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1. Introduction. Throughout this paper, X,;,..., X, and X,m 41,
eey Xym +n, denote two samples from populations with continuous
distribution functions ¥, and G,, respectively. We write N, for
m,+n,, B, for the rank of X,; in the joint sample X,,,..., X,5, and S,

for the Wilcoxon statistic Y’ R,;; all symbols being defined for » = 1,2, ...
i=1

We shall be interested in the problem of asymptotic normality of
the Wilcoxon statistic: Under which conditions concerning m,, n,, F,, G,
is the distribution of 8, asymptotically normal? A sufficient condition
given by the Chernoff-Savage theorem [1] reads: N, tends to - oo and
each of the sequences

(1) T we VA G(Xa),  var By(Xy)
is bounded away from zero.

In a special case (location alternatives), when P, = I", G, () = F(x—
—4,), F' exists and its carrier is an interval of length 4 < + oo, the
condition on variances reduces to the boundedness of |4,] away from A4.

In the present paper we try to get closer to necessary conditions.
It will be shown that

(i) all the boundedness-from-zero conditions imposed on sequences (1)
can be relaxed simultaneously (so that, especially, for the location al-
ternatives, the asymptotic normality holds even for |4,| tending — suffi-
ciently slowly — to 4);

(ii) more detailed statements concerning location alternatives are
available for normal or rectangular F.

As to the methodology, the main tools are an inequality on projec-
tions of linear rank order statistics (Hajek [2]) and a lemma presenting
sufficient conditions for asymptotic normality in terms of conditional
distributions.



2. General alternatives.
THEOREM 1. If

2) im 2 (2 var @,(X.)+ -2 var F,(X,v)| = + oo,
v—>-- 00 Ny v -Nv Y
then 8, is asymptotically normal (ES,, var8,) and
(3) lim vars8,/(m,n;var@,(X,,)+m;n,varF,(X,y)) = 1.
V—> -+ 00

Proof. The essential points of the proof have been already pre-
pared in [2]. We first approximate 8 (we shall drop the index » if there
N

is no danger of confusion) by the statistic S = ES +> Y;, where Y;
i=1

= E(8|X;)—ES. The Y;’s are independent, have zero expectations, and
can be expressed as

e —nG (X)) + % =1, ...
(4) Ti= Y (BRIX)—BR) =] "o TH T,
= mbP(X)+», +¢=m+1,...,N

-~

with some constants x;, »;. It easily follows that var § is given by the
denominator in (3) and that |Y;| <N, ¢+ =1,..., N, which together

with (2) entails that ess. sup|Y;|/(var S)* tends to zero. Thus the Lmdeberg

condition for the asymptotic normality of S with parameters (ES var S)
is trivially satisfied. The asymptotic normahty of § with parameters

(ES var S) and the relation var S/var 8 -1 will be entailed by E(8—
—S)ﬁ'lva,r 8 — 0. This however, follows from an mequahty (Th. 4.1.

in [2]) which — specialized to our case — gives E(S——;S)2 < imn, and
from the relation (2).

THEOREM 2. If for some A,,v > 1, the sequence
(5) PX, <A < X;,1<i<m,m+1<j<N,)
is bounded away from zero, then S, is not asymptotically normal (u,, o?)
for any u,, o, > 0.

Proof is evident, since (5) implies that P(S, = }m,(m,+1)),» >1

are bounded away from zero, which makes the asymptotic normality
of 8, impossible.

3. Location alternatives. From now on, we shall confine ourselves
to the case
(6) F,(x) =F(x), G, (x)=F(x—4,) for all x and ».
THEOREM 3. Let the distribution F be symmetric (about the median). Let
(7 limmin (m,, n,)var F(X,, —4,) = +oo.

y—>00
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Then 8, is asymptotically normal (ES,, var 8,) and
lim var8,/(m,n,N,varF (X, — 4,)) = 1.

y—+ 00

~ Proof. For all x we have F(r) = 1—F(2c—x), where ¢ is the
median. Hence

adF (u) = | iF(u) = [ d&,(@),

G (u)<! 1-F@2c—u+4,)<t 1-F(v)<!?
ie., G(X,) and 1—F(X,y,) have the same distributions, which implies
that
varF(X,y ) = varG,(X,,) = varF(X,,—4,).

Inserting this into (2) and (3), we get the statement of the theorem.

4. Normal location alternatives. In addition to (6), assume that

z

1
F(z)=—— fe"'z’zdt.
Von
Without loss of generality suppose that m, <n,,» >1; further, let

m, - -+ oo.

THEOREM 4.
(1) Let

— 00

limsup |4,|/(3logm,)} < 1;
v—- 00
then 8, is asymptotically normal (ES,, var 8,). If, moreover, |A,| - + oo,
then \
lim vars8,/(3**(2n) "' 4 %" P m,n,N,) = 1.
v¥—>4 00
(ii) Let
liminf|4,]/(8 logm,) > 1,
Y— 400
let m,/N, be bounded away from zero; then 8, is not asymptotically normal
(4, 03) for any u,, o, > 0.

Proof. We can restrict ourselves to 4, — 4 oo, since other cases
are either known (Theorem 3) or can be obtained by combining known
results with results for 4, - + co. We write ' = f and drop indices ».

(i) The main part of the proof consists in finding bounds for var
G(X,), G(z) = F(e—A4). We have

varG(X,) =
+ 00 + 00 q14 224 +o0 +oo2
= [ e@f@da—( [ ¢@f@d)p = [ + [ + [ —( [ )=
—co —00 — 00 0,4 qu — o0

= 11+Iz+13_(14)27



where we shall assume that
0<qg, < 2<q,<1.
x2
1—F(z) = '/;_n %(1—%) e %,
holding true for # > 0 with some 0 < 6 = 6, < 1, we get
G*(@)f(®)lo—ga = [L—=F((1—q) 4)]’f(¢4) =

Using the formula

3

T2 -2 12 0 * 2 2 2
= (2n) 2 (1—q)~ "4 (1—m) exp[ —4%{(1—¢q)*+ $¢%}].

Since (1—¢)%*+1¢% = %(q_%)z 1,

+ o0

11 < Gz(gld) f f(w)dx — 0(6—42(1—!11)2)’
-+ o0
I, < f f(ow)dw = 0(6_A2.q§/2)’
q94

3

D) _ 3 53
I— 4 [ @aafd)dg = @m) "4~ [ 1—g7x
a; a

R
x(l—( )Mz)e ¥ Ydg

1—gq
_ﬁi 25—2/3 1 s
— 3@ e T | (‘—u) x
a;—-2/3
0 i 1 u22.3—14—2

— —u?2.3714
X(l (%—u)zdz) (27:)”23-1/241—16 du
AZ

= 3¥2(2r)" 472 ¥ {1+ 0(1)}.
By similar calculations we get (I,)® = o(e~*"").
Choosing ¢, < 1—37"2, ¢, > 2'237'% we have (¢ > 0) I,+I,—(I,)*
= o(exp[—4*¥1+¢)/3]), hence

varG(X,)/(3%*(2n)" ' 47 %¢” "2/3) 1.

Now, if 4 < al/310gm (a < 1), then

1—a?

2
mA~2e"4"® > const — +o0;

logm

hence, the condition (7) is satisfied and the assertion (i) is thus proved.
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(ii) As m/N is bounded away from zero and as n/N > 4, we have
a'V2logm > V2logn for each o’ > 1 and for m, n sufficiently large, and,

further, 4 > o'V8logm implies 4 > V2logm+V2logn. Put A = V2logm
and apply Theorem 2. We get

PXi<A<X;,1<i<m, m+1<j<N)=F"4)1-G4)
= F™(A)F"(4d—A)=F"(V2logm)F" (V2logn);
but

1 1 (1
Var  V2logk 2logk

hence F*(V2logk) -1 for k — -+ oo, which completes the proof.

)6—-logk= 1— o(1)

F(V2logk) = 1— =

5. Rectangular location alternatives. In this section we shall assume,,
in addition to (6), that

0 for <0,

F(z) = for O0<a<1,

z
1 for 1<a.

Again, we suppose m, < n,, m, - + oo.

THEOREM 5.

(i) Let m,(1—|4,]) tend to - oco. Then 8, is asymptotically normal
(ES,, var 8,) with E S, = }(m,(m,~+1)4m,n,(1—|4,))? and

lim Va,rS,/(i m,n, N,(1+3|4,])(1— |A,|)3) = 1.
vost00 12
(If 14,] -1, the denominator may be reduced to tm,n,N,(1—|4,])%)

(ii) Let m,(1—|4,]) be bounded (from above). Then 8, is not asympto-
tically normal (u,, o) for any u,, o, > 0.

The proof makes use of the following lemma.

LemMA 1. Let T, be random variables, let Z, be k-dimensional random
vectors, let a,,s, > 0 be functions of k wvariables, v > 1. Suppose that

(A) for each ¢ >0, and each real a << b,

lim P (max( E(exp (it(T,— a.,(Zv))/Sv(Zy))

v—>f00 a<i<h

Zv) _ et < 8) —1;

(B) a,(Z,) is asymptotically normal (u, b?);
(C) s2(Z,) = 6%, 0 < ¢t < L oo.
Then T, is asymptotically normal (u, o2+ b2).



Proof of Lemma 1. Define E,({,Z,) by the relation
E (exp(it(T,— a,)[s,)|Z,) = ¢ “"+ R,(¢, 3,).

Writing here ts, instead of ¢, then multiplying both sides by ¢ and
taking expectations, we get
T ita,— 31°s] ita
E(e*v) = E(e ")+E (e R,(ts,, Z,)).

The first term on the right-hand side tends to ¢l 0!

seen from the inequality

+) which is easily

: 2.2
ila,— 3t s,

; 252 p2 2.2 : ) 2,9
|E(6 )_eztﬂ—il (o +b)| < 6_”“ lE(eztav)_ezt,u+§tb |4+

_;,tzsf a2
LE(le T T—e i)

and from (B) and (C). The second term is less or equal to E(|R,(ts,, Z,)|)
in absolute value. To prove its convergence to zero, it suffices — because

of |R,| <2 — to show that R,(fs,, Z,) — 0. But this follows from the
inequality P(|R,(s,,Z,) >¢) < P( max |R(u,Z,)| > ¢, |ts,—ta| < d)

lo—d<u<lo+o
+-P(|ts,—to| > 6) and from (A) and (C).
Proof of Theorem 5. We confine ourselves to the case 4 - 1—,
for analogous reasons as in the proof of Theorem 4.
(i) Suppose that in the interval {4, 1) there lie exactly m’ values

of the first sample and »’ values of the second one. Denote them X, ...,
m4n

Xy Xmog1yoery Xmopnr; further denote R; = 3 u(X;—X;), where

i=1
1 for x>0,

0 for 2<0,
"
and put 8 = Y R;. Now,
i=1

B8 S=8+im—m)Ym—m'+1)+m' (m—m') =
=8 +1(m—m')(m+m'+1).

Here m’ and =’ are independent binomial variables with parameters
(m,1—A4) and (n,1—A4), respectively. Conditioned by m' =k, »' =1,
the distribution of 8’ is that of the Wilcoxon statistic from samples of
sizes k, !, under the null hypothesis; it is asymptotically normal (3k(k+
+14-1), Lkl(k+1+1) for k,1 — + oo. This fact can be written as

(9)

) 8 —Im (m +n 1 2,

lim max |F exp(@t T (, +, + 1/)2 )]m’ =k,n =1l|—e " =0,
J,Ls4-00 ast<b | (5m'n’ (m' 4 n'+1))
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for each real a < b.
Let us define

d2 = ImnN(1—A4)>,
T =

a(k, 1) = }(kl—mn(1—2)%)/d,

s (k, 1) = Lkl(k+4141)/dz,
(all these quantities being dependent on v»). We shall verify that T, a, s
satisfy the conditions of Lemma 1.

(A) According to (8),
T—a(m',n') 8 —3}m'(m'+n'+1)
s(m'yn')  (Lm'n/(m 4w +1)E’

so that we can rewrite the assertion (9) as follows: To each ¢ > 0 and
a < b, there exist K, L (independent of ») such that

T_ ’ ’
E(exp (it alm’, ))Im’ =k,n = l)—e‘w2

< e
s(m'yn')

max
ai<bh

holds for all ¥ > K,l > L.
Now, from m(1—A4) - 4+ oo (and from m < n) it easily follows

P
that m’ z + oo, n' - + oo, which means that P(m’ > K,n" > L) - 1.
Consequently,

T__ 14 ’
lim P|max E(exp (it —M)[m’, n’) —e | < s) =1.
v+ 00 a<i<bd S(’m , ')
(B) We have

m'n —mn(l—A4)2=(m'—m@A—A)n(1—A4)+ (0 —n(1—A4))m1—4)+

+(m' —m(1—2A))(n' —n(1—4)) = U+V+W,
say. The assumptions 4 -1 and m(1—4) - + oo, together with the
central limit theorem, entail that U-+V is asymptotically normal
(0, mnN (1—4)°); further,

EW?2 = mnAa2(1—A4)2
Hence,

a(m’y,n') =(U4+V+W)/2d

is asymptotically normal (0, 2), considering that E(W?2/4d?) — 0.

(C) We have
s (m’, ') m'n'(m+n"+1) p 1
— —_ —
e amnN(1—4)° 4
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since the coefficients of variation of m’' and »n’ tend to 0 and thus each
of the sequences
m’ n’ m -+n'+1
m(l—4)’ n@d—A4)’ N(@1—4)

tends to 1 in probability.

The random variables T', a, s satisfy thus the conditions of Lemma 1
with constants ¢ = 0, b2 = £, 02 = 1. Consequently, T is asymptotically
normal (0, 1), which is equivalent to the assertion (i) [for 4 — 1].

(ii) Put A = m(1—4) and denote by C its upper bound (which
exists by assumption). Then apply Theorem 2 with A = 4; we get

PXi<A<X;1<i<m,m+1<j<N)=
A

= Am = (l——)7n > (1—8)6_0
m

for each ¢ > 0 and large m. This completes the proof.

REMARK ADDED IN PROOF. The proof of Theorem 1 is based on the
original version of [2]. From Theorem 2.1 of the published revised
version, the theorem follows immediately.
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