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MINIMAX ESTIMATION OF THE PARAMETERS OF THE
MULTIVARIATE HYPERGEOMETRIC DISTRIBUTION

1. Summary. The paper concerns the problem of minimax estimation for
the parameter M =(M,,..., M,) of the multivariate hypergeometric
distribution (1) under the loss function (2). A full solution is given for the
three-variate hypergeometric distribution. A minimax estimator is found also
in the case when

M =(M11, ceey Mlsl’ ceey M,l, ey Ml’sr)
and when the loss function is of the form (17).

2. A theorem for the multivariate hypergeometric distribution. Let
X=(x 1> ---» X,) be a random variable with the multivariate hypergeometric

distribution
) (3)
-y
() P(X =x)=P(X; =x,, ..., X, = x,) = — " ,
()
Where

ZM"'—'-N, in=n.
i=1 i=1

Denote M =(M,, ..., M,). It is well known that

cey

E(X;|M) = M;
’nl'— (ll —nN’
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N
E[(Xl—ml)le] ;z((N ))MI(N—MI) (i=1,...,r),
N-—
E[(X.-—m,-)(X,-—m,-)|M]=—MM.-M, (=1, r, i £ ).

Suppose that X = x is observed and that we want to estimate the
parameter M. Let a =(a,, ..., a,) be an estimate of M =(M,, ..., M,) and
let the loss associated with estimate a (the loss function) be

@ LM, )= Y cy(M;—a)(M,—a)

ij=1

where the matrix C = ||c;j|| is positive definite.
An estimator d°(x) = (d} (%), ..., d2(x)) of M is called a minimax one if

(3) supR(M, d° = inf sup R(M, d)
M d M
where R(M, d) is the risk function for the loss function (2).
Let us consider the estimator d =(d,, ..., d,) for which

NX,-+a,-

@ 4 (X) = n+a

r
where a = ) o;. In this case

i=1

5 RM,d)= 1 {zr:cu-[(ggz—nz:';)M,-M,+N(Nai—2aM,-)aj:,+

(n+a)? ij=1

+ Y c,-,-nNN_nM,}.
i=1

N-1
Let us put
N—n N-—n
6 = = . = .
(6) a= [ng— u=h ng—7 @=1..1
Then
Nznx:'; , , M
(M R(M, d)= % Y BB+ X (cii_zcu)ﬂf],‘l}'
ij=1 Lj=1

(re i)
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THEOREM 1. If there exist constants v, By, ..., B, and a set A cR
={1,...,r}, |[A] = 2, such that

(a) Y (ci—2)Bj=v for ieA,
(b) JGZ (ci—2c;)B;<v for ieR-A4,
jeAd

Bi >0 for je A, B; =0 for jeR—A, ) Bj =1, then the estimator d defined by
jeA
(4) and (6), with B; fulfilling the above conditions, is a minimax estimator.
Proof. Let the conditions of Theorem 1 hold. Then
N-—n

V-] z{i Cijﬂiﬂj'*'v}d_—fc

R(M’d)= N_—n
(n+_ MN—I) =l

for M; =0 where ieR— A4 and
RM,d)<c

N%n

for any M. Denote 4 = {iy, ..., i;}, R—A = {isz+1, --., i,}. Then the theorem
follows from the fact that estimator defined by (4), where a; > 0 if ic A4, o
=0if ie R— A, is a Bayes estimator with respect to the a priori distribution
of parameter M such that

rim ,+a)...I'(m_+a;)

P(Ml =m,~ g soey Ml' =m,-s)=K
1 1 s m!...m!
P(Mis+l=...=Ml'r=0)=1
if
N N—n
N1 (i=1 s)
aij=ﬁij N—n — 1 ’ ’
N—n— nN_1
N>n+1
and
N' mil mis
PM; =m, ..., M; =mis)=mﬂil By’
P(Mis+1="'=Mir=0)=

N =nt1 (see [3])
In the following sections we give some applications of this theorem.
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3. Estimation of parameters of the multivariate hypergeometric
distribution under a general quadratic loss function. We look for a minimax
estimator of parameter M of distribution (1) under the loss function (2). Let
the assumptions of Theorem 1 hold. Let 4 = {i, ..., i;}. Then

Z(c,-,-—2c,ﬁﬁ,—v=0 for ieA,
8) et
Zﬂj:l'
JjeA

Solving this system of equations we obtain (after simple computations)

Bj = M(,f)/MA
where
d"ﬂ'z"z d‘l'j—l'l d'1'j+1"1 d'l‘s'l
i2i14) 0 e Bigljoqd d"zij+ 11 ) d"z"s"z
9
—)stiti+1 .
M9 =(——)—— d"t—l"liz d"l—lizl'z d"l—xl'j—x't d'1—1i1+1"1"' d"l—lis"t
2 d .. d .. d . . o d. ..
iy pigip Sipeaioi GRS U U PO U RS U R FS L
digiyiy digigi d‘s‘j—m d"s"j+1iz ... 0

where the terms on the diagonal are equal to zero with the exception of the
column with the terms d,;,, for [ fixed

(10) dijp = ciitep—cyy—cy (i #j,i#Kk)
(MQ does not depend on [ for j # ),

dijiy ijiyiy digiyiy_ digiyiyy -+ Dy,
ifi2iy d"l"z dirizil-l dl'xl'zl'tﬂ oo iy
(11) M, = dl'xl't—1l'1 d"m-l"z d‘!"t—l ditl't— ti+1°°° dl'tiz—ﬂs
'd":it+1"1 dilit+ 1i2 d"tl'1+1"1-1 d"ti1+1 e Bigigy i
iy iy, Dy ijigiy sy o diy,

(M, does not depend on ),
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(12) d;; = dij; = Cii+cjjf20ij (i #J).

Let us consider the positive definite quadratic form

W = Z C,‘j X x_,-
ihj=1
and consider x; such that ) x; =1 and x; =0 for ie R— A. After expressing
ied
the x; by the other x; we obtain

(13) W= Z dilijxix.i‘
i.jed
i #i)
Since the form (13) is also positive definite we obtain M, > 0.
Now let 4, = {i,, ..., i;} and let B};’,.vs and ﬂf.;“), U4+, be the solutions
of the system (8) for A = A, and A = A,.,, respectively. Then
B =MPM, (=1,...9, v,=NJ/M,
i;+l)=M§j-:-l/Ms+1 (i:l,"" S+l), vs+l=Ns+1/Ms+1,
Where the corresponding determinants are defined according to Cramer’s
formulae. We obtain

(14) Ms = (_ l)s—l 2s—1 MAs’

s Ms s)
(15) ﬁ};:’ Y oy [(cis+1"s+1 —2c,~s+1,-1)ﬂ§1 tee

o€y ig s — 20, li,)ﬂ}:)] +NJ/M,, .
Now we return to Theorem 1 for A = A,. From its assumption (b) we obtain
Z (cii—2¢;) ﬂg)_vs <0
jeA !
for each ie R— A,, what, comparing with (14), (15) and with the fact that N;
=M,v,, M, >0 is equivalent to

(16) BN <0

Is+1

fOr each is+1€R—As.
Suppose that conditions (a), (b) of Theorem 1 hold for A = 4,. Then

there exists an index ie R such that

C,','+ij—'2cl-j<0 fOl‘ eaCh jER—{i},
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or taking into account the notation (12)

d; <0 for each je R—{i}.

But this is possible for no j since the form

r
Z dl'jk Xj X
J,k=1
Jok #i
is positive definite.
Let r = 3. In this case
BY = B2 =4

and the minimax estimator exists if B <O (in this case 4 = {2, 3}) or if
P <0 (4 ={1,3}), orif B <0 (4= {1, 2}). A minimax estimator exists
also if B >0, BN >0, B >0 (4= {1, 2, 3}). Hence it follows that a
minimax estimator always exists. Let us notice that

dy3d; ;s dy3dy; »3(3) _
oM oM P

d12d312

(3) _
B M

B =
where M = M, , 3, is given by (11).

4. Estimation of the parameter of a population with a hierarchic structure.
Let X =(Xyy, ..., Xig05 -5 Xp15 ---» X,s) be a random variable distributed
according to the multivariate hypergeometric distribution with parameter M
=My, ..., Myg, ...; My, ..., M) and let the loss function be

(17) LM, @)= aM—af+ 3 Y cy(My—ay)s

i=1 i=1 j=1

Si
where M; = ) M;; (i=1,...,71), a;, a; are estimates of M;, M, respecti-

j=1
vely, ¢;20, ¢;>0 for i=1,...,r, j=1,...,5. Consider the estimator
d=(d11, ceey dlsl’ ey drb ceey d’sr) Of M fOI‘ Wthh

X 4o roosi
(18) dy(X) = N2ET%  yhere a=3 ¥
n+oa i=1 j=1

I.;et X‘- = Z XU’ a,‘ = Z a,-j and let

j=1 J=1

(19) G(X)= Y dy(X) =
j=1

X. .
N it %
n+o
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be an estimator of M; (i=1, ..., r). For

| N—n N-—n i
( ) a nN 1, 0l ﬁu nN 1’ Bx j§=:1ﬁu

we obtain

- N—n\*\{{ ;
T (= ){izzlc.-[ﬁﬂ(l—zﬂa%]

+ Z': .le Cij [ﬂij +(1-28;) %J}

We prove that there exists an estimator d of the parameter M of the form
(18) for which (19) holds and which is minimax. We also give the method of
determining the parameters a;; for this estimator.

Without loss of generality we can assume that

(22) cilz"'ZCl‘Si fOl‘ i=1,..., r.

Let us suppose that there exist integers L, ..., L, 0<L;<s; (i=1,...,7r)
and constants B; (i=1,...,r,j=1, ..., 5) such that

(23) a(1=2B)+c;(1-28)=v for j<I
and
(29) (1-2B)+c;<v for j> L
r Li
and that Bi; >0 for j < L,, ﬂ‘-j =0 for j > L;, Z Z ﬂij =1.
i=1 j=1

Solving the system of equation (23) with respect to B;; we obtain

L; L;
25 By ={ale; T (ew—(Li— D] +cy—v}/2e5(c Y (1ew)+1)
k=1 k=1

for j < L; and
L:

¢i+Li/ i (1/cy)—v
k=1

(26) Bi = L;
2(ci+1/ Y, (1/cu)

fOr €ach i such that L; >0. Let L=(L,, ..., L,) and let ¢ be the set of all
'dices j such that L;> 0.
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From the condition ) B;=1 we obtain

jeer
Lj
) c;+LiJ/ Y (cp)
Q7 v=v(L,,...,L)= L )3 *Lj‘ —2).
Y e+ 1Y (ew) F ¢+1/ Y (1ey)
Jeer k=1 k=1
Let
ki
(28) A= [c 5 i—(l.-—1>]+c.-,,.
k=1 Cik
and .
1 cj+lj/ Z (l/cj,,)
(29) Bi(lla LR lr) = Al(ll) Z I - Z k,-jl +2
e+ /Y (e Tyt 1/k21(1/c,.,,)
k=1 =

fori=1,...,r, 0< <s, cyis the set of all indices j such that [; > 0. From
(25), (27), (28) and (29) it follows that

(30) Bir, = qi(Ly, .., L) Bi(Ly, ..., L,) where  ¢; > 0.

Method I. We define the method of determining L, ..., L, as follows:
(a) In the first step choose i such that

Ai(1) = ¢;+¢;y = max(c, +¢yy, ..., ¢, +¢,y) = max(A4,(1), ..., 4,(1)
and put ;=1 and /, =0 for k #i.

r

(b) Suppose that [, ..., ], where Z l; = I, have been determined. In
i=1

the (I+1)-th step choose i such that
Ai(i+1) = max(4,(l, +1), ..., A4,(L.+1)), where A;(;+1) = —o0 if [; =5;

r

(c) Let in the I-th step i; be chosen, where = ) I, and let in the
i=1

(14 1)-th step be chosen i,. If
B, (s bysoos ) >0, B, (ly, ..., b, +1,..., 1) <0

l"' 2 2

then stop the choosing and put L, =1/, (i=1,...,r). If you reach [ = }: Si
, i=1

put L,' =S" (i - 1, sy r).
LemMma 1. Let L,, ..., L, be the numbers determined by Method 1 and

let L=Y L. Then L>2.
i=1
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LEmMMA 2. Let I, ..., I, be determined according to Method 1 and Zr: I;
=1l If i, is chosen in step | and i, in step 1+1, then o
G1) A, (i, +1) < A4 (),

(32 Bi,(h, ..o hy+1, .., < B Ly, ..., ).

Proof. Let i, #i,. Then

Aiy (b, +1) = max(A; (hh+1), ..., 4 (b, +1), ..., A4,(,+1) < Ay, (5).

When i, =i, the proof results from (22) and the definition (28).
Now we prove (32). Let l;, > 0. Then

Biz(ll, veey li2+13 sy lr)_Bil(ll’ MR l")

1 1
= Al'z(li2+1)[ Z F + 1'.2+1 —
11:72' C)+1/Z (l/cjk) C,'2+l/ Z (l/cizk)
k=1 k=1
iy +1
Ci2+(li2+1)/ Y (Ueiy)
k=1
- T, 1 -

Ci, + k§'1 (1/¢:,0)
I;

2
ci2 + liz/ Z (l/cizk)
1 1 k=1

‘Ail (lll)[ Z 1: +

1.
Jecy J

: iy i
j#iy Cj+ l/kzl (1) ¢, + 1/ Z (1/ci50) Ci,+ 1/ Z (l/cizk)
= k=1 k=1

li2+1
1 C,-z +(li2 + 1)/ Z (l/cizk)
k=1
S Aiz(li2+ 1) 71 - iyt -

a,+1/ Y (fe)  a,+1/ 21 (1/cipn)
k=1 k=

l:

i
1 ci2+li2/z (1/cip0)
- k=1

iz i
ci2+1/z (1/cip0) Ci2+1/zl (1/ci,0)
k=1 k=
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In the case of ;, =0 we obtain

B, (lys .oy by + 1, oo =By Iy, .., 1)

1
)] Tt [~ 1-4,0) T ——
2 e Ci, tCijn jer J
Te, +1/Z (1/cz) ¢i+1/ (1/cp)
k=1
< Ap()———=1=0.

iz isl

THEOREM 2. The estimator defined by (19) and (20) where B;; are given by
(25) and (27) and L,, ..., L, are determined according to Method 1, is a
minimax estimator.

Proof. The proof is based on Theorem 1. At first we prove that for
L,,..., L, determined by Method I, B;; >0 for j < L;. Let L= Z L;, and

assume that in the Lth step the index i, was chosen. Accordmg to (29)
B; (Ly, ..., L,) can be presented in the form

Bio(Ll’ tees Lr) = Aio(Lio)D(Ll’ ces Lr)—E(Lly R Lr),

where D > 0. Let i be an index such that L, > 0. Then the index i was
chosen before the Lth step. But from (31) it follows that Ao (Lig) < A (Ly)
and

(33) Bi(Ly, ..., L)=A(L)D(Ly, ..., L)—E(Ly, ..., L)
= Aio(Lio)D(Ll’ ) Lr)_E(Lla ceey Lr) = Bio(Lh cees Lr) >0

by (c) of Method I. Then from (30) we have Bir, > 0 if L; > 0, and B;; > 0 for
j < L;, because ¢;;,, <¢; for j=1,...,5—1.

Now, let | > L,. Smce L > 2, to apply Theorem 1 it is necessary to show
that

c(1-2B)+c;<v for j>L,.

Since ¢;;,, < ¢ (j=1,...,5—1) it is sufficient to prove that
(34 (1 —Zﬂ;')+cu.,-+1 sv.
Let L, > 0. By (26) we infer that the above inequality is equivalent to
L;+1
(3% C.'(Cu.-ﬂ Y _—Li>+ciLl-+1 <.
k=1 Ca

Let L; =0. Then B, =0 and (35) is the same as (34).
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Using the notation of the functions 4, D and E introduced earlier we
can rewrite (35) in the form

A;(L;+1)D(L,,...,L)—E(L,, ..., L) <0O.

Let i, be the index chosen according to Method I in the (L+1)-th step. We
obtain
Ai(Li+1)D(Ly, ..., L)—E(Ly, ..., L)
< A4, (Li,+1)D(Ly, ..., L)—E(Ly, ..., L)
=A;,(Li,+1)D(Ly, ..., Ly, +1, ..., L)—E(Ly, ..., L

1. L)
== Biz(Ll’ ey Li2+19 ey Lr) SO-

The first equation follows from the proof of Lemma 2. Thus the theorem is
Proved.

S. Final remarks. It is well known (see Hodges and Lehmann [1]) that

N—n
X 1
+3 nN_l
d(X)=N
4 N—n
"N

I8 the minimax estimator of the parameter of the hypergeometric distribution
Under the quadratic loss function. A minimax estimator of (M, ..., M,) for
the multivariate hypergeometric distribution and the loss function (2) was
8iven by the author in [3] in the case when C is an arbitrary nonnegative
definite diagonal matrix. This result was generalized in [2] to the case when
there is an additional loss dependent on observation.

_ Some results for the multinomial distribution similar to these presented
In the paper were obtained by the author in [4].
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