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A CENTRAL LIMIT THEOREM FOR INDEPENDENT SUMMANDS

1. Introduction and summary. Trotter [6] introduced linear operators
approach in order to prove theorems in weak convergence. The author [3]
has used Trotter’s method in order to prove the weak laws of large
numbers. The latter author has also obtained certain central limit theorems
for independent summands when each summand is suitably standardized
(that is, each summand is divided by a different scale factor). Of course,
no assumption of the finiteness of the second moments was made. In this
paper*, we shall obtain central limit theorems when the sums are stand-
ardized in the usual way, namely, when each summand is centered at its

expectation or at its truncated expectation and is divided by a common
scale factor.

2. Notation. Let C denote the class of bounded uniformly continuous
real-valued functions on ( — oo, o). We say that a function k belongs to
C, if b and its first three derivatives exist and are in €. Throughout c.d.f.
and K stand for a cumulative distribution function and a finite generic
constant, respectively. For he C, let

Ibll = sup |h(x)].

Furthermore, for each he C, the transformation 7Ty associated with
the r.v. X having F(x) for its c.d.f. is defined by

(Txh)(y) = BM(X +y) = [ h(w+y)dF(z), all real y.

Thus Tx maps C to C and is a linear contraction operator. Moreover,
if X,,...,X, are mutually independent random variables, then it is

known that Tx .. .x, is equal to the product of Tx ,..., Ty, which
commute with one another (see [6], p. 228).

* The invited paper was presented at the Symposium on Queuing Theory
organized by the Institute.of Mathematics of the Polish Academy of Sciences and

the Wroclaw University and held in Wroclaw and Karpacz ‘during January 11-18,
1973. '
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3. Main results. In this section we shall present the required lemmas
and the main results of this paper.

LeMmMA 3.1 (Trotter [6] and Feller [2]). Let T, and T be operators
associated with c.d.f.’s H, and H, respectively. H, converges to H if and only
if | T,h—Th|] -0 as n—>oo for every he C;.

For the sufficiency see Trotter [6], and for the necessity see Feller [2],
p. 245 and 251.

LemMMA 3.2 (Trotter [6]). Let T,,...,T,, 71y ..., 7, be contraction

operators (that is, [T, h(y)| < |l or [t h(y)| < ||hll) which commute with
one another. Then, for any he C;,

0Ty ... Th—7y ... 7Bl < D ITh — 7l
k=1
and hence

I T"h —t"h|| < n||Th—th|.

For the proof see Trotter [6], p. 229-230.
LEMMA 3.3. Let the integral I, be given by

tn
I, = t;lan(t)dt, where t,—oc as n—oo,
0

Then I,—~0 as n—oo if

(i) for every 6 > 0, there exist n, and t, such that |B, ()| < 6/4 for n> n,
and t > ty, and

(ii) for every i, there exist ny, and K (K < oo) such that |B, (1) < K
for n > ny and t < i,.

For the proof see Govindarajulu [3], p. 270.

LEMMA 3.4 (Hardy et al. [5]). Let 1< pi<< oo (¢t =1,...,¢) be ex-
tended real numbers such that

c
2_,' 1/p; = 1.
i=1

Moreover, let |f\* (1 =1,...,¢) be integrable with respect to some
measure v.
Then, for every c¢>= 2, we have

[l H fi|aw < [ ] 1y,

7 e A
[1fiPray — " [ f Pedy’

where ||fll, = [[If1?dv]"®.

with equality when
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For the proof see Hardy et al. [5], p. 139-141. One can also establish
the sufficient part of the lemma using the method of induction.

TaeoreEM 3.1. Let X,, X,,..., X, be independent random variables
having F,, F,, ..., F, for their respective c.d.f.’s which may depend on n.

Let
n
Sn =2Zin7
t=1

where

Zi = (Xi— (b)) 0 (ba), () = [ @dF(a),
lz|<t

n

Uit) = [ [o—m)PaF (@), o) = D Ti),

lz|<t =1

and b,—> oo is such that /b, < K < oo and b,fo, < K< oo as n—>oo.
Then

7n—>0

HmP (8, < @) = &) = (2m)™ [exp[—#/2]dt

provided o,(b,) > 0 and B, (t) >0 as n,t— oo, where
1 .
B,(t) == DA, At = BI—F@)+F(~1)], i =1,...,n.

Proof. Let ' Y., Yoy, ¥,, be independent normal variables
having means 0 and variances U3(b,) (¢ =1, ..., n). Since

Sn = D) Yiufon(by)
i=1
has a standard normal distribution, it suffices to show that

ITs,h(¥) —T k(@) >0 as n > oo.

Further, in view of Lemma 3.2, it suffices to show that

n
Z "Tza'nh(y) - TYinlan(bn)h(?/)” -0 as n— oo,
i=1
Towards this, consider

Tzo?¥) = [ Ry +{o— (0} o (b)) dFi(2) = [ +

1zl <by, lzi>by,
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Expanding b in a third-order Taylor series about ¥ and integrating
each term, we have

[ b+ 2=} fou(®) 2Fi(a)

1zI<by,
v (y) U%(b,, (b)) B’
— @)+ D) ) [ ame)+ B0 g )
a(Dy) 0y (D)
jz1>by, Izl>bn
1 1
+mm<fb (0 — ()1 (8)dFy(a),
where & lies between y and y -+ {&— u;(b,)}/o,(D,).
Analogously, we obtain
2U;(b,)
T ) = [ Wy 220 a0
Us(bn) U3(b ) 37,111
= hy)+ gy B W)+ Gan(bn)fz}L (£)d0(2),
where &, lies between y and y+2U;(b,)/0,(b,). Hence
1) I Tz,,h— Trpionen
111 125 (b))
<2k . — v ,
[ are+ = R [ ame)
[1>by, |z|>by
1B 5 IIh"'ll | U3 (b s
. — A dod
nl | le—mniraR o+ =5 S f 2dD(2).

Next we shall show that all terms on the right-hand side of (1), when
summed from 1 to n, would tend to zero as m becomes large. Consider

n

n
aF, (o) <b> > Ay(b,) —— B,(b,) < KB,(b,) >0 a5 n—>oco.
1 b2 n )
i=1 n

i=1 |x|>by,

Moreover,

a#(bﬁle@lm i < oo Balb) EB,(3,) >0 as n—co.

Next, expanding (# — u;(b,))* and using Jensen’s or Holder’s inequality,
one can easily show that '

@ —us(b,)12AF(2) <8 - [ |oPdF ()

1£1<dy, |zi<by,
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Now, after performing integration by parts once, we have

n . n bn
(b, ' [ lwlrdFi(@) = 073 (By) D) [ —budi(ba)+3 [ 4,(0)d].
=1 0

i=1 |z|<by,
Thus

n bn
s . b, 3
W0) D [ eldBe) < s B+ S D f A(vdt.

i=1 |:tl<bn

Since B, (t) — 0 as n, t —oo, for every é > 0 there exist n, and 1o such
that |B, (t)| < 6 for ¢ > t, and n > n,. Moreover,

by, to by, by,
t
fA,(t)dt=f +f<3—+fA1(t)dt
0 t to
Hence
no £ sn [ Konb
3673(b f (&)t < 0 " fBz < 0+ 2% < K.
WO D) | A< Sy + gy | Bha< o S
1= (1}

Next notice that

i) = [ (o~ m@)PaF@]"< [ lo—pb)13aF:(0)

<8 [ |uPdF(s).
1zl<by,
Consequently,

U;(by) [on(b,) < K 6.

CororLrLARY 3.1. If F, =F, =... =F, = F, the sum 8,, when
suitably. normalized, is distributed asympiotically as a standard normal
variable provided b, is chosen so that n[b: < K and b:[nU*(b,) < K, and

At) =@[1—F(@t)+F(—$)] >0 as t—>o00.
That is, if b, = n'*¢ for some & > 0, then it. suffices to have 1/U*(b,)

<K and A(t) >0 as t—oo.

THEOREM 3.2. Let X,, X,,..., X, be independent random wvariables
centered at their expectations and having F,, F,, ...,.F, for their respective
c.d.f’s which may depend on n. Let ‘

.
;Sn = Z Z.'_in’
t=1

T
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where
Zin = Xifoy(ba), Ti(t) = [ aaF(a), d400) =D Ti),
lz|<t i=1

and b,—oo 8 such that n[b2 < K < oo and b,/0,(b,) < K < oo as n—>oco.
Then

imP (8, < #) = & ()

7N—»00

provided o,(b,) >0 and B,(t) >0 as n,t—>oco, where B, (t) is defined as
in Theorem 3.1.

Proof. Let Y,,, Y,,,..., ¥,, be independent normal variables
having means 0 and variances U:(b,) (¢ =1, ..., n). Since

8y = Yiulo,(by)
t=1
has a standard normal distribution, it suffices to show that
n
or, equivalently, that

2 ”Tz‘l'nh(y) - TY@nI“ﬂ(bn)h(y)” g 0 as n—oo0.

fm]

Noting that T, h(y) = [h(y+®/a,(b,))dF;(#) and expanding as
in Theorem 3.1, we obtain

(2) Tz b~ Ty, om0,

=2pl [ dFi(@)+

1zl >by,

1]
G (bn)

h"’
[ i@+ gl [ leiraBie)+

2> by, 2} <by,

Uiba) [,
+m—£ [213dD(2).

Next, we shall show that all terms on the right-hand side of (2),
when summed from 1 to n, would tend to zero as n becomes large. First,
third and fourth terms can be treated as in the proof of Theorem 3.1.
Consider the second term and write

[ |olaF; = —[fowd(1—1’,.)+ —fbna:dli',-].
lz|>by, by -0

Integrating by parts once in each integral and noting that
limz[1—F;(x)] = lim «F,(2) =0,

T—>»00 —>—00



Independent summands 45

since F; has a finite expectation, we obtain

w3 [ ar = S[A [ {42

i=1 |z|>b,

o]

<’n13n(bn)Jr n f{B"(w)}dw.

T baon(by)  0u(by) J L o

Now, for every 6 > 0, there exists an n, such that B, (#) < 6 whenever
n > My in the second integral. Thus

n

n
~1 <—" __25<Ks.
o E f oldF, <5~ 20 < K

=1 |zi>by n%n\Yn

Remark 3.1. If the variances o5 of the component variables exist,
one can replace o (b,) by

”

=)

i=1

provided o2 /o2 ->1 as n—> oo which is trivially true when the z; are identi-
cally distributed.

4. Case of random sample size. Random sums based on a random
number of variables commonly arise in statistics. In the sequel we shall
extend Theorems 3.1 and 3.2 to ﬁitua.tions where the sample size is random.

n
We consider sums of the form > Z,,, where Z;, are mutually independent
i=1

and suitably standardized, and N, is & positive integer-valued random

variable satisfying a certain regularity condition. Then we have the fol-
lowing theorem:

THEOREM 4.1. Let X,, X,,... be a sequence of independent random
variables having F,, F,, ... for their respective c.d.f.’s and let N,, N,, ... be
a sequence of positive integer-valued random variables such that N, i8 indepen-
dent of (X4, ..., Xy, ). Assume that

Ny,
SN,, = ZZi,fn

i=1

where Z;, = (X;— a;)[0,(b,) (X;[o,(b,) of the X, are centered at their
evpectations),

4, = [ @dFy@) (=1,2,..),
x| <by,

o(b,) is defined as in Theorem 3.1, and b,—oc is such that n[bi < K < oo
and b, /o, < K < oo as n—>oo. Further, suppose that, for any 6 > 0, there
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exists an a, 0 < & = a(d0) << b = b(J) < oo, such that
Pla< N,[n<b)=1—6 for n=mny(d).

Then P(Sy, < 2) —>P(@) as n—>oo, provided B,(t)—>0 as n,t—>oo,
where B,(t) is defined as in Theorem 3.1.

Proof. It is sufficient to show that IITSNnh—TYh||—>O as n —oo,
Let ¢, = P(N, = k) for k =1,2,... Then we can write

Ty h—Trh = D o {Ts h—Tyh}.
k=1
Hence
[nb]
Ty R—Tyhll< ) 6ullTs,h—Tyhl+2 6.
n k=[na]
However,
k
|Tg, b —Tehll < Y Iz, b —Teyihll
t=1

and, for every 4 > 0, there exists a k, such that k¥ > %k, implies that

K
Z 1Tz, b —Tryz bl < K6

=1

whenever the hypothesis of either Theorem 3.1 or 3.2 is satisfied with
n replaced by k. Now, let

ng = 1+[kofa]. and n; = max(ng, n,).
Hence n > n, implies that k > %k, which, in turn, implies that
ITs, h— T hll < 8.

Consequently, [T, h—Tyh|<Ké for n>ng. This completes the
n
proof of Theorem 4.1.

Remark 4.1. If N, is dependent upon X,, ..., Xy as in sequential
statistical procedures, and if N,/n - (¢ < o0) in probability, then one
can appeal to Anscombe’s theorem (see [1]) in order to assert the asympto-
tic normality of Sy .

5. Multi-variate case. If the random variables are vector-valued,
the arguments employed in Sections 3 and 4 can be repeated verbatim in
order to prove the multi-variate forms of Theorems 3.1, 3.2 and 4.1.
In the following we state the multi-variate version of Theorem 3.1:

THEOREM 5.1. Let X,, X,, ... be independent c-variate random variables
having F,(x), Fy(x), ... for their respective c.d.f.’s, where & = (0, ..., &,)".
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Assume that

Sn =2Zz‘,n7
i=1
where

Z‘i,n = (Xi — ai,n,) /a'n = {(Xi,l - ai,l.n)/“l,n? coey (Xi,c - ai,c,n) /ac,n} ’

n

Un = [ 2,dF (@), obn= [ (0—au)dFi(@), o}, = D o
lx|<b,, ! el<by, . i=1

(1=1,...,e5 12 =1,...,m),

b, =(b,,...,b,), and b,~>oco is such that n[b; < K < oo and b,[o;, < K

< oo for j =1,...,c. Let

Z = (cfidn);
where
ot = f {(#; — 0ijn) 00} {{% — Qipy) [03n} AF ()
Jae|<by,

(G, k=1,...,¢; 5 =1,...,n)
and let

Z, =204 . 430,

Further, let Y,, be a c-variate normal variable having mean vector
zero and a variance-covariance matrix XD (i =1,...,n), and let Y,
(2 =1,...,n) be mutually independent.

Then 8, converges in distribution to the normal variable having the
mean: 0 and a variance-covariance matriz X, provided

n
B, ;(t) = ZAi,j(t)/’n -0 asn,t—>oc0 for j=1,...,¢,
=1

where
A;;(t) = B[1—Fy(t) + Fy(—1)],
F;; denoting the marginal distribution of the j-th component of X;.
Proof. It suffices to show that

2“Tzi,nh(y)—TYi,nh(y)” —~0  as n—>00
i=1
for every he C,. Consider

Tzi'nh(y) =fh{y-}-(ac—am)/an}dpi(a,) — f +

lzil<b,  lxi=by
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Expanding & in Taylor series, we have

1
h(y+2z) = h(y)+zh’(y)+§ zh' (y)2' +

1 9 2\, _
+-6‘{(zi,l o, + .0 2 awc) w) |w = 5i}’

where '(y) is the column vector with k-th component as the partial de-
rivative of h with respect to the k-th variable evaluated at y, and &; lies
between y and y+ 2. Setting 2 = (¥ —«e;,)/0, and using this expansion
in the first integral, we have

1 " . R,
Ta, (0= hiy) + 5 traco (b () 20} - [ e — E2 (9 [PUIX> 0,1+ T

n
where ain/an = (ailn/01n7 ) aicn/acn) and
‘Ri =
c ¢ ¢

2 Z Z f {(®; — aijn) [0} {(#r — Cign) [Okn} { (%1 — Qitn) [03} B (&) AF; ()

i=1 k=1 1=1 |®|<b,
[4 4 4
(?)
2 2 D B

i=1 k=1 l=1

Analogously, we have

Ty, h(y) = h(y)+itrace{r” (y) 2} + E; /6

P =2 ) [wmah (&) a0, (@),
j k1

where @,,(x) denotes the c.d.f. of ¥,,, and &* lies between y and y+ .
Next, let @, = min(ay,, ..., o), €xpand, repeatedly use Holder’s inequality
(Lemma 3.4), and obtain

'
[(; — @) (B — Qi) (8, — ailn)/ajno'kn oyl 4 F; ()

lxl<by,
< 80;°[ [ Iy 12aFy )" [ [ 1w 2 || [ 1wraz]”,

where the range of integration in each integral is |x| < b,. Now, applying
extended Holder’s inequality for sums (see Theorem 11 of Hardy et
al. [5], p. 22), we obtain

with

Z'L,‘R§21<8“;3 n [51 f |<171r;|3d-z’1~.'(117)]1/3
im m=f ikl i=1 |@|<by,

1/3

<K [] [ﬁ b [ loldF ()|

m=7,k,1 i=1 |zl <by,
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after integrating on the other variables in each integral, where F,, (%)
denotes the marginal c.d.f. of the m-th component of X;, and using the

hypothesis that b,/a, < K < co. Now, as in the proof of Theorem 3.1,
one can show that, for each m,

n

b.° Y [ lePaF,, (@) < Ks

t=1 |z|<by,
Thus, for sufficiently large =,

c [+ [

Y=Y YRy <Ks

t=1 iml j=1 k=1 I=1
Next, let us turn to R;. Write
2 R} = Z 2 Z Z B, B = [aoab" (8)dd, ).
i=1 j=1 k=1 l=

After using Holder’s inequality one can readily obtain
i 1 3
BRI < 101 [ [ 151250 " [ 1i12d0, ] [ [ 112 d )"

="l ] [[ 1912d® (@),

me=j,k,l

where @,,, denotes the marginal c¢.d.f. of Y,,, which is normal with
mean 0 and variance o3,,/d%,, (m = j, k, ). Hence

|R:1?i <K ” {Oimn/ O'mn} < Ka’; 3 ” Oimn *

m=,’kll m=jyk’l
Further, using Hoélder’s inequality for sums, we have

S [T (3]

m=j k0 i=1
Now, as in the consideration of E;, we can easily obtain
G <8 [ @PdFim(@] (m =j, k0.

1z1<by,

Thus

n
— - i
a? S O < 800 |z|3dF,, (2) < K4.
i=1 i=1 [z|<b,
Consequently,

2 IR}l < K for sufficiently large n.
t=1

This completes the proof of Theorem 5.1.

4 — Zastosow. Matem. 15.1
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Concluding remark. The results of this paper can be formulated
in terms of a triangular array of random variables. For the sake of sim-
plicity, they are stated here in terms of simple sequences. Further, the
multi-variate case can also be reduced to the uni-variate case by con-
sidering arbitrary linear combinations of the component variables.

6. Examples.

(1) Let V denote the distribution function of the symmetric random
variable W such that

BP[W] >1] = o(1),

where p(¢) monotonically tends to zero as {—>oo. Let us define a sequence
of distribution functions {V,;} by

’

V() if o< —1,,
Vi-—-t) if -, <2<,
V(%) fo<<oe<i,
V(x) if =1,

Vi(x) =

and let @(z) be the standard normal distribution function. Let us define
a random variable X; having F, for its distribution function, where

Fi(x) =(1—a)V(®)+a,P(x) (¢=1,2,..).

Assume that X,, X,, ..., X,, are mutually independent for each n.
Clearly, X; has mean O for + =1, 2, ... Furthermore,

B,( —n"‘thtl —Fi(0) + Fi(— )] < B{P(W] > 1) +20(—1)}

‘which tends to zero as {—oco. Hence, for a given V, we have to choose
b,, t; and a; such that n/b < K < oo and b,/0, < K < oco. In the sequel
we shall provide a special case. Let b, = l/ﬁ, t; =i° for some &> 0,
a; = (log?)/i, and

log2
_ 0Bs if o< —1,
2x%log2|x|
1 .
V(z) = rY if -1<s<1,
log2
B LA TP
2x%log 22
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Now, since 1—{(log#)/x} is inecreasing for # > ¢ and decreasing for
2 < e, we have 1 —a;, > 1—qa, for ¢ > 3. Hence, for ¢ > 3,

Vn
U2(b,) = 2(1 —a) f w*dV (z)
max(1,i—9%
Vn Vn

i 1 dx
2
(log2)1f d(log2w) +2(log )lf wlog2w]

=(1—as

—

) — log2
= (1 —a3) (210g2)loglog(2l/n) +1—(2log2)(loglog2) — ————|-
R . log2Vn

Thus

o (by) > Zn: U

i=3

O.N

(bx)

log2
= (1 —a3)( n—3)[(2log2 loglog(2l/n)+1 (210g2)(10g10g2)————g——]-
10g2l/;

Hence n/d%(b,) tends to zero for sufficiently large .
In order to get the identically distributed case, set V() = V,(x)
= V(»).

(2) Consider a sequence of independent random variables having
{F,} for their c.d.f. sequence,

0 if < —VE+1,
272 k+1)!
Y B T R S
log2lz|  log2VEk+1
1
Fk(a(:)=-E if -1<e<1,
1 1 x?
— 4O, — if 1< Vk+1
5 T '”[logz lome] ' o<VE+L,
1 if 2>VEk+1,
where

1 N -1 -1
% | s g
log2  log2VEk+1

It is easy to verify that

(L~ F, (o)) < (log2) Bl 1 |

log2Vk 1  log2e
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and, for sufficiently large n,

1% 3 2y 1
= Nar(i—Fulo) < Hlog2) [ 2 [ 2 ]

dy —
"y log2Vy y log 2@

3 . 2002 —_
=7 (log2) [—n— (loglog(2Vn +1) —loglog2) —

10g2w] -0 as n,s-—>o0.

Now a;,, =0 and setting b, = Vn+1 we obtain
1 1
log2  log2Vk+1

However, since O) = 1log2, we have

Ui.n = 20; [ ] +40, [loglog(2 VEk+1) —loglog2].

2 n
of,(b,,)>(1—(210g2)10g10g2)'n—(10{_.);2)310:2 +(2log2)f (loglog2Va)dz.
2
Further,
loglo 2l/5dw>n loglog2 Vn) —2(loglo 21/5—#.
2f(gg) (loglog )(gg)mogm@
Thus
" 0 asn—>o0
— —
o7 (bn) ’

Consequently, one can apply Theorem 3.1 or 3.2 to assert the asym-

n
ptotic normality of > X;/o,.
i=1
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Z. GOVINDARAJULU (Lexington, Kentucky)

PEWNE CENTRALNE TWIERDZENIE GRANICZNE
DLA NIEZALEZNYCH SKLADNIKOW

STRESZCZENIE

W pracy podaje si¢ centralne twierdzenie graniczne dla przypadku, w ktérym
sumy 83 normowane w zwykly sposéb, tzn. tak, Ze kazdy skladnik ma wartosé ocze-
kiwang lub ucietg warto§é oczekiwana réwng zeru i jest podzielny przez wspélny
czynnik.



