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AN ADAPTIVE SEQUENTIAL TEST

In many practical problems such as signal detection, automatic
control or identification of the properties of systems arises the need to
synthesize decision making systems which would operate effectively
even though some statistical properties of the observed sequences are
unknown. There are also two additional requirements; the proposed system
is expected to make correct decisions after a minimum number of obser-
vations and it should be put into the form of a finite automaton conve-
nient for use with digital techniques.

1. Formulation of the problem. Let us consider a decision problem
for which we shall propose a sequential test adaptable to the parameters
of the transmitted signal. Let this signal be a vector s with components
$; (1 =1,2,..., L) dependent on elementary messages a; and on passive
parameters which influence the shape of the transmitted signal although
they do not carry messages themselves. Let o, be the elements of a binary
set of messages X = {0, 1}, and paramecters ¢ the elements of a certain
set @ (). Moreover, we assume that if #; = 0, then the transmitted signal
$(xr; 9) = 0. A sequence of elementary messages x,, r,, ..., ¥, represents
a transmitted message.

Let &' be the vector with I identical binary components z, ..., 7,
I < N. Thus

x = (z,2,...,%), WherezelX,
I times
and @' can be identified with the message we X. Let the received signals
Yoym =1,2,..., N, for a given value of &, be realizations of independent
random variables Y, with the same probability distribution. We write

Y= (Y1yY2y--r»Ux) and Y =(Y,,Y,,..., Yy).

() The sct of passive parameters © contains 2N 2-dimentional clements 4 which
represent the phase and the parasitic fluctuation of the amplitude of elementary
8ignals transmitted in the sequence of length N known as a transmitted signal packet.
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The point decisions, which are denoted by z*(y) and which belong
to the set of messages X, are taken on the basis of observation of y. The
vector ¢ (I < N) represents the sequence of the first ! elementary signals
received by the decision system from some environment. In particular,
it can be a sequence of ! binary pulses at the output of the rcceiving
system. Hence the following arrangement can serve as a model for our
considerations:

X1,%2,+» %1} ¢ j $1(%:9) ; Y,Y2y-- Ybs--. deciston x*(y')
( :>__> ransmitter - receiver 2 —a,—-yl—>
messages transmitted & ~received system ecisions
signals 'y signals concerning
messagesx

21, 225---y2n
random disturbances

Randomness of the received signals Y is the result of the randomness
of a parameter ¢ as well as of the stochastic interferences Z, in the commu-
nication channel. Moreover, let us assume that consecutive observations
will be analysed sequentially and with full memorization.

Let us introduce the notation

P(ynli’ 0) =PI'{Y" =y"]37 :i7 19}7 i =07 17 19 :(1917192)68‘
We assume that P(y, | 0, &) does not depend on 9:
1 for y, =0,

P(y,10,9) =P(y, | 0) =
(Yo 1 0, 9) (Y. 10) 0 for y, #0.
The identity

P(yn | ":,7 ‘91) = (y-n | 'iu, ﬁ”)

holds only if ¢’ =4’ =0 or 4 =4’ =1 and & = 9".

Moreover, let the probability P(y,; ¢ = 0) be known while the
probability P(y,;x = 1; ¢#) is unknown due to the fact that we have
not made any assumption as regards the a priori distribution of the para-
meter ¢ and the messages z. Let us denote by P(y'; i; 4), ¢ = 0, the pro-
bability of the result g’ for an l-element observation vector Y. Also,
let us introduce the following shortened notation:

df
(1.1) »(y) =P';51;9),
df

(1.2) Po(y') = P(y';0).

In this paper we shall restrict ourselves to the case where the received
sygnals are s-dimensional random variables assuming only the values
in the binary set ¥ = {0, 1}.

The physical meaning of the above-mentioned limitation could, for
example, be the assumption that a sequence of elementary signals appears
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at the output of the receiving system following two-level quantization
of the amplitude.

The statistical properties of the parameter J¢® are not known
beforehand.

Note that, owing to the fact that the random variables Y, are inde-
pendent and of binary nature, the functions (1.1) and (1.2) become

(1.3) Polyl) = pUrtvat-—+uy(] _ pyl-tvattv)
(1.4) Pi(y) = (L—a)trtvattu o~ Wit Ua ),

where g = P(1|0) is the probability of the received elementary signal
¥, taking the value of 1 for z = 0, and « = P(0 | 1; ¥) is the probability
of the received elementary signal y, being equal to 0 for x = 1. From the
previous assumption the quantity A is known. On the other hand, we
assume that a is unknown and that it can take values from 0 < a < f.

The problem is to find a sequential decision rule which we denote
by x* and which would be optimal in relation to the established criterion,
that is which would assign the best decisions x*(y') to the sequences
(Y1) Y2y --.y ¥;) of the received signals.

2. Optimization criteria. The criterion of optimization will be speci-
fied on the basis of the following argument:

if the decision 2* = 1 is made after the message # = 0 has been
transmitted, then it will result in a false alarm.

Let us denote by Py, the probability of this happening. Similarly,
let us denote by Ppg the probability of a lack of alarm. This situation
occurs when the decision #* = 0 is made after the message x = 1 has
been transmitted. We agree to make the decisions sequentially after
investigating observation sequences Yy = (Y1, Y2y ---,y;) for each 1 =1,
2,..., L< N. At any step | < L we may either accept the decision x(y')
= 0,1 or decide to proceed to the examination of y'*!, which will be
denoted by z*(y') = —1. The final decision must be reached at last for
! = L and the value of I for which the final decision is taken is called the
duration of the investigation. Now, let us work out, for a moment, the
procedure which would minimize the losses resulting from making an
erroneous decision

(2.1) F(L, a*) £ W, Pg,y + W, Py,

where W, > 0 and W, > 0 are constants, and we have a limited number
of steps to minimize the expression.

Let 2 be the set of all 2(2X—1) binary sequences of length ! =
1,2, ..., L, i. e. the set of all possible values of random vectors y'. The
Symbol y, will be used to denote an clement of Q.
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It can be shown that minimization of function (2.1) for the decision
rules z*(y') belonging to the set of all functions z*(-) with arguments
from the space 2 and values from {—1, 0, 1}, giving the number

K — min (Wo X ooy +W, X pitun)},
x*(- 4 B

seduces the sequential investigation to inspection of a sample of a fixed
rize. A and B are the subsets of £ discriminated by the decision function
w* ().

The functions p,(y,) and p)(y.) represent the probabilities specified
within Q for the case £ = 0 and ¢ = 1, respectively. Such a result is not
surprising and could have been foreseen intuitively since the accepted
rule minimizes (2.1) though, at the same time, it requires the investiga-
tion to be continued for as long as necessary, bearing in mind the assumed
upper limit of L.

Besides the discussed criterion of minimal losses we are also inter-
ested in the possibility of shortening the duration of the investigation.
Let us denote by E (L) the expected duration of the investigation in the
sequential procedure defined by the decision rule z*(-). Of course, we
should desire to construct such a decision rule which would assure a simul-
taneous minimum of K (L) and of F(L, x*). Such intention is, however,
indeterminate sinece it is not clear what is meant by “simultaneous mini-
mum” of the two expressions. Usually we understand this as the demand
for the minimum weighted sum of the given functions. The choice of
an appropriate weights is, however, somewhat arbitrary (see [4]) and
we shall take advantage of this fact when formulating the criterion of
quality.

We shall apply a two-stage criterion.

(i) The first stage consists of the superior criterion to shorten the dura-
tion of the sequential investigation by making the final decision at the I-th
step if the decision would also recur at the steps I+1, 14+2,...,14+m,
m =1,2,..., N—1, although it might perhaps change at some success-
ive step Il = 1,2, ..., L < N. At the same time minimization should be
assured of the linear combination of expression (2.1) and of the product
C,E[l(m)], where C, denotes the cost of the investigation, and E[L(m)]
the expected duration of the investigation as a function of the number
of recurrences m. Moreover, we stress that now the probabilities Py,
and Pgg in (2.1) depend on m. This dependence will become clearer later
on in this paper. Also the decision functions z*(-) now depend on m which
will be marked by z*(-, m) and the set of all possible decision functions
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will be denoted by x. Thus the superior criterion K;, with which we
judge the quality of the proposed test, becomes

(2.2) E;Z min {[W,Puy(m)+W,Pps(m)]+C, E[L(m)]}.
T*[-,m]eyx
(i) The second stage consists in the subordinate criterion to choose
such a decision z*(y'), which belongs to the set of all decision functions
x*(-) with arguments from the set Q' of all 2° binary sequences y,, ¥,, ...
..., y; of length I, and the point in space £’ which minimizes the expression

(2.3) F(ZJ x*) = WOP;‘A+W1P,FS7

where Py, and Pgg represent the probabilities of errors in the decision
for a given vector y'.

The adoption of the procedure described in (i) can be justified as
follows:

1° Although Wald’s sequential probability ratio test may be widely
used in a majority of problems which require testing hypotheses taking
into account costs of the investigation, this test is unacceptable in decision
problems because of its arbitrary assumption concerning the probabilities
of both kinds of errors in binary decisions. This is because it is incom-
patible with our assumed concept of optimalization.

2° The optimal properties of the probability ratio test are only pre-
served for the strictly specified competitive values of the tested parameter
which can not be the case in the situation described here.

3° Procurement of the adaptive effect of the test for the unknown
value of the parameter of the tested hypothesis on the ground of estimates
obtained during the investigation is either extremely difficult or requires
repeated recalculations of the whole test for the estimates at each stage.

4° The ratio test has been constructed above all for long samples
(with several scores or more elements). In view of the nature of the test,
arbitrary cuts can only be introduced after a sufficiently large sample
has been obtained.

The characteristics 1°-4° of the ratio test cannot be accepted by us

- owing to physical limitations and rapidly growing costs of the investigation

while I increases. The acceptance of the subordinate criterion specified
in (ii), which defines the quality of a current decision, does not require an
explanation (2). We only point out that, assuming unitary losses, the

(3) Detailed analysis and the choice of the two-stage criterion of optimization
of a sequential investigation may be found in [2], p. 56-58 and p. 128-145.
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right-hand side of (2.3) can be treated as a linear combination of the
conditional risks r[z*(-); ®] (see Seidler [7], p. 25-26) determined by
the expected conditional losses

(2.4) rla*(-); 0] £ E Rz, a*(Y")],

Y|z

where E stands for the conditional expectation of the random wvariable
Y|z
Y given xe X (cf. [1], p. 642), and B[z, z*(Y")] is the loss resulting from

making a binary decision z*(Y’) if z has been transmitted.

The procedure described in (ii) can be explained by the fact that
the subordinate criterion (2.3) of optimization z*(-) at the I-th step takes
a similar form to that of the first element of the superior criterion, except
that its probabilities are specified on different sets. It, therefore, minimizes
a linear combination of risks specified by (2.4). Hence

F(l,o*) £ Worla*(+); o = 01+ W,r[a*(); ¢ = 1],

where W, and W, are present positive weights.

We shall still consider that the losses resulting from erroncous deci-
sions are unitary and equal, while the losses associated with decisions
consistent with the actual state are equal to zero.

Owing to this, it is easy to check that the conditional risks in (2.4)
reduce to the probabilities of decision errors of the I-st and II-nd kind,
respectively,

Pps = P[2*(y) = 052 = 1],
(2.5)
Prs = Pla*(y) = 1;2 = 0],

taken at the l-th step.
We determine probabilities (2.5) by summing (1.3) and (1.4) over
appropriate decision areas

Pis = 3 pu(y) and  Phy = Y pa(y),
Al Bl

where A', B' ¢ Q' are the decision areas for decision 1 and decision 0,
respectively, and Q' = A'U B,
The subordinate criterion K;; now becomes

(2.6) Ky & min{ W, 3 po(y) + W, Y .4}
1!

Al y 2
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We are looking for such an area A' which would satisfy (2.6) and
all previous assumptions.

Since we do note make any assumption concerning the distribution
of messages x,¢€ {0, 1}, further considerations will be referred to a model
of an appropriately defined game.

3. Interpretation of the problem as a model of a game. We shall discuss
our search for the optimal decision rule z*(-) according to criterion (2.6)
on the basis of a two-person recursive game, as defined by McKinsey,
with partial information and complete memory. Henceforth, we shall
refer to it as the game (see [5], p. 117-135 and p. 158-164). The adoption
of such a model approximates sufficiently the reality since in the discussed
problem there are no premises for assuming the a priori distribution of
messages « (hence, only partial information in the game). On the other
hand, every result of observation and every decision at the I-th step of
the sequential procedure can be memorized. It is technically realizable.
The recurrence is justified by recurrence of the message which is transmit-
ted at least 1 times.

The game comprises a number of stages at which the partners play
a play of the rectangular game by picking their choices.

Let the partner I be a source of elementary binary messages xe {0, 1}.
Partner II is an obscerver determining the binary point decisions z*.
These decisions belong to the same binary set. Both partners have some
information as regards the situation at cvery stage of the game. The
source of messages has empty information while the observer has partial
information obtained from the sequence of received independent messages
Y1, Y2y -5 Ys-

Both partners make I =1, 2,3,..., L<< N moves (3), but y,, which
belongs to the binary set Y of the received messages, is assigned to the
l-th move of the source of messages. The moves of the source of messages
take the form of transmission of s; signals uniquely assigned to the elemen-
tary messages 1 or 0. On the other hand, the observer’s moves reduce to
determining, at the I-th stage of the game, which of the possible messages
has been transmitted. The determination is carried out on the basis of
the received signals y,. As we have donc previously, we assume that
source of messages repeats the moves chosen at the beginning of the
game at least L << N times.

Thus, after each move, the observer does not need to decide which
message has been transmitted. IIe may regard his respective statements

(3) The value of I depends on the eriterion for the end of the sequential investi-
gation in the way to be discussed later in this paper.

2 — Zastos. Matem. 13.3
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(Y1), 2 (Y1y Ya)y ooy (Y1) Yo,y --.» ¥;) aS preliminary ones, and he does
not have to make the final decision till after the I-th move.

Following the first move (I = 1), the observer has a choice of four
strategies corresponding to the decision functions (estimators)

i ity =1,

-’U:j(’!j) = t=0,1; 5 =0,1,

j ify:O,

which determine what decision should be made at cach result of an obser-
vation. At the same time the observer risks a payment which, for a given
game, is the expected conditional loss (2.3). After an appropriate simpli-
fication (see [3], p. 46-52) and also owing to the lack of a priori informa-
tion, the matrix M, of the rectangular game has the form

P B
(3.1) Jfl_[(l_a) 0],

where ¢ and g are defined as in expressions (1.3) and (1.4). Form (3.1)
corresponds to the first two steps in which the partner I chooses a row
and the partner IT chooses a column, this being equivalent to the number
l = 1 of moves of each partner, and thus the term placed at the crossing
of the chosen row and column represents the payment K,(x, *) for the
partner I, for W, = W,. In such a case the observer has at his disposal
one mixed strategy
1 ify=1,

TW=1o ity-o
- ’

where the frequencies of making decision 1 or 0 depend on the statistical
properties of the random variable Y,. Note that the expected value of
the payment at each play (*) of the rectangular game is not equivalent
to the cxpense at the end of a given play of the recursive game.

After I = 2 moves of the partners, i. e. after four steps corresponding
to them, we deal with an extended game (cf. [5], p. 117-135). We note
that the tree of this game among », = 2(2-2"—2)4-2 = 30 branches
contains {, = 4(22—1) = 12 branches assigned to the observer. Thesec
form a representation of the matrix game (3.1), where » is the number
of levels of the tree, equal to the number of steps less one. The tree of an
extended game, after two moves, described for a fixed strategy of the
sourse of messages (e. 8., for x = 1) takes the form as in Fig. 3.1.

(Y) We remind that at each stage of the recursive game, i. e. after cvery pair
of moves of the partners I and II, a play of the respective rectangular game is played
for a given L
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The branches of the game tree represent the respective values of the
binary signals received within a two-element sequence (y,, y,). The apexes

(Y1, ¥2), 1 = 0,1, are the decision points at which the observer deter-
mines z*(y?%) =14,¢ = 0, 1.

y? pair

(r) (05 (22)
|
|

I

ga 0
T | (10); (21

|

|

} 1 r+ 01); (21
NS |
|\\\\\ |
| ti/ (0,0), (20)
I |
-

>

L

Fig. 3.1. Tree of observation vectors y! with I = 2 components representing the tree
of the game (for a fixced strategy of the source)

Let us demonstrate a given play in the form of the following table
of results for the observer:

Observation | Conditional probability Expected loss E B[z, z*]
of obscrvation Yz

2=
V=Wt | pagio) | P | ROLD] RO | RO | R0

(1,1) g2 i (1—a)? 0 p? (1— a2 ' 0
(1, 0) B(1—p) i (1—a)a 0 | BOU-H | Q-aa O
(0, 1) (1-p)B ' a(l—a) 0 (1-B)8 | a(l—a) \ 0
(0, 0) a-p2 | & 0 (1-p)2 o 0

As can be seen, at the fourth step of the game, i. e. at the second
move of the observer, he is to play one of the four reetangular games.
In each of these games, with the matrices M, (y,,4.), the observer risks
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[}
paying an amount defined by (2.1) and depending upon the payments
due to the preceding and actual moves. Thus we have

r 0 2 —AY]
My(1,1) = ﬁ], M,(1, 0) =l 0 B(1—p) ,

(1—a)? (l—a)a 0

42 0 a-py 0 (w—py]
M,(0,1) = ’], 3,(0, 0) :[ (=07

| a(1—a) 0 a? 0 |

It is not difficult to notice that the rectangular games specified in
(3.2) by matrices M,(1, 0) and M,(0, 1) are cquivalent. Their terms situ-
ated at the non-zero diagonal depend only on the number k = k(y') <1
of coordinates equal to one of the vectors g and do not depend on the
places on which they occur. It is a direct result of branch symmetry of
the game tree.

We shall make use of this fact and project the vectors of observation
y? onto the plane (I, k),

(3.3) Y: = (Y1y ¥2) > (2, F),

where l(y?) = 2, and k = y,+¥,.

It is obvious that a similar projection (cf. Fig. 3.1) takes place for
any 1. Thus, the observation space £ may be projected onto the set of
pairs (I, k) with the fixed first coordinate and k¥ = 0,1, ...,1. The set
{,0), (L, 1),..., (1)} of these images is equivalent to the set Qf =
={0,1,...,1} of their second coordinates. Ambiguitics resulting from
the projection (3.3) are eliminated by introducing appropriate combinato-
rial coefficients CF.

The matrices M;(y,, ..., ¥;), assigned to the apexes of the game
tree, reduce to the matrix M, k), 1 =1,2,...,LXN; k =0,1,...,1,

0 ﬁ"(l—ﬁ)l‘k]

3.4 M, k) =
(3.4) 1, %) [(l_a)ka,_k .

Note that the diagonal terms of (3.4) have the sense of probability

function of the observation vectors g' with I independent elements.
We take the functions

(3.5) palt ) % (1) -,

(3.6) AU (,’) (1—a)fa*

defining a projection on the plane (I, k) of the probabilities p;(¥'), ¢ = 0, 1,
for vectors y', with k clements having the value 1. Note that the right-hand
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side of equation (3.6) is unknown since we do not know the value of a.

In the considered recursive game, an I-term sequence of moves made
by both partners, after which the observer decides what message has
been transmitted and the payment K,(x, x*) takes place, shall be referred
to as “play”.

We seek such a strategy xye y of the observer which would fulfil
criterion (2.2).

The strategy satisfying this requirement shall be called an optimal
practical strategy or an optimal strategy for a given game(S).

It is not difficult to notice that the determination of an optimal
strategy «, in this case is equivalent to determining the decision rule
x*(y’) which is optimal according to criterion (2.6).

4. Method of choosing an optimal strategy. Let us assume first that
the values of the parameters « and 8 in (3.5) and (3.6) are fixed and known.

We shall define in {0, 1} the characteristic function ©' which assigns
binary decisions ] (y') to the I-th apexes (I =1,2,..., L<N) of a par-
ticular branch y' of the game tree.

For this purpose we arc going to investigate a given branch y* with
respect to the decisions 7 = 0 and 2] = 1. We wish to determine such
o(l, k), k =0,1,...,1, denoted briefly as ¢, which would assure that
the right-hand side of (2.6) is minimum for any fixed <I, W,, Wy, a, 8.
Note that, owing to (3.3) and to the properties of (3.5) and (3.6), the sum
in (2.6) for any fixed I can be written in the form

1
(#1) P, o) = 3 (o) AW @ —p'+ A=Wy (1 — @ a),
k=0
where
¢ o (¢f)a ‘7’57 X3 ) ‘l’gm ceey (Pg)

We conclude that the minima of (2.6) and (4.1) either both exist
and are equal to each other or both do not exist. It can be easily checked
that the functional F(l, ¢*), specified by (4.1), reaches its minimum when

l 1 for WA (1—8)"F < W, 1 —a)d*,

4.2 k=
(4.2) P 0 for other cases.

Besides, let us agree that we shall make binary decisions x*(l, k)
of such values as those assumed by the component ¢ for a given pair
(I, k). Thus we have, foreach ! =1,2,..., L< Nandany k =0,1,...,1,
the following strategy:

daf
(4.3) {I)’;(l, k) =9, k; Wo, Wy, q, B).

(5) In distinction to the optimal strategy in the sensc of the saddle point.
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If, moreover, we agree to include in the set 4% < Q) only those %
for which ¢, = 1 and in the set

daf

only those for which ¢} = 0, then A} will be the critical sets of the funetional
F(l, ¢). For so defined sets A} which correspond, according to the per-
formed projection, to the formerly used sets A' we write F (I, AL) instead
of F(l, ¢).

Thus, for a fixed I, the functional F(l, A}) take the form

(44) PO A = 3 W) B —prr+ 3 W[ - apat
kedl keB!
and has, for each I, the minimum value with respect to the division of
the space Q' of the received signals g’ into the sets 4% and B'.
The sets AL and B, can be clearly characterized by

Ay = {k: WA —B) "< W, (1—a)fd™"},
Bl = {k: Wo*(1—p)" > W,(1—a)*d %}
and are equivalent to the wanted sets in expression (2.6):
AT = {y's WM (1— ) < W, (1— o)) o0y,
B! = {yfs W, BHD (1 — g)l-*) = W, (1 — a)th -k
In this way expressions (4.2) and (4.5) define the characteristic
function ¢(I, k). Consequently, the strategy (decision rule) specified by
(4.3) and (4.2) is, on account of (4.1) for fixed I’s, an optimal strategy.
For each I and any k, owing to (4.3), we obtain
1 if k(y')e 4},
0 if k(y')e B,
where A’ and B’ are the sets defined by (4.6).

Since y' is a realization of the random vector Y'in which the number
K of components having the value “one” is random, so

K = i‘ Y,.
n=1

The random variable K is specificd in the set of arguments (I, k)
and, for a fixed I, in the set of arguments k. Hence, after considering
(4.7), we classify either in the set A' < @' or in the set B' < 0! thosc
k(y') which, for a fixed I, satisfy the conditions
yed i EYH>T,
yeB it k()< T,

(4.5)

(4.6)

(4.7) o (+) =

(4.8)
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where T is the threshold dividing the set of the values k(y') into two
subsets contained in A} and B., respectively. For a variable I, the thresh-
old T'is the function 7'(l). It is evident from (4.7) that 7'(I) has the sense
of a decision threshold.

By introducing the threshold 7'(l) into expressions (4.1) and (4.7),
we eventually obtain, for each !, an optimal current strategy of the ob-
server,

1 itk (),
(4.9) w?(-)=[ ) >10

0 if k() <T@

b
and also a modified form of the functional F(l AL,

(410) F(l, A} ZWO()ﬁkl ﬁ"+2W1() a) ok,

where W,, W,, a and 8 are fixed parameters.

5. Determination of the end of a play. We now have to determine
when the observer should make his final decision, i. e. at which ! should
his current decision (4.9) be declared the final decision of a given play.
We proceed to determine the value of I at which we end a given play.

After the I-th move the respective k(y') belong to A% or B.. A decision
zy (1, k), equal to 1 or 0, is associated with this move. Depending on whether
k(y'*') will belong to A4! or to BL!, we shall either keep the decision
unchanged or we shall make a reverse decision. One can easily imagine
that, if %(y')e A% (or, respectively, to B), there exist situations such that
k(y***) will still belong to AL (or, respectively, to B;™). In such situations
the next move will not change the decision made at the previous step.
We establish that in such a case we end our play at the I-th move ().
In other words, we end a given play when there is no chance of changing
the current decision made at the I-th step at any one of the immediately
succeeding steps of the investigation. The I at which we end the investi-
gation is denoted by I,.

On the basis of (4.9) the observer strategy g(:) = @y (loy +) which
is optimal on account of criterion (2.3) is, for respective weights W,, W,
and C,, described by the expression

1 i m;(l; k) =1 and m;‘(l’ k) = x;t+1(l+17 ’")7

5.1 .’I/'* . p=
B4 &) 0 if &1, k) =0 and #(l, k) ==, (1+1, k)

(6) One can casily imagine that we end the game after the I-th move when we
have the situation that.if k(y!)e 4}, then also k(y'*+?)e At for ¢ = 1,2,..., m (and,
analogously, for the set B,lc). However, in this paper we are only interested in the
case m = 1. This fact does not mean that our considerations arc less general for an
optimal value of m can be specified numerically from equation (2.3) as explained in
[2], p. 71-73.
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for the first 1 =1, 2,..., L < N at which it occurs. If none of the cases
in (5.1) occurs for I = L, then we make the decision z7(L, k) = 0. In
expression (3.1) the equality

Zi(l, k) = @l (11, k41)
occurs when
x?(l, k) = l’?—:—l(l'}‘l) ]"+0) = w?—;—l(l"'l’ k+1).

The final decision specified by (5.1) ends a given play at the move
l = 1,. For such an I, expression (4.10) determines the payment K, (z, ©*).

6. Estimation of the parameter a. In the previous sections 3 and 4
we have assumed that both parameters a and g are fixed and known.
Now, according to the assumptions regarding the model of the game,
we find that only f can be regarded as known. On the other hand, the
value of the parameter a is unknown to us, and the necessary assessing
of it should be included in the observer’s strategy. Doing this, we shall
retain the assumption that the parameter a, as defined by expression
(1.4), has a constant value for all the moves 1.

We apply a scheme of estimation of the parameter a based on gradual
learning of its value by observing the moves of the source of messages
or, otherwise, by sequential observation of the received signal y'. We
shall introduce an estimate of the parameter instead of its true value
into (4.5) and (4.10).

As is well known, in such a scheme it is necessary to introduce a con-
dition determining the point at which the algorithm of estimation starts
to estimate the value of the unknown parameter a of function p,(l, k).
We assume that the occurrence in the vector y' of a present number
r =1,2,...,1 of successively observed ones constitutes such an arbitrary
condition (7).

At this point it occurs to us that the choice of » can bear some relation
to the value of m determining the end of a given play. Since the study
of this relation as well as of its influence on the observer’s strategy is
a separate problem, we shall not deal with it in this paper.

Due to the assumptions made in this paper, the sufficient and most
effective estimate a* of the parameter a is, as it is well known, the mean
of a sample y’ with binary components

(6.1) a*(y') = ——,

(7} In fact, we learn the value of a parameter y which is either a or §, because
we cannot be fully certain when o occurs and when does g. Thus there exists the pro-
bability P, ,r = 1, 2, ..., 1, that we shall wrongly learn the value of g instead of a.
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where k is the number of ones in the vector of observation ¥, and I the
number of components of the vector y.

The estimate a* described by (6.1) is stochastically convergent to
the true value «. The actual value a*(l) determines, through (4.5) and
(4.9), the division of the space ' into the sets 4™ and B*, and thercby
the value of the functional F(I, 4*) in the manner shown in Fig 6.1.

)

N

=70 —70 T

Fig. 6.1. The diagram of F(4!) = F(l, 4} as a function of the threshold; W,, W,
and ! are fixed

Since in practical applications the diagram of F( A% is usually asym-
metrical, it is relevant from which side the estimate T'(l) is convergent
to T*(1). Let us construct a confidence interval

(6.2) Pla*() < a<a*()]<1l—¢

which determines the random relations between the true wvalue boun-
daries of the confidence interval are one-sidely convergent to the
estimated parameter «, where the assurance is given by the confidence
level 1 —e.

Let us agree to insert the lower limit a*(1) of the estimate of the para-
meter a, instead of the actual parameter, into expressions (4.5) and (4.10).
In this way we obtain the critical sets A}’ and Bj' « Q) while the obser-
ver’s strategy deseribed by (4.7), in such a case, takes the form

1 if k(y')e A}

(6.3) a (+) = O
Of course, the sets A} and B} depend also on the confidence level
1 —e. The choice of 1 —¢ has to be based on operational economic consi-

derations, and we, henceforth, assume that it has been taken together
with the choice of appropriate weights W, and W,. Having inserted
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(for respective 1) into (5.1) the values m}"a(-) from (6.3) to take the place
of o} (+) which are specificd by (4.7) and which figured in (5.1) up to now,
we obtain the final decision (). Therefore, we have

1 if (k) =1 and o) (L, k) = o], (141, k),
0 if o7 (I, k) =0 and a; (I, k) = a7, (1-+1, k).

The value of the parameter o is estimated with the help of (6.1) for
every [-th move. It is easily noticed that the value by which this estimation
changes from one move to the next one influences the decision whether
or not to end the play. One can, therefore, say that strategy (6.4) of the
observer has an adaptive ability — it can adapt itself to the unknown
value of a in the probability distribution p,(y') of a given observation.

(6.4) a*(-) =

7. Some properties of the proposed sequential test. Our considerations
determine (in some sense) an asymptotically optimal strategy of the
observer. This strategy has adaptive properties. It has been found for
a model game that represents to a good degree the considered decision
problem. Thus, instead of referring to the observer’s strategy, we can
speak of an adaptive decision rule constructed for a sequential investi-
gation or of an adaptive sequential lest.

The operation of the adaptive sequential test can, having Wy, W,, a
and B, be presented graphically, as in Fig. 7.1. The figure indicates that

“)
10 :AIU
9 F3 —
8 KT
7 - -
) _$7 AIO
5 ,F._ mrta — By, (arbitrary)
L~ / L —
4 6 i <L)
[T~ =
o v
2 i M [
5 A / L1 ’\’BIO
O, | L1 T'
N A
1 P LJ —1 % [
4l e I
7 . 2 3 4 5 6 7 8 9 10 l

Fig.7.1. The operation of decision rule for fixed Wy Wi, aand f(a=8;Wy=W,=1;L=10)

© — decision points, x x X — regions of elimination, ®—@®—@® — decision barrier, ¢ —@—@ — region
of no decision
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the decision points, i. e. the points at which after I steps there first appears
a final decision, form the respective barriers of the region of decisions 1
(barrier A) and of the region of decisions 0 (barrier B). The barriers elimi-
nate the points that lie above and below them because observation se-
quences end when they reach one of the barriers which depend on the weights
W, and W, and on the parameters a and . The region D of no decision
also depends on these quantities. There occurs the relation

AVBUD = 0,

where £ is a space of observation vectors, defined as in section 2.

The region D is described by a vector y“ which has L components
and at which we cannot decide where we should classify a given obser-
vation sequence. Therefore, it ensues that the probability of no decision
after the I-th step of the sequential investigation decreases geometrically
with increasing ! and for a sufficiently large ! decreases to zero. Now,
we procede with working out a way of determining decision regions such
that it would suit the previously indicated applications.

The regions A, B, D = 2 can be described in recursive form. For
this purpose we introduce an auxiliary function = (l, k), defined as follows:

1 it (P;c =1, (Pi-ﬂ =1, 99?-;-11 =1,
(7.1) al,k)y =1 0 if ¢f =0, "' =0, ¢ffy =0,
—1 for other cases.
The case m(l, k) = —1 in expression (7.1) signifies the lack of final

decision after the I-th step and, therefore, the necessity to continue the
investigation. The region A of final decisions 1 is an alternative of sub-
regions A, (different from A') in which we assign the decision #* =1
to a given observation vector y' with I components,

L
4=U4, r=1.12.. LN,
l=r

where, as it is shown in Fig. 6.1, for » = 2 the subregion (8) 4, g {(2,2)}
and, for I > 2, A = @. For an arbitrary r, there is
A, ={1k): [z(1+1,k+1) =1] and [(I, k)e D, or (I, k+1)e D,]}.

The region D of no decision is an alternative of subregions D, in
which we assign —1 to a given observation vector ¥, i. e. we continue
the investigation,

L
D=UD, r=12.. ,L<N,
l=r

(®) Note that the parameter r corresponds to the arbitrary condition of begin-
ning of estimating a* () introduced in section 6 of this paper. For the case of a fixed g,

daf
r = 1, which is easy to understand.
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where, as it is evident from Fig. 7.1, for I = 1 the subregion
daf
D, ={(1,1)}
and
Dy, ={,LK): [#(l+-1,k+1) =1 or =n(l4+1,k+1) = 0] and
[(l, k)e 'Dl or (l’ k+1)€ "Dl]}'
The region B of decisions 0 is an alternative of subregions B,, in

which we assign * = 0 to a given vector ¥,

7

<V oy

N

L
B=UB, r=1,2...,L
l=r
where, as Fig. 7.1 signifies, for I = 1 the subregion

df
B, = {(1, 0)}
and

By, ={lEk): [#(I+1,k4+1) = 0] and [(!, k)e D, or (I, k+1)e D,]}.

Besides that, the region B, , = @ and is an empty subregion.

For fixed W,, W,, « and B, the characteristics of the decision barriers
and the region of no decision are fixed. In particular, for each I there
exist specified and constant critical sets 4%, Ble Q' determined by (4.5).

The above-mentioned properties hold also for the case where the
value of the parameter « is unknown. This is so because the algorithm
of the final decision (5.1) for each ! determines the critical sets A*, B¥ < @&
taking into account the upper or lower boundary a*(l) of the estimate
of u (cf. section 6). It is easy to notice that the sets A* and B* are deter-
mined for each a if Wy, W,,r and f are fixed. The latter condition is
easy to satisfy in practical applications. Namely, the sets A;.,, B;,,
and D,,, are depending of estimation aj,, (k).

The operation of decision rule (6.3) at a constant value of the parame-
ter a is illustrated by the example in Fig. (7.2).

Note that the space of no decision narrows with increasing l. After
several moves, e.g. Il = 12, the space 1s transformed into a single sequence.
Thus, the properties of the decision rule constructed with ignorance of
the value of the parameter a, after a certain period of adaptation, coincide
with the properties of the test constructed for the known value of this
parameter, to the accuracy of a set of zero measure.

The period of adaptation is random and depends on that 7 from which
on the number of paths belonging to the space D is not larger than one
(see Fig. 7.2).
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Fig. 7.2. The operation of decision rule (6.3) for unknown a (W, = W, =1; 8 =0,1;
r =2; L = 15)

® — decision points, e —e—® — space of no decision, W — singular points

8. Conclusion. During the construction of the proposed test we were
minimizing the value of risk (I, 2*), determined by (2.3), applying a better
estimate a*(l) at every step. In this meaning the adaptive sequentional
test is asymptotically optimal.

Referring to features 1°-4° presented in seetion 2, which characterize
the usefullness of the ratio test, we find that:

(1) When applying the adaptive test, we only assume the probability
of error of 2-nd kind.

(i) Asymptotic optimal properties of the adaptive test are also
kept for non-parametric hypotheses. This is because there is no need to
assume a value of the parameter a which can be of any value within the
range 0 < a < 1.

(iii) Inserting of the lower limit of estimation a*(l) instead of para-
meter a in expression (5.1) is not difficult.

(iv) The rapid convergence of the effectiveness of the decision proce-
dure for a* to that with « known is of particular interest if the available
samples contain only some 10 or 20 elements.

(v) Decision rule (6.4) is determined for any values of (W,, Wy, 3,
ry ¢,y and any 0 < a < 1. It is, therefore, suitable for direct realization
In the form of a finite automaton (cf. [6], p. 24-34). This has been verified
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in practice and registered in the Patent Office(®). Statistical properties
of the rule (6.4), called adaptive sequential test in the sense of Wald [8],
as well as a comparison of the adaptive test with classical sequential
tests will be presented by the author in [3]. '

Throughout all this paper we have dealt only with binary random
variables Y, (received sygnals). The whole construction can be easily
extended (and really was) for the case of more possible values or even
continuous random variables Y,. In the latter case instead of probabilities
one has to deal with probability densities of the distribution of Y.

The author wishes to thank Professor J. Liukaszewicz of the Univer-
sity of Wroclaw for valuable discussion and helpful criticism of an earlier
version of the paper.
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A. JANICKI (Warszawa)

PEWIEN ADAPTACYJNY TEST SEKWENCYJNY
STRESZCZENIE

W pracy proponuje si¢ pewicn adaptacyjny test sekwencyjny i analizuje jego
wlasnosei.

W kolejnych chwilach ¢ = 1, 2, ... odbicrane s3 sygnaly I';, bedace realizacjami
niezaleznych zmicnnych losowych o warto$ciach 0 i 1. Rozklad prawdopodobienstwa
tych zmiennych zalezy od tcgo, czy pewién parametr = przyjmuje wartosé 0 ezy 1.
W pracy definiuje si¢ pewien sekwencyjny estymator parametru z, oparty na obser-
wacjach Y;. Estymator ten ma, zdaniem autora, pewne zalety w poréwnaniu z sek-
weneyjnym testem ilorazowym i z testem opartym na z géry ustalonej liczbic obser-
wacji.

(*) Sce patent No. 62589 at the Patent Office, Poland.



