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CYCLIC SYSTEM WITH PREEMPTIVE PRIORITY

1. Introduction. Let us assume that N 41 machines working con-
tinuously and independently are served by a single repairman. Suppose
that the working times of machines are independent random variables
each of them having an exponential distribution with parameter 1 and
that the repair times are independent random variables having a common
probability distribution with distribution function F(x). An additional
Poissonian input stream with arrival rate » is introduced into this system.
We assume that the system of N +1 machines has preemptive priority,
i.e. the additional items are served only in periods when all machines
are working, and if at the moment of failure of any machine an additional
item is being served, then the machine service begins immediately and
the additional item rejoins the queue. This item continues its interrupted
service after the next end of the repairman’s busy period. The service
times of additional items are independent with common distribution
function H(z). We assume that the necessary expected values exist,
H(0+4) =0 and we write
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The system of N +1 machines without the additional input stream
has been investigated by Takécs in [8], where, among others, the Laplace-
Stieltjes transform g} (s) of the distribution function G, (x) of the re-
pairman’s busy period was found. It is given by the formula
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where the empty product is equal to one and
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2. Problem. The system of additional items can be interpreted
as a system in which the service channel can break down both during the
service of additional item as well as in the period when there are no ad-
ditional items in the system. The breakdown probability of the service
channel in the time interval [¢, -+ h) is equal to (N +1)Ah+o(h) and the
repair time of the service channel has the distribution function G (z).
Klimov (see [2], p. 85-102) has considered a system with Poissonian
input stream, arbitrary distribution of service time and with a channel
subject to breakdowns under the assumption that both the working time
and the breakdown time of the service channel have arbitrary distribu-
tion functions. The generating function of the number of items being in
the system immediately after moments of finishing services of items is
also given there.

Here we are interested in the probability distribution of the states
of the process n(t) defined as the number of additional items being in
the system at the moment ¢. Let {t,} denote successive moments of the
beginning of the repairman’s busy period in the system of machines and
let {s,} denote successive moments of ending the additional items service.
Assuming that the process n(f) is stationary, we write

P; =Pr(n(t,) =n), P,=Pr(n(t)=mn), =n=0,1,...,
- Pi =Pr(n(s,—0) =n), n=1,2,...

In order to find the probability distributions {P,} and {P;} we intro-
duce the new time variable ¢’ contracting to points the repairman’s busy
periods in the system of machines. Let n’(t’') denote the number of addi-
tional items being in the system at the moment ¢’ and let {t,} denote the
consecutive moments of batch arrivals of additional items to the system,
items which have arrived at the first time variable ¢ during the repair-
man’s busy period in the system of machines. Let {s,} be the consecutive
moments of ends of additional items services at the time t’. If the process
n(t) is stationary, then the process n’(t’) is also stationary, and we write

Q. = Pr(”,(t;_o) = 'n)’ Q. =Pr('n'(t’) = '”')’ n=20,1,...,
Q. =Pr(n'(s,—0) =n), =»n=1,2,...
It is easy to see that the following equalities are fulfilled:
(2) Q. =P,,n=0,1,..., Qi =P, n=1,2,...

At a time t’ the input stream is a mixture of a simple Poissonian
input stream with arrival rate », a batched Poissonian input stream with
arrival rate (N +1)2 and the probability distribution {u,} of the number
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of items in a batch, where

hod k
© (v
wy, = j (vk') e "dGy(x), k =0,1,...
The genérating function of the probability distribution {u,} is given by
u(s) = Zuks" = gr(v—18).
k=0

Omitting empty batches in the mixture we obtain a batched Pois-
sonian input stream with arrival rate », = v-+ (N +1)A(1 —u,) and the
following probability distribution of the number of items in a batch:

1
{v_((N+1 A’“’1+”)’ k=1,
1
IR
|—--» 1) Auy, k=2,3,...
The generating function of this probability distribution is given by
00 ] 1
= Zaks"‘ = [(NV + 1) Agn (v — v8) — uo) + »s].
k=1 1

Denote by a the expected value of the number of items in a bateh.
It is easy to verify that

1 g
a=l(1+(N+1)A-—), Where—=f
4 0

141

In the considered system, the generating function of the stationary
probability distribution {@,} is given (see Gaver [2]) by

- (1= ) (A —)A*[n(1—a(s))
3 =) = 7 ’
(3) Q(s) ’éaQ,.s 1* (v (1—a(s))) —s,
where
o = % and R*(s) = J e *"dH ().
U 0

3. Probability distribution {P, }.
THEOREM 1. The stationary probability distributions {Q,} and {Q,},
provided they exist, satisfy the equality

(4) Q;'ana n=0,1,...
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This equality is intuitive (see also [6] and [7]), since the distances
between the moments have an exponential distribution function. The
exact proof can be obtained using the relations between {Q,}, {@,} and
{@}, given in the following two theorems:

THEOREM 2. The stationary probability distributions {Q} and {Q,},
provided they ewist, satisfy the relation

n—1
121
(5) Qr = ———— \ A, ,_;9Q; n=1,2,...
n (] Qo) i:o 1 ’ b ’ ’
where

o
v Q
1-Qo=——, A= D a,k=0,1,...

I F=k+1
This theorem is a generalization of Corollary 4 in [5], where a simple
input stream is considered.

THEOREM 3. The stationary probability dzstmbutwns {03, {Qa) and
{@y}, provided they ewist, satisfy the relation

(6) (N+1)2(Qn — Y tn Qi) +7(@n—Qu1)+1(1—Qu) (@2 —Qrs1) = 0,
n=20,1,...,

where Q_, = @, = 0.

This result can be found also by using the Kuczura method presented
in [6] and [7].

Proof of Theorem 2. Here we use the method employed in [4]
(or [5]). If, for n'(t') > 0, we denote by Y'(¢’') the time necessary to finish
an additional item service, which is going on at the moment ¢', then the
stochastic process [n'(t’), Y'(t')] is Markovian. We write

P(n,y) =Pr(n'(t') =n,0< Y'(t')<y), n=1,2,..

Considering the state of the process [n'(t'), Y'(t')] at the moments
t"4+h and t', using the known calculation technique and assuming » — 0,
we obtain the following system of differential equations:

(7) _”1Q0+%P(170) =0,

0 0
(8) G—WP(n’y)_F?;P(n’O)—vl n, y)+v, 2

0
+na, Hy)Qo+H(y) —P(n+1,0) =0, =n=1,2,...
0y
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Hence, for y—oco, we obtain

0
— P(1,0) = »,Q,,

0y
0 = ]
—@Pm,0)—v10,.+v1g0'an_iQi+a—yP(n+1,0)=0, n=1,2,..,
or, equivalently,
] e
(9) ‘&/‘P("ao) 21’11'61) A, @iy, n=1,2,..

Let
P(y) =Pr(o< Y'({)<y) = Y P(n,9).
n=1
After the sidewise summation of (8) we obtain
a]P aP(OlH [Q iP(lOH =0
oy LW~ 5, (1 —H(y))+ |90 oy L1 O |Hy) = 0.

From equation (7) we infer that the expression in the square brackets
equals zero, therefore, we have the differential equation

iP(y) =—9—P(O)(1—H(y)), where P(0+) =0, P, ) =1-—Q,.
0y 0y

Thus

v
P(y) = u(1—Qo) [ (1—H(w)du.
It follows
(10)
0

1 ’ ’ ’ ’
—P(n,0) =lim—Pr(n'(t) =n,0< Y (t')< k)
ay I->0

1 ! ’ - 1 ’ ! ’ i
=limzPr(O< Y ()< hPr(n' () =n]|0< Y ()< h)

h—0

:ﬂ(l_Qo)Q:‘n n=1,2,...

From (10) and (9), relation (5) follows. This completes the proof of
Theorem 2.

Proof of Theorem 3. The method of the proof is the same as pre-
viously. Denote by X'(#') the time from the moment #' to the nearest
batch arrival and, for »'(t') > 0, denote by ¥'(t') the time necessary to
end an additional item service which is going on at the moment ¢. The
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process [n'(t), X "(t'), Y’'(t')] is Markovian, since the distances between
consecutive batch arrivals have an exponential distribution function
and the process [n'(t), Y'(¢’)] is Markovian. We write

P(0,2) =Pr(n'(t') =0, X' (t') < @),
Pn,z,y) =Pr(n'(t) =2, X't <2, 0< Y'(#)<y), n=1,2,..

Considering the state of the process [n'(t"), X'(t'), X'(¢')] at the
moments t' + h and ¢’, we obtain, for » — 0, the system of differential equa-
tions

0 0 0
) . R . _ —(N+1)ix
(1) -P(0,8)— —=P(0,0)—»P(0,3)+(1—c o ——P(0, 0) +

9
+—P(Q1,,0) =0,
oy

0 0 0 0
(12) %P(’"ﬂ z, ?/)+a_yP('”” z,Y)— %P(nr 0, y)——@P(n, z,0)—

n

0
—#P(n,@,9)+(L—e" ) Yy, ——P(,0,9)+

1=1¢
(L= gDy H(y) - P(O 0)+vP(n—1,2,y)+
d
Hy)5 P(1+1,2,0 =0, n=1,2,..,

where P(0, z,y) = P(0, x)H (y).
From this, for #-—>oc0, we obtain

0 d 0
gy 2 0 0
(14) WP( ,y)—g—P(n 0, y)—@P(n, 00, 0) —vP(n, oo, y)+

+2 Up_; P(z 0,y)+u, H(y)iP(O 0)+vP(n—1, co, ¥)+

0
+H(y)’67P(n+17°°’0)=07 n=1,2,...,

where P(0, oo,y) = H(9)Q,. Hence, for y—oo, we obtain

) 0 :" d
(15) — %P(n, 0, OO)—@P(’N/, o0, O)—‘VQn—*— ﬁu"__i—a;‘P(?:, 0, oo)—l—
=0

ij
+1'Q,,_1+-@P(n+1, 0,0) =0, =n=0,1,...,
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0 0 0
Q_, =0=a_yP(07 0, 0), %P(0,0, o) =‘£P(070)-

Let

P(y) =Pr(0< Y'(t)<y) = Y P(n, «,y).

After the sidewise summation of (14) we obtain

0

0
5y PO = 5, POR—H@)+

0 0
+[(1_“0)%P(07 0)+"’Q0—5:'/’P(17 00, O)] H(y) = 0.

From (13) it follows that the expression in the square brackets equals
zero. Obviously, we have P(0+) = 0 and P(o0) = 1—@,. Hence

(16) P(y) = u(1—Q,) [ (1—H(w))du.

0

It is known from the renewal theory that, for the stationary process
X'(t"), we have

T
Pr(X'({)<a) = (N+1)4 [ eV qu,
(1}
From this and from (16) it follows

6 1 7 ’ ’ l. : 4 ’
S P (0,0, 00) = Bm—Pr(n'(t) =n, X'(t) < b, 0< Y'(f) < oo

h—0
= ljn:—i—Pr(X'(t') <h,0< Y'(') < oo) x
xPr(n'(t) =n | X'({)< h,0< Y(¥') < )
(17) =(N+1)4Q;, =n=0,1,...,
B—yP(n’ 00, 0) =1im4;;Pr(n'(t') =n, X' ()< 00, 0< Y (t)< B

h—o

1 ’ ! ’ ’
= lim — Pr(X'() < 0, 0 < ¥'(¥) < B)

h—0
xPr(n'(t') =n|X'(I')< 00,0 < Y' (') < h)
:ﬂ(l_Qo)Q:n n=1,2,..
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Substituting (17) into (15), we obtain (6). This completes the proof
of Theorem 3.

Proof of Theorem 1. From equalities (5) and (6), equality (4)
follows. This completes the proof of Theorem 1.

Equalities (2) and (4) allow us to find the probability distribution
{P,} of the number of additional items being in the system at the moments
of the beginning of the repairman’s busy period in the system of machines.

4. Probability distribution {P,}. The following theorem gives the
relation between the probability distributions {P,} and {P}}:

THEOREM 4. The stationary probability distributions {P,} and {P}},
provided they exist, satisfy the relation

(18) P,.,=P,, n=0,1,..

If the service channel can break down only during the item service,
then this equality is the corollary to the same equality for M /G/1 system
in which the service channel is reliable (see [1]). In our system the serv-
ice channel can break down also in the period when there are no additional
items in the system.

Proof of Theorem 4. Define the stochastic process m(t) by m(¢) =1
when at a moment ¢ all machines are working and the additional item,
if it is, can be served, and by m(f) = 0 when at a moment ¢ a machine
service is going. For n(t) > 0, let Y (¢) denote for m () = 1 the remaining
time to end an additional item service and for m(t) = 0 let Y (¢) denote
the time necessary to end an additional item service from the moment
of its renewal after the moment t. If m (t) = 0, let Z () denote the remaining
time from the moment ¢ to the end of the repairman’s busy period in
the system of machines. Then the stochastic process

[n(t), m(t), Y (&), Z(t)] if n(t) >0 and m(t) =0,
Xit) - [n(t), m(t), Z(t)] if n(t) =0 and m(t) =0,
[n(t), m(t), Y (t)] if n(t)>0 and m(t) =1,
[n(t), m(t)] if n(t) =0 and m(t) =1

is Markovian. We introduce the following notation:

P(n,0,y,2) =Pr(n(t) =n,m(t) =0,0< Y()<y,Z(t) < 2,

P(0,0,2) = Pr(n(t) =0,m(t) =0,Z(t) < 2,
Pn,1,y) =Pr(n(t) =n,mt) = 1,0< Y(t)<y), n=1,2,...,
P(0,1) =Pr(n(t) =0, m(t) = 1).
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Considering the state of the process X (¢) at the moments ¢+ & and ¢,
we obtain, for h — 0, the following system of differential equations:

(19) a—iP(o, 0, z)—a—azP(o,0,0)—vP(0,0,z)+(N+1)zP(0,1)GN(z) =0,
(19%) —(v+(N+1)l)P(0,1)+6—2P(1,1,0)+0—1P(0,0,0)=0,

(20) %P(l,O,y,z)——%P(l,O,y,0)—vP(1,0,y,z)+
+vH(y)P(0,0,2)+(N+1)AGy(2)P(1,1,y) = 0,
(20%) ;—ZP(n,O,y,z)—%P(n,O,y,0)—vP(n,0,y,z)+
+vP(n—1,0,y,2)+(N+1)AGy(2)P(n,1,y) =0, =n =2,3,...,
(20") a—(zlP(l,1,3/)———6%/—}’(1,1,0)—vP(1,1,y)+vH(y)P(O,1)—
—(N+1)1P(1,1,y)+H(y>a%P<2,1,0)+—§;P<1,o,y,0> -0,
(20""") %P(n,l,y)—ain(n,1,0)—vP(n,l,y)—i—vP(n—],l,y) —

0 0
~ (N +1)AP (0, 1, ) + H(y) 5 -Pln+1,1,0)+ 5-P(n,0,y,0) =0,

n =2,3,..

Taking the limits for y-—>oco and z—oo, we obtain

(21) —%P(0,0,0)—vP(0,0, %)+ (N +1)AP(0,1) = 0,

) )
(21) —(v+(N+1)4)P(0, 1)+@P(l, 1,0)+——P(0,0,0) =0,

(22) _% P(n,0, oo, 0)—vP(n, 0, oo, c0)+»P(n—1,0, co, o)+
+(N+1)2P(n,1,00) =0, n=1,2,...,

(227) ——%P(n, 1,0)—»P(n, 1, co)+vP(n—1,1, co)—
— (N +1)AP(n, 1, oo)+£/--P(n—i—,l_, 1,0)+ -%P(%,O, oc, 0) =0,
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where P(0, 0, oo, o0) = P(0, 0, o),and P(0.1, o) = P(0, 1). Obviously,
the following equalities hold:
P, = P(0,0, )+ P(0, 1), -
P, =P(n,0, 0, 0)4+P(n,1, o), =n=1,2,..
Hence and from (21), (21'), (22) and (22') we obtain
23) iP(n+1 1,0) =+P,, mn=0,1,...

0y
Let

p(l,y) =Prim(t) =1,0< Y1) <y) = D) P(n,1,y).

Taking the limits in (20') for 2—>oco and adding sidewise the
equations of the obtained system for n = 1,2,..., we have

0 0 0
@4 521,952, 0L-H @)+ [P P(1,1,0|H@) =0,

It follows from (23), for » = 0, that the expression in the square
brackets equals zero. The solution of equation (24) with initial conditions

p(1,0+) =0
and
p(1l, ) =Pr(m(t) =1,0< Y (1) < )

14

= Pr(m(t) =1) —Pr(n(t) =0, m(t) =1) = FIDiTy —P(0,1)
is given by the function
)’ :

Hence we have

0
(25) @P(n 1,0) = lim— Pr(n ) =n,m(t) =1,0< Y (1)< h)
h—0

— lim> = Pr(m(t) =1 ,0< Y(t) < h)Pr(n(t) =n | m(t) = 1,0< Y(t) < h)

h—»o

— 14
—#((N+1)l+y _P(()’l))P:, n=1,2,...

Substituting (25) into (23) and dividing sidewise by the expression

Y
“((N+1)1+y _P(O’l))’
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we obtain
N+1)4
(26) :+1= V(( 1) +Y) - Py, n=20,1,...
p(y(1—P(0, 1)) — (N +1)AP(0, 1))
Obviously,

SJ_D;:Jrl = E‘P,, =1.
n=0 n=0

Hence, from this and from (26) we obtain (18). This completes the
proof of Theorem 4.
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MARIA JANKIEWICZ (Wroclaw)

SYSTEM CYKLICZNY Z PRIORYTETEM BEZWZGLEDNYM

STRESZCZENIE

W pracy rozpatruje sie system konserwacji maszyn, do ktorego wprowadza sie
dodatkowo poissonowski strumier zgloszer. Jednostki dodatkowe sg obslugiwane
tylko w okresach, gdy wszystkie maszyny pracuja, a wiec, jezeli podezas obslugi
jednostki zepsuje sie¢ dowolna maszyna, to natychmiast rozpoczyna si¢ konserwacja
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tej maszyny, a przerwana obsluga jednostki dodatkowej bedzie kontynuowana po
zakonczeniu okresu zajetosci konserwatora obsluga maszyn. Czasy obslugi jednostek
§3 niezaleznymi zmiennymi losowymi o jednakowym rozkladzie prawdopodobienstwa.

Dla tego systemu definiuje sie proces = (2) jako liczbe jednostek w systemie w-chwili
t oraz proces n’(t’) jako liczbe jednostek w systemie w chwili ¢, gdzie ¢’ jest nowsg
rachuba czasu — po S$ciggnieciu do punktéw wszystkich okreséw zajetosci konser-
watora obstuga maszyn. Przez {{,} oznacza si¢ kolejne momenty rozpoczecia okreséw
zajetosci konserwatora obsluga maszyn, przez {s,} — kolejne momenty zakoriczenia
obslugi jednostek w czasie ¢, przez {{,} — kolejne momenty wejécia do systemu grup
utworzonych przez te jednostki, ktoére przybyly w czasie ¢t w okresie zajetosci kon-
serwatora obsluga maszyn (z mozliwos$cia pustych grup), przez {s,} za$ kolejne momenty
zakoneczenia obslugi jednostek w czasie .

Glowny rezultat pracy polega na znalezieniu zwigzkéw miedzy rozkladami
prawdopodobienistwa stanu rozpatrywanych proceséw i pewnych wlozonych lancu-
chow Markowa w warunkach stacjonarnodci, a mianowicie miedzy rozkladami

P, =Pr(n(t,) =n), P,=Pr(n@t)=n), P, =Pr(ns,—0) =n+l),
Qn = Pr(n’'(t;—0) =n), @Qu=Pr(n'({t')=n), @Qn,) = Pr(n (s;—0)=n+1)
dla n =0,1,...



