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A METHOD FOR SOLVING THE VOLTERRA INTEGRAL EQUATION
OF THE FIRST KIND

1. Introduction. Let us consider the linear Volterra integral equation
of the first kind
t

1) g(t) =fk(t,s)y(s)ds, 0<8<t<T< oo,
0
where

(i) g(t)e CV<0, T,

(ii) k(t, s) and 0k(t, s)/0t are continuous for 0 < s <t < T,

(iii) g(0) =0,

(iv) (¢, ) % O.

For a natural number I, let us writet; =ih (4 =0,1,...,I),h =T/I
and t; =t;+wh (j=1,2,...,m; ¢ =0,1,...,I—1). Moreover, let
(2)

w(t) i

k=1,2,... h t) = t—uy).
(— )’ (ug) ’ 92y.-..9m, Where w(t) n( %;)

=1

Ly () =

Supposing that 0 < %, < ... < %, = 1 and using
4 Los

(3) g(ts) = [ *(ty, 9y (s)ds+ [ K(ty, s)y(s)ds,
0 t;

Hoog and Weiss [4] have given two finite-difference methods to solve
equation (1), namely
n

(4) g(ty) = h [2 Z“kk(tm te) Yo+ Zn:a’jkk(tih i) Yfk]’

~1
=0 k=1 k=1

i—-1 n
(5) g(ty) = h [2 2 @k (tiy tr) Yo +
1=0 k=
n ' n
+U; Y ank(t;, t,+ Uj Uy, h)Lk(ujum)]v

k=1 m=1

j=1,2,...,m,5i=0,1,...,1—1,
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where Y; is an approximate value of y(f;) and

%5
ay, = [ Ly(8)ds, j,k=1,2,...,n,
0

1

(6) o = [ Ly(s)ds, k=1,2,...,n.
0

Both these methods are numerically stable and their order of con-
vergence is equal to n.

In the present paper we show that the difference methods (4) and (5)
give the optimal accuracy when the points %;, ¢ =1,2,...,n—1, are
zeros of Jacobi’s polynomial. Moreover, we propose a simple method to
evaluate a, and a;;, guaranteeing simultaneously a high level of accuracy.

2. Numerical method. Let % be a fixed integer not less than 3. Suppose
that w; (+ =1,2,...,n-1), ;< U< ... < U,_,, are the zeros of the
Jacobi polynomial (orthogonal with respect to the weight function ()t
= 1—1 in the interval {0, 1)) of degree » —1 with the coefficient at 2™
equal to 1. It is known that these polynomials are determined by the
Rodrigues formula (see [3])

1 ar
(2n+4+1)™ (1 —1t) a

(7) P, (t) = (-1)" [" (1 —t)"*'],

where
'n(’) = {1’ . .?. - 0’
nn—-1)...(n—73+1), j=1,2,...,n.

Applying to (7) the Leibniz differentiation formula, we obtain

~ @)
®) Bat) = 0+ D (-1 (}) .

Jj=1
For P,(t) the recurrence formula (see [3])

1
Po(t) =1, Py(5) =i—3

‘(n+2)2+(n+1)2] ()_(n+1)(n+2) )
o2n+5 an+3 |7 M 4(2n+3)2 ~ ™

n=20,1,...,

Pn+2(t) = [t—

holds. Hence, proceeding by induction, we have

(n+1)!

=W’ n=0,1,...

P, (1)
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Applying formula (9) and the identity
1

J 1
[P.(tydt.= [P, yd, n>1,
0

J
resulting from the orthogonality of the functions P, (t) and P,(t), we obtain
by induction

1

!
10 — n , —
(10) of P, ()i = oy 1= 0,1,

Let us ‘denote by 4, (k =1,2,...,n—1) the coefficients of the
Gauss-Jacobi quadrature formula in the interval <0, 1) with the weight
function ¢(f) = 1 —t such that

1 n—1 ‘
[a—nr@ar = >} Auf(u)+Roos(f).
0 k=1

It is known [3] that

1
(1—0)P,_,(t)dt . (mn—1)! 2 1
) 4 = af Py () (8 — ) B [(2’"' —1)(n_l)P;»(’“k)] U (1 — uy) ’

Ek=1,2,...,n-1,
and that there exists a value n, 0 < 7 < 1, such that

s _ a1ty
Boa(f) = Euf570m), - where K = o o)

Analogously as the Bouzitat quadrature formulae are obtained
in [2] (p. 102), we can calculate from (2), (6) and (11)

Ay

and from (10)

n!
(2n —1)™(n4+1)

Gy

Obviously, a; are the coefficients of the following Bouzitat quadrature
formula: |

1 n—1

(12) [f0)@ = D) a;f(w) +a,f(1)+ B, ().
0

t=1
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From formulae (7) and (8), integrating n times by parts, we obtain

1

a

Pn(t)a;

[ a-nre,ora = -1y [£(1 -1+ e
0

(2n +1)™ of

! : ' 2
- ft"(1_t)"+‘dt = i[——”' ] :
(2n +1)™ ) 2] 2n41)™

Hence and from [2], p. 105, we conclude that
(13)

Bn—l (f) =

1 [ (n—1)!
(

2
2(2n —1)! 2,n_1)(n—1):| fér1(&), where 0 < &< 1.

It follows from [5], p. 122, that if we replace in each interval (%, ¢,,,),
0 <! <1i—1, the first of integrals appearing in (3) by Bouzitat quadrature
formula of form (12) with the remainder term given by formula (13)
and we add the results, then the error of such a quadrature is given by

the formula
ih*"
4n

En—l (f) = Bn—l (f) = O(hzn),

whereas in [4] the order of error is O(h").
It is convenient to express the system of equations (4) in the form

(14) Ay =b
and system (5) as

(15) By = ¢,
where

7;=0717---’I_17 b=[b1’-'-7bn]T7 y=[?/1a---;?/n]T’
c = [017 IEEY) Cn]T; Ai = [djk]l<j,k<n7 Bi = [bjk]1<j,k<na
(t ) i—-1 n
givy .
b; = T’ "ZZGkk(tij,tlk) Yy, 1=1,2,...,m,
1=0 k=1
. = apk(ty, ty), 1<k,j<n, ¢ =bjju;,1<j<n,
ka = Zamk(t”,tz-l—u_,,umh)Lk(u,um), léj,kg'n.
m=1
The described choice of the points «; guarantees that the vectors b

and ¢ appearing in (14) and (15) are calculated with the maximal order

of accuracy when compared with all other methods of classes (4) and (5),
ie. O(h™).
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The coefficients a; for j =1,2,...,n—1 and k =1,2,...,n are
proposed to be calculated from the formula (see [4])

n
Ay, = Uy Zaml}k(u,-um).
m=1

We note that the coefficients a;, and a; for a fixed n should be cal-
culated only once, since they do not depend upon the functions g(t) and
k(t,s) appearing in (1). For that reason the method (4) is practically

more useful because it shortens much the time of calculation, when
compared with (5).

3. Numerical examples. For solving the systems of » linear equations
(14) and (15) there was used a method of Gauss-Jordan ([5], p. 409)
which was developed as an ALGOL-60 procedure sleGJ published in [1].
The values u;, and A, needed to calculate both a; and the coefficients
of system (15) were taken from [3], where they are given for n = 2, 3, ...
..., 15 with fifteen exact decimal places after the point. The program
was written for methods (4) and (5) and calculations were done for two
equations of type (1) satisfying assumptions (i)-(iv), namely

¢

(16) ~1+ttexp(—t) = [(1+t—s)y(s)ds, 0<t<20,
0
and
t i
(17) sint =fexp(t—s)y(s)ds, 0<t<10,
V]

which have, respectively, exact solutions

y(t) =texp(—1t) and

Y(t) = cost—sint.

TABLE 1 (y(t) = texp(—1))

Method (4) Method (5)
t h=05 | h=10, | h=40, | h=05 | h=10, | & =4.0,
n=25 n=1"1 n =11 n=2>5 n=1"17 n =11
4.0 2.410_8 —'2-810_8 4-010_8 _1.910—8 '—1-910_9 _5-610—9
80 | —2.1,,—8| —1.8,,—8 | —1.0,,—8 5.6,0—9 | —1.3,,—8 9.0,0—9
12.0 —1.6,,—8 5.8,—8 | —4.9,,—8 | —1.8,,—8 | —9.1,,—9 | —2.9,,—9
16.0 | —6.1,,—8 | —4.1,,—8 3.9,,—9 1.3;,—~8 | —2.4,,—8 2.9,,—8
20.0 1.4,,—8 | —2.0,p—7 | —1.6,,—8 | —6.5,,—8 4.1,,—8 3.5,0—9
Time of
calcula- 228 134 52 317 295 304
tion
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The absolute errors of obtained approximate solutions of these equa-
tions and the time of calculation in seconds (the program was executed
on the ODRA 1204 computer with 37 bits floating-point mantissa) are
confronted in tables 1 and 2.

TABLE 2 (y() = cost—sint)

Method (4) Method (5)
t h=10, | h=10, | h=10, | h=10, | h=10, | &h=1.0,
n =4 n=>5 n =26 n =4 n =25 n =6
2.0 _8-310—3 5-710—4 —7.410—6 1.410—3 —1.510_5 '—3-810—6
4.0 —4.8,0,—3 1.3,,—4 | —3.8,,—-5] —8.4,,—4 | —6.8,,—5 2.2,,—6
6.0 4.410—3 _6-810—4 3-910—5 _7.410_4 7.210—5 1.910—6
8.0 | —8.4,—3 4.3,,—4 | 4.8,-6 1.5;0—3 1.0,0—5 | —6.9,,—6
10.0 2.6,,—3 3.3,,—4 | —48,—5| —4.8,—4 | —8.0,,0—5 | —1.0,,—8
Time of
calcula- 30 43 55 46 72 111
tion

Table 3 gives a comparison of the results obtained by using the
modified method (4) and basing on the nodes (see [4])

1 2
(18) Uy = 3 Ug =3 ug =1
and
1 1 3
(19) Uy =71 Ug =35 U = 7’ Uy, = 1.

In both cases the calculations were performed with coefficients a;
the errors of which were not greater than 2~*". Comparing the results from
tables 1 and 2 with those given in table 3, one sees that a decrease of the

TABLE 3. Method (4)

Equation (16) Equation (17)
¢ method from | 4109 (18) ¢ | method from | 5049 (19)
this paper this paper
4,0 1.110'—6 1.210—'6 2.0 _4.210_7 _4.410_7
8.0 3-010_8 _4.910—8 4.0 -1.710_7 _2.210 '—8
12.0 _1.410_8 1-410—7 6-0 —6.610—7 —'1.110_6
16.0 4.7,0—8 —8.1,,—17 8.0 ~1.5,,—6 —1.1,,—6
20.0 1.8,0—7 —2.8,0—17 10.0 1.5,,—6 4.6,,—17
Time of 1727 1726 1224 1222
calculation ‘
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length of step h far prolongs the calculation time. In addition, the solution
depends essentially upon the rounding errors. Therefore, we propose to
perform the calculations with fixed » and increasing n.
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R. SMARZE WSKI (Lublin)

PEWNA METODA ROZWIAZYWANIA CALKOWEGO ROWNANIA VOLTERRY
PIERWSZEGO RODZAJU

STRESZCZENIE

W pracy oméwiono dwie metody rozwiazywania liniowego calkowego réwnania
Volterry pierwszego rodzaju, otrzymane z dwu klas metod (przedstawionych w [4])
Przez przyjecie dodatkowego zalozenia, ze wezly u; sa zerami pewnego wielomianu
Jacobiego. Metody te s3 latwiejsze do zaprogramowania na maszynie cyfrowej oraz
dokladniejsze od metod rozwazanych w [4].



