diffraction and hydrodynamics for the cases where they are
associated with several annular objects and where the corresponding
problem for one object is already solved. In fact, the author has already
solved some of these problems and they will be the subject of future
communications.

2. Integral equation method. Solutions of many mixed boundary
value problems in mechanics and mathematical physics, associated with n
coaxial disks, are described by (see [12]) the equation

n %

(1) fKn t, 0)g:(?) dt+2qu (t, @)g;(M)at = fi(e), b;i<eo<ay
j=1b;
FES

(t=1,2,...,n),
where b; and a; are the inner and the outer radii, respectively, of the i-th
disk (¢ =1, 2,...,n), f;, K; and @; are known functions in the integral
equations (1), and ¢,(¢?) (¢# =1,2,...,n) are the functions to be deter-
mined. All the equations in this paper are valid for ¢ = 1, 2, ..., n unless
otherwise stated. These n equations cannot easily be solved for g,(t).
However, we can convert (1) into 4n Volterra integral equations of the
first kind and 4» Fredholm integral equations of the second kind.

Assuming (see [3])

(2) file) = 2 aij9j1 b; < 0 < ay

j=—00
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we introduce the 4n functions as

(3) le Za’u@ ’ 0< Q<ai’
(4) f'l,?. Z a"LJQ ’ b’i < Q < CX)’
j=—00
0, 0 <t<by,
(8) ga () +ga(®) =100, b <t<a,
07 a; <1< oo,

thus splitting (1) into the following 2n equations (6) and (7):

[o ]

(6) f ‘K'it(t7 Q)gll(t dt+ Z f G'z] ’ Q)gjl t)dt le Q)’ 0 < Q < 00,
PR

D [ Eutt,y 0)ga t)dt+2fe,,(t, 0gp()dt = fule)y 0<e< oo
0 j=10
j#t

This method requires the kernels K,; and G; to satisfy the following
two conditions:

(@) K, can be split into the form

(8) Ky = L;+Gy,

Where G;; are in some sense smaller than the dominating part L; of the
kernel K ;

‘n’

(b) the kernels I; are expressible in the following forms:
(9) L;(¢, o)
min(e,t)
hiny (@) hiss (2) f Ki(w, o) K;(w, t)[hyp(w)Pdw, 0< g, t < oo,

(@b (t) [ Kile, w) Kty w) [hu(w0)Pdw, 0 < g, t< oo.

max(e,1)

Here hy; (k,j = 1,2,3) and K, are known functions such that
the 2n Volterra, 1ntegral equatlons

(10) fo(t, Q)g(t)dt = Fi(0), 0< o< oo,
and ’

(1) J Ko, 09®)dt = Foe), 0< o< o,
[4

8 — Zastosow. Matem. 18.1
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have explicit unique solutions for g(¢) in terms of the arbitrary differentiable
functions #, and F,. It is obvious that relations (10) and (11) ensure that
the kernels G; can be expressed as

(12) Gi)‘(t7 o)

e ¢
By () s () [ [ Ky, @) Ki(0, 1) hara () s (0) Ly (v, ) dodu,
0o o

hina (@) Bias (1) f f K(0y w) K (b, 0) higs (0) higa (v) Ligs (v, w) dvduw .

Using (8), (9) and (12) in equations (6) and (7), and interchanging
various orders of integrations, we transform these equations into

(13) k(o) J Euw; @) {hia ()} f K (w, 1) gy (1) huns (8) dtduw +

+Zfo(’wa ina ( fLm('” w) hiza ( fK’

j=10

X g (O has (O dtdvdw] = fu(0), 0< o< ay,
(14) (o) | [ Ki(os w) {his ()} f (85 W) gia (8) gy (8) e +
e

+2f K;(0; w)hygs ( fLuz v 'w)hzzz('”)fK t, v) X
= J
X g2 (0 hins (1) At dodw| = fia(0), b < @ < oo.

Finally, we define 6n funetions S, T, and C; (k =1, 2) so that

~ Sa(e) 0<o<a

(15)  Ras(o) f Ey(0, 1)ga (8 has (1) dt = I Y ’
—Taule), @< < oo,

—Tule), O0<e<by,

]
(16) hi (9 K1 . t i dt =
“ f r @ (Db 8i2(0), b; < g < oo,

(17) (o) f Ey(w, 0)Ciy () hipy (w)dw = fy(0), 0< o< a,

(18) hm(@)f K;(0y w) O (w) hygo (w)dw = fi3(0), b; < @< oo.

It is obvious that the expressions for the 2n functions O (g) can
e'xplicitly be obtained from equations (17) and (18) in view of the assump-
tions that equations (10) and (11) can be inverted. Using (15)-(18)
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in equations (13) and (14), we obtain
n %

(19)  Sale)+ D [ Li(v, 0)8j(v)dv

j=10

n [e o)
=Cule'+ D) [ Lin(v, ) Tp(w)dv, 0<e<a,
j=1aj

[ Lis(v, 0)8ja(v) 0

n
j=1 bj

(20) Siz(0) +

n b]
= Oa(0)+ D, [ Lip(v, o) Tpp(0)dv, b < e < oo.

j=10

Using equations (5), (15) and (16), we also get
@l Tu(e) = hinle) [ Kile, )92 has()d, 6 < o< o0,
e

(22) Tix(0) = has(0) [ Kilt, 0)9a (W hins () dE, 0 < o <bs.

By equations (2), (3) and (4), we get f;, and f,, which enables us to
determine €, and C;, in view of equations (17) and (18). By inverting (15)
and (16), we get g, and g, in terms of 8;;, and T, (k = 1, 2). Substituting
these values of . into equations (21) and (22) we obtain 2n relations which
together with 2n equations (19) and (20) are enough to -determine the
approximate values of the 4n unknown functions 8 and Ty (k =1, 2).
Once 3, and T,, are defined, we determine g, which gives the values of
9:(t) in view of relation (5).

Finally, we point out that the above analysis can also be applied to
7 Simultaneous Fredholm integral equations of the first kind,

f K, 0)gi(t)dt+2 f G;(t, 0)g;()at = f,(6), B:i<0<a,
By

j=1 p;

?Vhich embodies the solutions of many mixed boundary value problems
In mechanics and mathematical physics for #» concentric coaxial spherical
0aps, where we change g, a;, b;, oo into 0, a;, B;, 7, respectively, a;, Bi
being the bounding angles of the i-th annular cap.

So far we have considered the solution of a generalized 3n part bound-
ary value problem. For a 3n part boundary value problem, we have
G = 0, and so L;; = 0, and the rest of the analysis is the same.

We illustrate the method of this section by considering one mixed
bOunda.ry value problem in electrostatics involving »n coaxial concentrie
annular spherical caps. Later we consider a special case by taking n = 2.
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3. Electrostatic potential problem for n anmular coaxial concentric
spherical caps. Let us consider n annular concentric coaxial spherical
caps of radii @, with inner and outer bounding angles 8; and «;, respec-
tively. Let the ¢-th annular cap be charged to an axially symmetric potential
f:(0) in a free space. Let V(r, 0, ) denote the potential of the system in
spherical polar coordinates (r, 6, ¢) with 6 = 0 as the axis of symmetry,
origin being at their common centre. Then we have the boundary problem

V*v(r,6,9) =0 in D,

(23)
Via;, 0,9) = f;(0) for all §; < 0< a;,

where V and 0V [0r are continuous across the region r = a;, 0°< 0 < 8;,
a; < 0 < =, and D being the region exterior to all the caps.
Using Green’s function approach [12], we get

a; 27

n1 . o; (%)
Vr,0,9) = E a?f f [smt . - ]dtd«p’
T = ’ R(r, 0,9;0a;,1,¢) ’

g; 0

where R(r, 0,9;a;,1,¢") is the distance between the points (r, 6, ¢)
and (a;,t, ¢'), and o;(t) are the charge densities.

By the boundary conditions (23), we obtain the following n simulta-
neous Fredholm integral equations of the first kind:

a; 2n

i [ [l Javar
g b R(a;, 0, 9;a;,t,9")

n % 2n
- (1)
+ a,sz[smt i ’ﬁ] 'dt = £,(0 a; < 6 < B;.
; jﬂj 0 E(a;, 0, 9; a;,1, ¢') d fu(0), i

J#t

Comparing these equations with the notation in the previous section,
and using some well-known results [10], we have

2m
do’
‘Kilte:Lite:if 7 G"=0
t: 9) ¢t 9) ao R(ai707‘l’§a'i7t7¢)’ * ’
2 d¢,

it ) =5y
tJ( ! ) a’JO R(a,;, 07‘?5 a’j7t?(p’) ’

a;8into;(t) = gx(t) (k=1,2),

hin = by = 2, hyz = by = hygy = by =1, K (w, 0) = (cosw — cos 6)—”2
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with

and
a. = min(a;, @;), a-. = max(a;, a;).
The kernel K,;(w, 0) is elementary and the equations corresponding
t0 (15)-(18) can easily be inverted [12].
We now consider the particular case where n = 2. Suppose that the

two annular caps of radii a, and a, are kept at constant potentials V, and V,,
Tespectively. We further assume that a,/a, = A and that 8, B,, 4 < 1.

In this case, we have f,,(0) = V;, fu(6) = 0 (i =1, 2) for the rest
of the analysis, and

1 6
Cii(6) =—'/—§—V,-cos—§, 0<b<a, and OC, (0 =0, g;<b<m.
T

To solve equations (19)-(22), we assume that 8;, = X;,+W,,, where,
fori,j =1,2, ¢ #j,

J
(24) X, (0)+ f L (0, ) Xjn()dp = C(0), 0<6< a

(25) u(e)+fL,,1(e,qo) nlp)dg = fL,,l (0, 9)Th(p)dg, 0<6< a

b ]

Equations (24) and (25) have the solutions (see [16])

1 0 36
X.1(0) =—l/2—[eucos + ;508 — 5 -+
4T

50 76
+ €;5608 — +-¢;, cOST + 0(14)]7

2
‘where
A 2 2
= [ + _WO(al)Wo(az)+ 7 {Wola)Wo(a)}* + —Wl(al)Wl(a2)+
/13
+?{ 0 W)+ 5 Wola) W) Wol ) W) + Wo(“l)Wa(“z)}]
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-V, ; [Wl(az)Wo(az)W1(a1) +)~W§ (@) A (ay) +AWo(a)Wo(as)Wa(e,) +
A ,
+ 2 Wl Wala) W) Wi(a) |,
63 =K, Py [W1(02)Wo(‘11) +AA(a))W,(ay)+ % Wg(al)WO(%)Wl(%)] -

A A?
Vst Wil |1+ 5 Wa@Wae)|,

A A .
€5 = —n_—Wz(az) — V.t ;K1Wo(01) ’

2'3
6y = —V, _-n'— Wi(as),

A Vi A
es = Ko |1+ — Wo(ay)Wo(ag) + — Wi(a:)Wi(as)+ — W a(a) Wa(a,) +
w2 T T

3 32

+ Py Wi () We(as) + Ry Wi(ay)Wo(as)Wola)Wy(as)+
s ks

+ 25 M) Wia)| 7225 W@ Wala Wi (e,

2

ey = K, %[Wl(al)Wo(az)—|—1A(a1)W1(a2)+ 22 Wo(a1)W§(az)W1(a1)]

e
12
-V, — W1(01)’
T

3

A
b = —V, —-rc— Wolay) + 2B K, Wo(a,)Wo(a,),

€ =0
with
sinna sin(n41)a
0
Woia) =7 n nt+1 '’ n #0,
a-8ina, n =0,

1 A
K, = V1—V2—n_‘Wo(az)7 K, = 72—71_1:‘ Wo(a,)

and

1
A(a) = a+?sin3a.
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. The other functions are obtained in the following order: X, l;,
Tioy Siaybisy Tiyy Wiy 8;;. The results are

1 .
=Ty — eil—_[ai+200t —“i] 0+-0(f), 0<0<Bg,
2V2n? 2

1 ] . [0
6]/211:3 L 2 | 2
B2 = 0(f), Ba<b<m,
l e | +2cot % | B3 cos ( 6) +0(B)) au<i<m
= —j a —_— _—
12 216]/2113L2 2 2 2 1) 1 ’

ly =008, a<b<m,

1 6 6 ' ai
Ty =latey m cot (5) cosec (3) i3 [a,-—|—2cot —2—], <0<,

1 a a 0
S =Xy, +6,8 Vot [a2+2eot —2—2] [a2+2cot (?2) —'n'] cos?,

S = Xy +0(BY).

Finally, we calculate the total charge C; on each of the annular caps.
Indeed, following the same method as given in appendix B of [10], we get
C; =2nda; [ sinbo;(6)d6
By

a; 3

=2V2 [f cos (%) S (w) dw — f cos (—?;)-) T, (w)dw —
' o

0

B; T
_ Of sin (%) T,y (w) duw + ﬁf sin (%) Siz(w)dw].

These integrals can easily be evaluated.

The capacity of the condenser can be obtained from the previous
results by taking V, = ¥, = 1 and by adding the two total charges thus
obtained. Here we see that, if we take 8,, 8, — 0, we get the known results.

By giving special values to the bounding angles of the annular spherical
Caps we can consider several cases of interest most of which appear
to be new. ‘

Following this technique we can present the corresponding generalized
3n part boundary value problems when the caps are surrounded either

by a grounded cylinder with axis of symmetry as § = 0 or by two grounded
Parallel planes.
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ROZWIAZYWANIE MIESZANYCH ZAGADNIEN BRZEGOWYCH
PRZY UZYCIU ROWNAKN CALKOWYCH

STRESZCZENIE

W pracy omawia si¢ rozwiazywanie m (n > 1) réwnan catkowych Fredholma
Pierwszego rodzaju, nie dajacych sig rozwiazaé bezpoérednio, i przedstawia sie metode
Sprowadzenia ich do 4n réwnah calkowych Volterry pierwszego rodzaju i 4n réwnan
catkowych Fredholma drugiego rodzaju. Réwnania calkowe Volterry maja jadra
Proste i mogs byé latwo odwrécone, natomiast réwnania catkowe Fredholma dru-
816g0 rodzaju mozna rozwigzaé w sposéb przyblizony poprzez iteracje. Proponowansg
metode ilustruje sig na przykladzie zagadnienia elektrostatycznego potencjatu dla dwu

Pierécieniowatych wspélosiowych koncentryeznyeh czasz sferycznych w przestrzeni
swobodnej,



