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PURSUIT IN PHYSICAL SPACES

0. Introductory remarks. This paper is a continuation of the author’s
previous work ([4], [5],[6], [7]) on the theory of pursuit in the open
Euclid’s E, and Riemann’s R, spaces. One assumes here that in the FE,
space there exists a potential field determined by the laws of classical
physics. We assume also the existence of a gravitational field (satisfy-
ing Einstein’s equations) and of an electromagnetic field (satisfying
Maxwell’s equations generalized to non-inertial systems) in the space-
time R,. Through some physical conditions (such as e.g. the principle
of conservation of energy) these fields bound the strategy classes of both
the pursuing and the evading objects. These fields influence also essenti-
ally the changes of the game value and of the optimum pursuit trajecto-
ries; Thus they influence those quantities which describe the physical
condition of the given system and which simultaneously determine the
course of the- game. This description fully realizes the conflict aspect
between the pursuing and evading objects since it is in conformity with
the minimax principle.

The main purpose of the theory of pursuit is to provide a mathe-
matical rule which would inform explicite both players about their opti-
mum strategies and about the game value in the physical spaces E; and R, .
Such a rule may be defined mathematically by means of a canonical
Hamilton-Jacobi formalism, since it turns out that the optimum pursuit
trajectories may be determined from Hamilton’s canonical equations,
and the game value from a Hamilton-Jacobi equation with partial deri-
vatives. Thus, the main problem is reduced to the construction of a suitable
Hamiltonian, and the way of solution is that of applying canonical trans-
formations. It turns out that the form of the Hamiltonian is more involved
and different in the theory of pursuit than in theoretical mechanics.

The above sketched purpose of the paper has been completely achieved
for two-person games. Of course, it may be enlarged in a natural manner
to many-person games.
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The reader is asked to observe that in the whole paper an index
(tensor) notation is used and, in addition, that 1° a summation conven-
tion is used on repeated indices, 2° the indices ¢, ¥ sum in the E; space
from 1 to 3 and in the R, space from 1 to 4.

1. Notion and principles of a two-person pursuit game in a potential
field. In Newton’s classical mechanics the notion of potential force F
is defined by the formula

F = —gradV,
which in tensor notation has the form
(1) F,=—-V..

The scalar field V = V(x,) which appears here is named potential
of the force F; or potential energy of a material point in the position z;,.
The known principle of conservation of energy, is satisfied in this field:

If a material point with mass m underlies the potential force (1), then
the sum of the kinetic energy T = mv?[2 and the potential energy V is constant
during the motion, thus for any moment ¢ the following equality holds:

—ZL’%’UFF V(x,) = E = const.

This theorem may be formulated in an analogous manner for a system
of N material points. We shall, however, consider in the sequel only
systems of two pursuing objects which will be identified with two mate-
rial points having the masses m and n. Therefore we shall restrict ourselves
to the formulation of formulae for the principle of conservation of energy

in two cases only, namely
a) If the two material points m and n do not influence each other

and if in the exterior potential field they are situated in positions «, and y,,
respectively, then for every material point holds

guiui_{_ U(x,) = A = const,
(2) "
9 v;v,+ V(y,) = B = const.
b) If the two material points m and » are situated in an own potential
field with energy of mutual influence V (z,, y,) then during the motion
holds

m n
(3) —2—u.iu.i—{— ?fvivi—{— V(xy,y,) = E = const

for the mass system m and n.
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Thus, case a) expresses the principle of conservation of energy for
the system of two pursuing objects in an exterior potential field, and case
b) expresses the same principle in an interior potential field.

Denote by E,; the three-dimensional Euclidean space with either
potential fields U(x,) and V (y,) or potential field V(z,, y,). Now let us
define the admissible strategy classes X and Y; these are classes of differen-
tiable functions of two variables (the coordinates of the pursuer and of
the evader) x;, y,¢E;, the values of which are restricted in E; either by
the conditions following from (2)

muu; = 2(A—U), u;eX,
nv;v; :2(B— V), ’UiEY,
or by the condition following from (3)

(4)

(5) ’muiui—{—n’l)i’vi :2(E— V)’ uiGX,viGY.

The equilibrium conditions of the conflict situation between the
two players 1 and 2 in E, are included in the principle of optimality ([1]
and [7]):

If W(x;,y,;) is a non-negative and differentiable function for x;, y;eE,,
and if u?eX and v}e¢Y are functions such that for every w,e X and ;, y;cE,
holds

(6a) piwi+ vy > —1,
and for every v,e Y and x;,y;eE; holds
(6b) piwi+ v, < —1,

and for every x;eE, holds W (x;, x;) = 0, then u} and v} are optimum stra-
tegies and W (x;, y;) is the game value for the position xz;, y;.

Monge’s functions p;, ¢; are defined by p, = 0W/dx; and ¢q; = 0W/dy;,
and the potential fields U and V are given scalar functions which on the
ground of (4) and (5) bound the strategies in the classes X and Y. It
is easy to see that from (6a, b) it follows immediately the important

CoNCLUSION 1. If the equality
(6e) piui+gqv; = —1

holds, then the purswit is a uniformly closed game in E,.

Formula (6¢) may be written in simplified form as dW/dt = —1,
where the game value W (2?, y!) = v determines in E, the pursuit time v
on the optimum trajectories x}(t) for the pursuer and yi(¢) for the evader.

2. Canonical form of the pursuit equations. On the basis of (4), (5)
and (6a)-(6c) the following fundamental theorem will be proved.
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THEOREM 1. If a pursuit game in a potential field is played according
to both the principle of conservation of energy and the principle of optimality
then the game value W (x;,y;) satisfies the Hamilton-J acobi equation
ow  ow
dx; * 0y,
and the optimum pursuit trajectories satisfy the canonical Hamilton equa-
tions

(7) H(%’a Yis

8 do, 0H dp; oH dy,  0H dg; 0H
) a  op;,’ dt  ox,’ At oq;" At oy,
(7: = 17 27 3)’

where the Hamiltonian of the system of two pursuing each other objects takes
the form

a) in an exterior potential field

2 2
(92) H = H(w;, Y5 Psy €) = il/%(l‘i— U) p; p; ﬂ:]/;(B— V)ae:q:,
b) in the potential field of mutual influence
2 2
(9b) H = H(2;, Y5 05y ;) = (E—Y) (Epipi+ ;%‘%)-

Proof. From the principle of optimality follows that the linear
from p,u;+ q;v; attains its extremum with respect to w; and v; for the
optimum strategies ] for the pursuer and v} for the evader, respectively.
Applying the method of Lagrange multipliers, we obtain

gy V5 Ary Ao) = Py 4 0+ A [muu,+2(U— A)]+
+ Ao[nv,v,4+-2(V — B)],

i = pp+2miuy =0,

0wy,

of 0

(10) T~ qetonagl =0 (k=1,2,3), (@ =0),

k

0
f = muus+2(U—A4) =0,

o,

f
o nogvR+2(V—B) = 0.

This system of 8 algebraic equations of 8 unknowns allows a reduction
of the Lagrange multipliers 4, and A,, and permits an explicit determin-
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ation of the components of the vectors uj) and v) which in turn determine
the optimum directions of pursuit and evasion in an exterior potent-
ial field. After a simple transformation we obtain from (10)

(11) up = —pk/2m11,. Vi = —/2ns.

This and the two last scalar equations of (10) give

PrPx 9%
(12) :':I/S'm A— U) il/ (B— V)

In this manner, using (11) and (12), we are able to express the opti-
mum strategies of the game through the partial derivatives of W (x;, v,),
as follows:

w w=F) lu-o. e vz=¢]/§-<3—v>-7f‘;.

From the conditions (4) bounding the admissible strategies u; and v,
we obtain easily suitable expressions for the absolute values of the pursuer’s
velocity # and the evader’s velocity v, as follows

u:]/»E—(A—U), v =]/3(B—V)-
m n

Substitution into (13) gives

up vq
= o T Ve

Conclusion 1 and (13) lead, after some reductions, to the equation

or to the equivalent one

+uVpp, +vVgq =1

This is a differential equation with partial derivatives for the game
value W(z,, y,), thus a Hamilton-Jacobi equation of type (7); the left
hand side of this equation determines the Hamiltonian (9a) in the exteri-
or potential field.

An analogous way leads to the wanted result in the case of an interior
potential field. In the Lagrange multiplier method condition (5) is taken
instead of the conditions (4). We obtain then
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Flugy v 2) = pyu+ g0+ Almuu,+no0,+ 2(V—E)],

0
% =pk+2mlu2 =0 (k =1’ 2’ 3)’ (df:())’
k
(14)
of
T, = ¢+ 2ndv;, = 0,

0
73% = mupup+nopvp+2(V—E) = 0.

Solving this system of 7 algebraic equations we come to explicit
expressions for the Lagrange multiplier 2 and for the optimum strategies

D
e — o ———=
m P:pi/m-+q.q;/n
(15) o
. V2(E—V) 9
'vk e . P ————————
L '/Pipi/’m‘i‘ q:9:[n

in an potential field with energy of mutual influence V(x;, y,).
Conclusion 1 and (15) give the following equation of first order par-
tial derivatives

2(E—V)(p;pi/m+qiqi/n) =1

determining the game value W (z,, y,). This is a Hamilton-Jacobi equa-
tion of type (7), the left hand side of which is the Hamiltonian (9b) in an
interior potential field.

From Cauchy’s theory of integrating equations with partial deri-
vatives it is known that the following system of characteristic equations

(16) w.L = H])i7 ﬁl - _Hlfi—piHlV7 yl = Hq,;’ QL = _Hyi_quH'7
(17) W =pH, +qH,

corresponds to the differential equation (7). Since H (., ¥x; Pr, ¢x) does
not explicite contain the wanted function W(z,, y,), the equations (16)
take a simpler form, as follows

z; = H,, p=-—-H,, U= Hyy ¢ = —Hy,.

Now, equation (17) expresses, according to Conclusion 1, the neces-
sary and sufficient condition for the pursuit in the space E,; to be a uni-
formly closed game. Thus, the characteristic equations are, in the case
of (7), equivalent to the system of canonical Hamilton equations (8).
This ends the proof.
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From the proof of theorem 1 follows immediately

THEOREM 2. If the pursuit in a potential ficld takes place according to
the principle of conservation of energy and the principle of optimality then
the optimum pursuing and evading strategies are giben by

a) formula (13) in the case of an exterior field,

b) formula (15) in the case of an interior field.

The final, explicit form of the strategies «}, v} and of the optimum
trajectories x?(t), ¥?(!) depends upon the knowledge of a general solu-
tion of the Hamilton-Jacobi equation (7) for the game value W = W (., ).
This equation is the key to a solution of the pursuit problem in the po-
tential fields U and V determined in F,. That justifies us to call equations
(7) and (8) the fundamental equations of classical pursuit theory. ,,Classical
theory” is to be understood in the same sense as Newton’s ,,classical
mechanics’ (i.e. nonrelativistic mechanics) is understood in theoretical
physics. We would like to mention that the fundamental pursuit equa-
tions, similarly as the motion equations in analytical mechanics, are in
accordance with the relativity principle of Galileo. This principle requires
that the laws of Newton’s classical mechanics have the same mathema-
tical form in all inertial systems which are linked by linear Galilean tran-
sformations

=/

Fo=F—ct, t =t,

where ¢ denotes the constant velocity between the coordinate systems 7
and 7. The above relativity principle may be formulated in a different
manner, as follows: The motion equations in classical mechanics are
invariant with respect to Galilean transformations. A similar property
have the pursuit equations which in E; are bounded by the strategies
(velocities) being much snaller than the velocity of light in vacuum.

3. Integration of pursuit equations by the method of canonical trans-
formations. The most widely used and most effective method of inte-
grating the system of Hamilton equations (8) is the so-called Hamilton-
Jacobi method which is based on canonical transformations. These trans-
formations give a strict connection between the integration surface of
¢quation (7) and the first integrals of the canonical system (8). The idea
of this method is based on a known theorem of Jacobi.

TueoreM 3. If W(x,, yi; ax, ¢x) 18 any complete integral of the Hamil-
ton-Jacobi equation (7) then the first integrals of the system of Hamilton
equations (8) may be wrilten as

ow ow
(18) _OTiZb“ ”a‘z = d; (¢ =1,2,3),
Where a;, b;,c; and d;, are arbitrary constants.
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A proof of theorem 3, based on the theory of canonical transforma-
tions, may be found in [2]. In this proof it suffices to identify the game
value W(z,;, y;; a;, ¢;) and Monge’s functions p,, q¢; with the generating
function of the canonical transformation and with the ,,generalized
momentum” canonically conjugated with x;,y;, respectively. So the
independent variables «;,v;, p; and ¢; form a phase space in contra-
diction to the variables x; and y; which belong to the configuration space.

The first integrals of the motion (18) determine in full the optimum
pursuit trajectories in the configuration space (x;, ¥;), and in connection
with

ow ow
oz Piy ay,

determine completely the trajectories in the phase space (x;, ¥;; p:, ¢;)-

= 4q; (7::17293)

4. An example. We shall give now an example which will illustrate
the Hamilton-Jacobi method for a pursuit game in a given (homogeneous,
Newtonian) gravitational field.

Problem. Find the optimum pursuit trajectories and the game
value of a two-person game in a homogeneous gravitational field.

Solution. The homogeneity condition for a gravitational field is
as follows
g = const in every point of K,

where g is the strength of the gravitational field, or the gravitational
acceleration. On the virtue of (1) we have

myg; = —U,; =const, mng,=—V,=const (¢«=1,2,3).

If the coordinate system is chosen in such a manner that one of the
coordinate axes is directed along the field g then

g1 =9, =0, g3 = —g = const
and
. my = Ug =dUldzs, ng =1V, =dV]dy,.

Integrating these equations and taking into account the appropriate
boundary conditions leads us to

(19) Ul(xg) = mgwy,  V(yYs) = ngys.
A separation of the variables
(20) Wi, y,) = Wilw)+ Wa(y,)

in the fundamental pursuit equation (7) with the Hamiltonian (9a) gives
two independent of each other equations with partial derivatives
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2 oW, oW
j:]/——(A— U)—- — =K,
m ox; O,

2 oW, oW
i]/~(B—V) P —* =1,
n dy; 0vy;

where the separation constants K and L satisfy the condition K+ L = 1.
By simple transformation of (19) and (21) we obtain
ow, oW, ow, ow,
=M B—n =N

oz, 0w, y 9Ys) . oy, ;
where M = mK?*/2, N = nL?/2.

Observe that x,, x,; ¥,, ¥, are cyclic variables, hence the complete
integrals of the equations (22) may be sought in the form

(21)

(22)  (4—mgay)

(23) Wilag; xp) = a@,+ ayre 4w (@, ay; X3)+ ag,

Waler; Yr) = €191+ €Yo+ Wa(C1y 25 Y3) -+ Cs.

Due to (22), the functions w, and w, satisfy the equations

ow, M s
=4V ————d—a
0, A—mgz, 27
(24)
ow, N s g
— = = —— —(—c
0Y3 B —ngy, b
Now, introducing the notation
a=a-+a, x=A—mgr,,

(25) )
¢ =ci+c6, Yy =DB—ngys,

and integrating equations (24) we obtain

(26) o
) =F ! f‘/ cd
wy(c; y) = ng Y Y
Hence
117 ,— M M—2ax
w, = F — V(M—aw)x—l— —-—=—aresin —— (@ >0),
mg | 2Va M
(27)

1 f,— N N—2cy
= F —|V(N— _ 7
wy, = F ng | (N—cy)y+ e -aresin v (¢ > 0).
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The expressions (27) together with the formulae (23) and (20) give
the explicit form of the game value W (a,, ¢;; z;, y;). The optimum pursuit
trajectories may be determined — on the basis of Jacobi’s theorem 3
— from equations (18) which in our example take the form

ow, ow,
Zy -t _0~d<1“ =by, Y1+ 7();; = d,,
(28)
Jw, 0w,
Ty+—— = by, Yot —— - =d,.
da, dc,

While differentiating the functions w, and w, with respect to a; and
¢;(j =1, 2), respectively, formulae (25) have to be placed into (27). Our
way of silution will, however, be different. We will calculate the differen-
tials not directly from (27) but indirectly from (26). To do so it is neces-
sary first to differentiate (26) with respect to a; and ¢; (j = 1, 2) and
then to integrate them with respect to x and ¥, respectively. We obtain,
with the notation (27) in mind,

ow, a, " w, Clw
Y2 §) LT = T Wy
da, a dc,

(29)
ow, a, " Jw, Cy "
— = — W, = Wy
da, a ’ de, c

A substitution of (29) into (28) gives the final form of the optimum
pursuit trajectory equations, as follows

r, =b—ayw,fa, ¥y, =d,—cwc,
Ty = by—a,wifa, Y, = d,—c,w,/c,

where the constants a, ¢ and the arguments x, y are determined by (25)
and the functions w,, w, are given by (27). The arbitrary constants a;, b;, ¢
and d; (j = 1, 2) as well as M and N satisfying

L VeM/m+ V2Njn = 1

are to be calculated from the initial conditions and one boundary condi-
tion, namely W (z,, «,) = 0. These conditions lead in effect to 10 algebraic

equations with 10 unknowns a;, b;,¢;,d;, M and N.

5. Notion and principles of a two-person pursuit game in general
relativity theory. Let R, denote the four-dimensional Riomannian space-
time with gravitational field ¢** and electromagnetic field A;. We consider
the classes of admissible strategies X and Y; they consist of all different-
iable functions of two variables (the positions in space-time of the pursuer
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and evader) z*, y' ¢ R, with values in R, which are bounded by the metric
conditions

gik('u,"‘_aAi) (uk—aAk) == —1’ ?LiGJY,

(30) )
g7 (v;—bA,;) (v, —bA,) = —1, v;eY,

where a and b denote the ratios of charge and mass of the pursuer and
the evader, respectively.
The equilibrinm conditions of the conflict situation between the
two players 1 and 2 in R, are included in the principle of optimality [7].
If W(a', y') is a nonnegative and differentiable function for x',y' e R,,
and if uieX and v}eY are such functions that for every u;eX and a', y'eR,
holds

(31a) ug™ piu+vg" giop > —1
and for every v,eY and z',y <R, holds
(31b) g p;ud+vg* qv < —1

and for every x'eR, holds W (a', ') = 0, then u’ and v} are optimum stra-
tegies and W (z', y') is the game value in the position z',y'.

The Monge functions p; and ¢; are given by the formulae p, = dW/ox'
and ¢; = 0W/oy'; the scalar functions 4 and v with values in R, are given
numbers bounding the strategies in the classes X and Y. It is easy to
observe that from (31a, b) follows immediately the important

CoNcLUSION 2. If the equality
(31c) ug®p;up+ g™ qop = —1

holds then the pursuit is a uniformly closed game in space-time R,.

The equation (31c) may be written in a simpler form as dW/ds = —1,
where the game value W (x!, yi) = o determines the pursuit time ¢ on the
optimum trajectories a2 (s) of the pursuing and v, (s) of the evading objects
in R,.

In virtue of (30) and (31a, b, ¢) we are able to formulate the following

THEOREM 4. If a pursuit game in the fields A; and g* is played accor-
ding to (30) and (31) then the optimum pursuit trajectories satisfy the cano-
nical Hamillon equations

dot  O0H dp; o0H
ds  dp,’ ds oz’

(32) . (t=1,2,3,4)
dy* 0H dq; 0H

ds  og,' ds oy’
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and the game value W (x',y’) satisfies the Hamilton-Jacobi equation

. ow ow
T

(33) H (wi, y* =1,
where the Hamiltonian of the system of two pursuing each other objects has
the form

H =H(, 45 p;, 6)
= u(+t ]/'—gikpipk_ ag™* A;p)+o(+ '/_giinQk—bgikAiQk)°

The proof is analogous to the proof of theorem 1. Worth mentioning
is, however, the fact that the four-potential 4; and the metric tensor g*
both are known solutions of the equations of the Maxwellian electroma-
gnetic field in the general theory of relativity and of the fundamental
gravitational equations of Einstein.

If we put Kronecker’s symbol as the metric tensoe g™ then we auto-
matically change from Riemann’s space-time FE; to Minkovski’s space-
time M,. Physically, this corresponds to a changeover from the general
theory of relativity to the special one where only exists the elctromagne-
tie field-A;. In that case the pursuit theory in the electromagnetic field 4,
is based on the Hamijltonian

H =u(+ '/_P'epi_“Aisz—’U(j: '/_Qiq'i_bAiQi)'

TUEOREM 5. If @ purswit in the fields A; and g* is played according
to (30) and (31) then the optimum pursuing and evading strategies are given by

0

u; = aA; ¥ p;/ V—g*p;py,
8 = AT G 0

The proof is much the same as the proof of theorem 2.

(.7 = 1,27374)7

The explicit form of the strategies u{, »} and the optimum trajector-
ies xi(s), yi(s) are directly connected with the knowledge of the comp-
lete integral of the Hamilton-Jacobi equation (33) for the game value
W («*, y*). This equation provides a key to the solution of the pursuit
problem in the fields 4; and ¢"* in R,. That justifies calling the canonical
equations (32) and (33) from theorem 4 fundamental equations of rela-
tivistic pursuit theory. Of course, the so constructed canonical formalism
in relativistic pursuit theory is in conformity with Einstein’s pronciples
of general covariance and of local equivalence. These principles which
form the basis of the general theory are formulated as follows.

The principle of general covariance. The mathematical form of the laws
of nature is identical in all non-inertial systems, or, speaking differently,
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the equations of physics are covariant with respect to any transformations
of coordinates.

The principle of local equivalence. The mathematical form of the laws
of mature is identical in any non-inertial systems and in certain gravitational
fields.

The fundamental pursuit equations (32) and (33) satisfying these
principles appeared to be solvable by the method of canonical transfor-
mations in the following two cases: 1° in Schwarzschild’s gravitational
field, and 2° in a homogeneous electric field. A detailed discussion of these
solutions has been presented by the author in [5] and [7].
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POSCIG W PRZESTRZENIACH FIZYCZNYCH

STRESZCZENIE

W pracy sformutowano zasady gry poscigowej na wzér formalizmu Hamiltona-
J acobiego. Cze$é pierwsza pracy poSwigcona jest wyprowadzeniu podstawowych
réwnai poscigu w obecnosci zewnetrznego 1 wewnetrznego pola potencjalnego, a wige
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réwnan spelniajacych klasyczna zasade wzglednosci Galileusza. W czesci drugiej
otrzymano podobne ré6wnania na optymalne tory poscigu i wartos¢ gry w zadanych
polach grawitacyjnym i elektromagnetycznym. Postaé tych rownan jest tak dobrana,
aby uezyni¢ zado&é relatywistycznym zasadom ogolne] wspolzmienniczosei i lokalnej
rownowaznosci Einsteina, lezacych u podstaw ogolnej teorii wzglednosei. Rozwigzano
takze przyklad dwuosobowej gry poscigowej w jednorodnym polu grawitacyjnym.

A. MBICBJIUHUIIKH (Onoae)
NMOTI'OHb B ®U3NYECKHUX TTPOCTPAHCTBAX

PE3IOME

B aToit cTaTthe chopMynMpoBaHbl NPUHLMIILI TOHOYHLIX MTP HAa 0oOpa3el kaHOHHYECKOro ¢op-
Mmanu3ma [amunbroHa-SAkoOu. [lepBas YacTb CTaTbH OTHOCHTCA K MOJIYY4EHHIO OCHOBHLIX YypasB-
HEHHUHl MOroHH BO BHEUIHEM M BHYTPEHHEM MNOTEHUMAJIbHbIX MOJNAX, T. €. ypaBHEHH# COrnacHbIX
¢ KnaccHyeckdiM npuHHuHnom [anmnes. Bo BTOpo#l 4acTH BbIBedeHbI AHAJIOHYECKHE ypaBHEHHSA
ATl ONTHMAJbHbIX TPAEKTOPHH MOrOHH H LEHbI MIpbl B rPABHTALMOHHOM H 3JIEKTPOMArHHTHOM
nonsx: DTH ypaBHeHHs CPOPMYJIHpOBaHbI TaK, YTOObI coriacoBaTh HUX C MpPHHLHIAMH oOIeH
HHBAapHAHTHOCTH H JIOKAJIbHOM 3KBHBAaNEHTHOCTH ODHHuITelHHa.

JIOCTHTHYTO TaKXe peLlieHHe 1pobeMb! NapHO# Urpbl B OJHOPOIHOM IPABHTALIHOHHOM IIOJIE.



