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1. Introduction. In relatively few storage models it is assumed that

Oth inputs and releases are random. One can mention here the paper
by Gani and Pyke [1], and then the papers by Puri and Senturia [5]-[7].
In [5] and [6] the authors consider the infinite dam in which the times
of inputs and releases are the jump times of a semi-Markov process and
f”ll inputs and releases form two independent sequences of nonnegative
ndependent random variables with common probability distributions in
€very sequence. For such a model they obtain, among others, the Laplace
transform of the time to the first emptiness in the following two cases:

(A) the probability distributions of inputs and releases are expo-
lentia), while those of the distances between input and release moments
Temain arbitrary;

(B) the probability distributions of inputs and distances between
0put and release moments are exponential, while those of releases remain
aI‘bitra,ry.

In proofs of the theorems the authors apply the known technique
°f solution of integral equations.

In this paper we consider an infinite dam in which the total input
f4(t) in the interval (0,t] forms a process with stationary independent
NCrements whose almost all paths are nondecreasing step functions
vaJnishing at zero and the total release B(t) in the interval (0, t] is a com-
Pound Pojsson process with exponential distribution of jumps. For such
3 Model with given initial content of the dam we obtain the Laplace-
Stieltjes transform of the time to the first emptiness. Next, we consider
3 finite dam in which both processes {4 (),?> 0} and {B(t),t> 0} are
€0mpound Poisson ones with exponential distribution of jumps and we
8¢t the Laplace-Stieltjes transform of the time to the first overflow under
the assumption of null initial content of the dam. For the results we apply

;31111(3[ ethod using martingale properties, which is described by Kennedy
3]
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2. Infinite dam. Assume that the input process {4 (¢), ¢ > 0} defined
on the probability space (2, #, P) is the process with stationary inde-
pendent increments and nondecreasing step paths vanishing at zero.
The Laplace-Stieltjes transform of the random wvariable A (¢), ¢t > 0 fixed,
is of the form (see, e.g., [2])

(1) E{e~™0} = exp{—t&(0)}

for an arbitrary real 6 > 0, where

(2) £(0) = | A—6")dN(x),

N(x) is a right-continuous real function in (0, oo), nondecreasing in
[0, oo).
Assume further that

fde #) < oo and f x2dN (z) < oo,
0 0

i.e. the random variable A (f) has finite expectation E{4 ()} = ot and
variance D*{4 (1)} = o*t.

The output process {B(f),t> 0} is the compound Poisson process
with jump intensity x and exponential, with parameter v, distribution
of jump size, independent of the input process.

Let {C(t), t > 0} denote the net input process, i.e. C(t) = A(t)—B(?).
Under the assumptions of the model the process {C(t),t > 0} is infinitely
divisible and for every ¢>0 we can define the moment generating
function of the form

(3) E{e O} — exp{—tD(0)}, 0<06<0,
‘where

0
@) D(0) = £(6)— ——-.

Next, let #(t) denote the o-field generated by the process {C(u),
o0<u << t}, and X (t), t fixed, the random variable determined by the
formula

(5) X (1) = exp{®(0)t—6(c+C(t))}

for 0 <6 <v and ¢>0.

THEOREM 1. The stochastic process {X (), #(t),t>= 0} is a martin-
gale.

Proof. By (5), the measurability of X (¢) relative to F(f) as well
as its integrability are obvious. Using (3) and the infinite divisibility
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of the process {C(t),#> 0}, for 0 <u<tf, 0<0<wv we have
E{X(t) | & (u)}

= exp{®(0)u— 0(c+C(u))}exp{®(6 (1—u)}E{exp( 0C (t —w)) | # (u)}

= X (u)exp{®(0)(t—u)}exp{—D(0)({—u)} = X (u),

Which completes the proof.

Let T, be the time to the first emptiness of the dam with initial
content ¢ > 0, defined by the formula

(6) T, = inf {t: ¢+C(1) <0}

0<t<oo

Using martingale properties of {X(t), #(t),t> 0}, we obtain a simple
formuly, for E{exp(—sT,)}, s >0.
THEOREM 2. If o < /v, then

0 E{exp(—sT,)} =

P2 expi -0,

Where 6(s) is the unique monnegatlive solution of the equation
(8) —®(6) = s

With wnknown 6 (0 < 6 <o) and an arbitrary s > 0.

Proof. It is easy to see from (2) that equation (8) has the unique
Donnegative solution 6(s) < v for every s > 0 and, under the assumption
¢< /"/’i'va

lim 0(s) = 0.

sNO

Thus for an arbitrary s >0 and 0 = 0(s), by (4), (), and Theorem 1,
the random variable

X,(t) = exp{—st—0(s)(c+C (1)}

forms the martingale relative to {# ({),?> 0}. Note that it is bounded
on the set {t < T,}, for then ¢-+C(t) >0. From martingale properties
(see [4], p. 70) we obtain

E{X (T At)} = E{XO(O)}7 t=>0,
Where anb = min(a, b). Hence
Xo(T)aP+ [ X, ()aP = E{X,(0)}, t>0.
{t=Te} {t<Te}

Since x o(t) is bounded on the set {t < T,}, the probability measure P
Is continuous, and the condition P{T, < oo} =1 is satisfied for o < u/v,
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we have
(9) E{Xo(Tc)} = E{Xo(o)}'

Since the distribution of jump sizes of the output process has the “for-
getful property”, the following equality holds: ¢+C(T,) = 0 —X, where
X is a nonnegative random variable with exponential distribution, in-
dependent of T,. Hence, by (9), we get (7).

3. Finite dam. Before considering the continuous time model we
deal with its analogue in discrete time. Assume that the capacity of the
dam is equal to K < oo and the consecutive net inputs C,, » =1, 2, ...,
are independent random variables with identical probability distributions
defined by the formula

“ X <0
A+,u6 ’ A
(10) P{Clgx} =

p_* (1—e%), 2>0,
Adp A+

where A, u, 4, and v are positive constants.
It is easy to verify that the moment generating function ¢{(6)
= E{exp(—00C,)} is of the form

A0 n uv
(A4u)(0+68)  (A+p)(v—10)’

Let us introduce the notation

(11) £(0) = —d< B <n.

k
8, =0, 8,=>0C, k=12..,
=1

m, = min 8, F, =0{C,Cs,...,0}
o<k<<n
and let Z, denote the content of the dam at the moment n. It is known
that if Z, = 0, then

(12) Z,=8,—m,, n=12,...

In this model we indicate the martingale which we use while considering
the continuous time model.

THEOREM 3. For real w, 0, 0, such that () < oo, 6 # 6,, and {(0)
= {(0,), the sequence of random variables Y,, n =1,2,..., defined by
the formula

13) Y. - 3”2{2"—6’;” [A (o, 0,)exp{0Z,} —A (o, 0)exp{6,2,}],
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Where

(14 _ w—0
) A(w, 0) = (@1 0)(0+)’ v >0,

i8 the martingale relative to the family of the o-fields {F,,n >1}.

) _Proof. By (13), the measurability of Y, relative to &, as well as
1ts Integrability are evident since 0 < Z, < K. Using (10)-(12) and (14)
We obtain

(15) B {exp(wm,+ 0Z,) | Fn_.}

v
= €xp {wmn—l + 67 —l} C(o)— %“‘A (w7 0) exp{wmn—l —’vZn—l}'

Simultaneously, by (11), it is easy to verify that
{6 # 0,:0(6) = (6,)} +# 9.

Then, from (13) and (15) we obtain the equality E{Y, | #,_,} = Y,_.,
Which completes the proof.
Using the martingale {Y,, #,,n > 1} in the discrete time model,
%he can obtain the Laplace-Stieltjes transform of the distribution of
€ time to the first overflow 7z and the Laplace-Stieltjes transform of
€ joint distribution of the random variables ?k and mz,, where —my
de.notes the deficit of water in the interval (0, Tz]. We do not deal with
his problem and examine the continuous time model.
. We consider the finite dam of capacity K < oo, in which both the
Hlp_ut and output processes {A(t),t> 0} and {B(t),t> 0} are compound
018s0n processes with intensities 4 and u, respectively, and exponential

(with Parameters 6 and v) distributions of jump sizes. We recall the
Dotation :

C(t)y =A@)—B(@), F(@) =0c{C(u),0<u<t}.
Let further
m(t) = inf C(uw—)

o<u<t

211(1 let Z(t) be the content of the dam at the moment t. If Z(0) = 0,

hen _ analogously to formula (12) — we have
(16) Z(t) = C{t)—m(), >0
(see [27).

Now we prove the following analogue of Theorem 3:

-
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THEOREM 4. For real w, 0, 0, determined in Theorem 3, the stochastic
process {XY (t),t> 0} given by the formula
(17) X () = exp{—(A+u)(((6) ~1)t+ wm ()} [4 (w, 0;) exp{6Z (1)} —
—A4(w, 0)exp{6,Z()}], t=>0,
where A(w, 0) 78 defined in (14), is the martingale relative to the family
of o-fields {F(t),t>= 0}.
Proof. Using (16) we get the equality
(18)  Elexp{w(m(t)—C(w)) + 6Z(1)} | # ()}
= Blexp{0(C(t) —0(w)) + (o~ 6)
xmin(—Z(w), inf {C(y—)—C@})} | Fm)}, 0<u<i.

usy<i

Note that {C(y—)—C(u), u <y <1t} does not depend upon % (u) and
has the same distribution as {C(y—), 0 <y <t—wu}. If in the interval
(0,t—u] there occur n jumps of the process {C(y—),0<y <t—u},
then its distribution is the same as the distribution of {S,, 0 <k < n},
where

k
8 =0, 8 = ZC“
i=1

and C; are independent random variables with common distributions
defined by (10). Simultaneously, from Theorem 3 we infer that E{Y,, ., | #,}
= Y, for positive integers n,r, and hence, by (13), we have
(19) E{4(w, 0,)exp{08,+ (o— 6)min(z, m,)} —
—A(w, 0)exp{6,8,+(w— 0,)min (2, m,)}}
= {"(0)[4 (o, ;) exp{(w—0)2} —A4 (w, 6)exp{(w—06,)2}]
for an arbitrary 2z << 0. Denoting by M (f) the number of jumps of the
process {A(t),?> 0} in the interval (0,¢] and by N(f) the number of
jumps of the process {B(?),t>> 0} in this interval and using (17)-(19),
for 0 < u <t we obtain
exp{—wC(w)}E{Y () | #(u)} = exp{—(2+u) (L(6) —1)t}[4 (@, 6,) X
xexp{(0— w)Z (u)}—A (o, 6)exp{(6; — @) Z(w)}IE{(Z(6)) (- +N-0}
| = exp{—owC(u)} ¥ (x),
which completes the proof. )
Let 7, denote the time to the first overflow defined by the formula

(20) -1 = inf. {t: Z(t) > K}.

0<i<oo
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Using the martingale properties of {Y (#), #(t),t > 0}, we obtain a for-
Mula for E{exp( —814)}, § > 0.

THEOREM 3. If 2/6 5 ulv and {(0) < oo, then

21)  Blexp(—stx)} = 0(0(s)— 0, (5)) (6— 6:(5)) (5— 6(s)
X {8[(0,(s)+v) (6—6(s)) 6(s)exp{6,(s) K} —
— (6(s)+v) (6 —04(s)) 6, (s)exp{O(s) K}[}~, >0,

Where 0(s) >0, 6,(s) <0 are two real solutions of the equation
(22) A+ (E(0)—1) =5

with @ ‘Emlmown, an arbitrary ¢ >0, and {(0) given in (11).
" Proof. It is easy to verify that for an arbitrary s >0 equation
(22) has two different roots with different signs in the region {(6) < oo.

Let 6(s) >0 and 6,(s) < 0. Moreover, under the condition 2/8 = ufv
We have

lim6(s) =0 and 1lim 0,(s) #0.

LAY sNO

Therefore, from Theorem 4 we obtain, for o = 0, the martingale

Yoty — oot ) __ b ]
o) = ¢ [,0(6(8) oy B0 Z0) - S e (0203,

t>0, s>0.

Since the inequality Z(f) < K holds on the set {t < 7}, the martingale
18 bounded on this set, and from martingale properties we get E{Y,(rx)}
= E{¥,(0)}. Hence and by the fact that the jump sizes of the input.
Tocess are exponential we obtain (21).

The martingale {¥(t), #(t),t> 0} may also be used for obtaining
the_Laplace-Stieltjes transform of the joint distribution of the random.
Variables 7, and m(zx).
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