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1. Introduction. Let Q be a domain in R" with the boundary I', and let T
be a positive constant. Let V be a linear subspace of H'(Q) satisfying
H(l)(Q) < V < H'(Q). The paper deals with the numerical approximation of
the solution of the following parabolic equations

(L.1a) u+Ax, t,u)=f(x,t,u), (x,0)eRx(0,T),
(1.1b) u(-, eV, tel0, T],

With the periodic condition

(Lic) u(-, 0)=u(-, 7).

In (L.1a), A(x, t, u) is a weakly nonlinear elliptic operator of second order in
the space-variable x, defined in the cylindrical domain Q = Q x(0, T). We
assume that the solution u of (1.1) exists and ue C*(Q).
In [2] the problem was studied by the least-squares method for the
Aplace operator. Recently, the linear case of (1.1) was studied in [1] by
Using Fourier expansions.

‘ There are many papers (e.g., [4], [7] and the references given therein), in
Which a nonlinear initial value problem was studied. Here, instead of (1.1¢),
One considers the case

u(-, 0).=g.

Following [4], we wuse the Crank-Nicolson-Galerkin method for
4Pproximation of the periodic solution of problem (1.1). We prove that this
Scheme s solvable. Also, we give sufficient conditions for the method of

S . . . . : M 1
g‘ilfcesswe approximation  to be applied. Some estimations of the error are
en,
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An outline of this paper is as follows. In Section 2 we give the basic
definitions. In Section 3, we formulate the Crank—Nicolson—Galerkin scheme
and prove that the estimation of the error may be reduced to an
approximation problem. Section 4 is devoted to estimating the error for a
particular finite-dimensional subspace of V. In Section 5 we consider, in more
detail, the linear case and finally, in Section 6 we discuss the existence of the
solution of a system of nonlinear equations connected with the presented
method.

2. Basic definitions and notations.

A. Let Q be a bounded domain in R" with a boundary I We assume

_ p
that there exists a finite covering I' = ) U; and positive numbers o, such
i=1
that the set I' n U; may be, in a suitable given coordinate system in R,
described by the equation

Xp = (Pj(x')

where

(i) xXed;={xeR" ' |x| <a,s=1,2,...,n—1},

(ii) ¢; is Lipschitz-continuous in 4;,

(iii) {(x', x,): x'€d;, @;(x) < x, < @j(x)+p} = Q,

(iv) {(x', x,): X'€4;, @;(x)=B < x, < ;(x)} = R"\ Q.

The boundary I satisfying these conditions is called Lipschitz-continuous
[6].

B. All the considered functions are real-valued. All the derivations in the

sequel are understood in the distributional sense. Let us denote by <", *» the
inner product in L?(Q) and introduce the following notations

Ivllg = <v, v, ve L2(Q),
" Jov ov ov
2 __ - - ) 2
lvl} = .-; <ax,.’ ax,.>’ axieL (),
ol = llvlld +vif, ve H'(Q).

We will be working with the Hilbert space H'(Q). In our assumptions o7 Q
there exists the trace operator tr: ve H! () - tr ve L*(I') [6] and for I'o ©
with meas(I'y) > 0, we may put

(2.1 V= {veH' (Q): tr v|p, = 0}.
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We have the following

LemMa 2.1 ([3]). Let Q be a bounded domain in R" with the Lipschitz-
continuous boundary I'. Then the set V defined by (2.1) is a closed subspace of
H'(Q). Additionally, if the measure of Ty is positive then the seminorm |1 is
equivalent to the norm ||-||;. =

Let the space L?(0, T: V) denote the set of all functions &: [0, T] > V,
for which the norm

T
1913207, = {12

is finite,
We introduce the following space

W, T) = {ueLZ(o, T V). %eLZ(O, T, H' (9))}.

We have

~ Lemma 2.2 ([6]). For ve W(0, T) the traces v(-, 0) and v(-, T) are well
defined. w

Thus, we may introduce the subset of T-periodic functions in W (0, T)
W, T) = {ue W(O0, T): u(-, 0) =u(-, T)}.
C. We assume that a;;, ap and f are in L2(Q x R) and for every weV is
%i(, -, w), ag(+, -, w), f(-, *, wye L*(Q x R). The nonlinear elliptic operator A
IS defined by

2.2 __ v 2, o
) A(X, t, w)u = i’jz=l axj (au(xa L, W) axi)+a0(x, L, W)u9

Where the coefficients are
(i) symmetric, ie. a;(x, t, w) = a;(x, t, w),
(i) Tperiodic, ie ay(x, t+T, w)=a;(x,t,w), ao(x, t+T, w)
=4ao (x’ L, W)a
23) (i) bounded, i.e. |a;(x, t, W) S N, 0 <m < ao(x, t, w) < N,
(iv) and they satisfy

0o ) &2 < Y a(x, t, Wi < co Y &2 (co, 69 > 0).
i=1 ij=1 i=1
I the right-hand side of (1.1a) we suppose that it is
24) (l) Tperiodic, ie. f(x, t+ T, w) = f (x, t, W),
(i) bounded, i.e. [f(x,t, w) <N.
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For simplicity of further notations we put
d=min{dy,m} and C= ﬁmax {Nn, 1}.
Moreover, we assume that g;;, a, and f satisfy Lipschitz conditions
la;; (x, t, wy—a;;(x, t, v)] < Ly |lw—1,
(2.5 fag(x, t, w)—ag(x, t, )] < Lo|lw—1]|,
Lf Cx, t, w)=f (x, t, )| < La|w—1],

for all (x,t)eQ and w, veR.
Later, we make some assumptions on L,, L, and L,. For ue W(0, T),
we put

ou(x, t)

17.ul o

= max Ssup €ss
1<i<n (x,0)eQ

b

L® x L ®©
llull o, oo = SUP €85 |u(x, 7)].
(x,t)eQ
In the sequel C, C are generic positive constants not necessarily the same.

3. Crank-Nicolson-Galerkin approximation of the problem. In con-
nection with the problem (1.1) we have the following weak formulation:

Find ue W (0, T), such that
(3.1) N <y, v)+a(t, usu, v) = {f (5 t, u), v)

veV

holds, where

a(t,w;,u, v) = j[ Z a;i(x, t, w) :: —gv;+ao(x, t, w)uv]dx.

ih,j=1 J
Q
Under our assumptions, a(t, w; u, v) and-the right-hand side of (3.1)
have the following properties:

LemMA 3.1. Let weV, then
(i) Aa(, w;v,v) >l

veV

(i) /\ la(e, w;u, o)l < Clullyllvll;,

u,veV

(iii) /}/I<f(', t, w), v <IF(, £, wllollollo-

Proof. The proof immediately follows from (2.3)—(2.5) and the Schwarz
inequality. =

We approximate the solution of (3.1) by requiring that 4 and v lie in a
finite-dimensional subspace of ¥V for each t. Assuming that the set
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{vy, U3, ..., Uy} €V is linearly indepen(_ient we denote by ¥~ the subspace
spanned by vy, v,, ..., uyy. We approximate the solution u of (3.1) by the
function

N

(3.2) Ux, 1) = Y % (t)vi(x),

where
a;(0) = o; (7).

The semidiscretization method is defined as follows:
Find Ue W(0, T)n L*(0, T; ¥") such that

(3.3) /\<6—U,v>+a(t, U; U,v)={f(,t, U), v).

vey ot

We consider a scheme for approximating the solution of (3.3) in which
t_he variable t is discretized. Let us consider a fixed uniform division of the
tme interval [0, T]. Putting 4t = T/M (M > 0), for any ge W(0, T) we
Introduce the notations

Im = gm(x) = g(x, mAt),
(34) Im+1/2 = Gm+1/2(X) = 3 [Gm+1(X)+gm(%)],
tm = (m+3) 4t,

for all 0 < m < M—1. From the periodicity follows gy = go. Moreover, we
denote

e=e(x,t)=u(x, )=U(x, 1),
(35) n= n(x, t) = u(x9 t)_a(x’ t)’
Af =f(x’ L u)—f(x’ L, U),

Wherg it is any function of W (0, T) and u denotes the exact solution of (3.1).
In this notation we formulate the Crank-Nicolson-Galerkin scheme [4]:
Find {U, M-l yM such that

’ Um - Um
(36) /\ <#> v>+a(t,,,, Um+ 1/2; Um+ 1/2» U)

vey

= <f(, Lms Um+ 1/2), U> and -UO = UM
The estimation of the error of this method is given in the following
THEOREM 3.1. Let u be the exact solution of (3.1) and let ¢ j
condition be satisfied S G1) and letthe following

3.
( 7) K = L2+\/§max {Ll n3/2“qu”Lw x L®°* LOHu”Loo wa} < 6'

"-
Zastosowania Mat. 184
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Let a;;, ag and f satisfy the conditions (2.3){2.5). Then there exists a constant
L > 0, such that

M-1

(3.8) Y llem+1p2lli 4t
m=0

'7m+ 1 m

<L inf I:Z 1m+ 12115 4t + Z At]+C(At)4

aeW(0,T)~L2(0,T;¥)

Proof. Under the conditions of Theorem 3.1, we can write (3.1) at
t =t, in the following fashion:

Uyt 1 —Up
(39) /\ <L+Qm9 U>+a(tms Upm + 1/2+€m; €m+ 1/2+§m’ U)

vey At

= <f(’ Lm> um+l/2+§m)9 U>,

Up = Uy,

where ||omllo, |I€mllo and |IE4ll; are less than M, (4t)®. The constant M,

83 3 )
depends on the upper bounds of } a:l and ! } Subtracting (3.9) and

or? ox

(3.6) for ve v, the following identity holds:

e — €,
/\ < m+£l1 m+Qma U>+a(tm’ um+1/2+ém; Up + ll2+ém3 U)—
vey t

—a(tm, Ups1/2; Ums1)2s v)

= {Afm, V),
where

Afm =f(xa tma Up + 1/2+€m)_f(x’ tm, Um+ 1/2)'

This equality may be transformed to the form

at

+[a(tm, Ums 172+ Ems Ums 12+ Em> V)= Q(tmy Ups 125 Um+1/25 v)]

= <Afm, vy— {&m> vy

e +1—e
<u, v>+a(tma Un+1/25 €m+1/2, V) +
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Next, we consider the above equality with v = epi12—m+1/2€ v". By
ordering, we obtain

€m+1—€ .
(310) <_—+;T£, €m+ 1/2>+a(tm9 Um+ 1/2» €m+ 1/2» €m+ 1/2)

= {Af, €m+ 1/2_’1m+1/2>_ {Om> €m+ 1/2“’Im+1/2>—
—[a(tm Um+1/2+Ems Um+1/25 Em+172— Nm+ 1/2)"
—a(tms Ums 172> Um+1/2> €m+ 12— Mm+1/2)]—

— Aty Ums1/2F Em> Cms> Cma 12— Nm+172) T

€m+1 —E€m
+< T ’7m+1/2>-

In order to estimate the right-hand side of (3.10) we state the following

LeMMA 3.2. Under the conditions of Theorem 3.1 the following estimations
hold:

(1) 1<Afms €m+1/2— Nm+ 12 S L2||9m+ 1/2+§ml|o||em+1/z—'7m+ 1/2”0,

(i) /\ |a(tms m+ 172+ Ems Um+ 1725 V)= (Ems Upmi1)25 Uma 1725 V)|
vey

< /2max {L; i1V ull oy s Lolltll o, peo} Nems 172+ Emllol1oll1s

N 1a(tms Ums 1)2F Ems Ems V) < ClIElL 1]y, where C is the same
vey
constant as in Lemma 3.1.

(i)

Proof of Lemma 3.2. The estimates given in (i) and (iii) immediately

follow by the Schwarz inequality and Lemma 3.1, respectively. We prove
only (ii). From the definition of form a, we obtain

|a(tms> Um+172FEm> Um+1)2> V)= Aty Upsyj2; Umt 1725 V)|

" ' Ou ov
<L, Z jlem+l/2+€M| —"(;—1/2 —|dx+ L, j‘enﬁ- 12+ Eml U+ g2l 0] dX
ij=1 Xi | axj
Q
n . av
SLin||Viup, 1/2”Lm(m z j‘enw 1/2+ém| \— dx+

Q

+ LO ”um+ I/ZHL""’(D) jlem+ 1/2 + éml |U| dx

Q
<L, n? ||V u,, llanw(m llem+ 172+ Emllo I0]1 +

+ Lo ||upm+ 1/2||Laom)”em+ 172+ Emllolvllo
< \/imax {Ll n3/2 HVx u"l‘oo x L% LO “u“l‘w me} Hem+ 1/2 +ém”0 ||v\|1 .
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Thus the lemma is proved. =

Using these estimates in (3.10) we come to the inequality

1
(G11)  —[llem+1lI3—llemlld]+ 0 llem+ 1213
24t
< llomllo lem+ 12— m+ 17210 + K llem+ 172+ Emllo llem+ 172 = m+ 172111 +

€m+1—€m
+ClEmlls llem+ 172 = Mm+ 172l + <+A—t’ Mm+ 1/2> .

In the sequel we use the inequality

1
3.12 b < ea’ +—b?,
(3.12) a ea”+ 4

6bviously valid for all ¢ >0 and a, beR.

From (3.11), we obtain
1
E[”em+1“(§_”em”(2)]+6”em+l/2”f

1
< % llomlla +&llem 1/2”(2) +110mlld + % 111m+ 1/2”(2) +

K
+ K||em+1/2ll0 llem+ 12111 +-4_s- NEmll5+ Kellep+ 1/2“% +Kellem 1/2||f+

K K
+;E (177 + 1/2”%"‘K ”Cm”f'*‘z‘ |71+ 1/2”%"’0g llem+ 1/2”%"‘

C o €m+1—Cm
+E NEll7+ C“f;n”f'*'z |17 + 1/2“%'*‘ <—+—411t——’ Nm+ 1/2>-

By ordering and estimating the norm ||-{|, by |/‘|l;, we obtain

(3.13)  [llem+ 11l —llemlld] +[6— K —e(1+2K +C)]llem+ 12l 4t

1+4K+C K 1+K+C
< <— )”'lm+1/2”f4t+<—+1+K+C>Mf(4t)5+

4 +E 4¢
Cpi1—Cm
+ <—+:I—t——’ N+ 1/2>At-

It is easy to verify that if e, = ey and 5y = 1, then

M1 €m —€p M1 Nm —Nm
S = Z <+Tlt-’ 'I.u+1/z>At=— Z <em+1/z,——+—jt— At.

m=0 m=0
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Thus
M-1 1 M-t Nt 1 —Nim 2
SI<e L llemsipallf i+ 3 | At
m=0 m=0 0

Summing (3.13) for 0 < m < M —1 and using the above inequality, we obtain

M-1

(314) [6—-K—eQ+2K+C)] T llems 1212 At
m=0

(1+K+C K M-1
< -

1
4 4£> z ||’1m+1/2” At+— 2

Um+1—Um 2
4 m=0

at+
At

0

1
+(1+K+C) <4—+ I)Mf(At)‘* T
£
and the theorem is proved. m

In particular cases, we have
CoRroOLLARY 3.1. If the operator A is linear (i.e, Lo =L, =0) and L, <9
then for any solution of (3.1) the estimate (3.8) holds. m

CoROLLARY 3.2. In the linear case (i.e. Ly = L, = L, = 0) for any solution
of (3.1) we have

M-1

Z |lem+ 1/2”% 4t
m=0

2 1+C 2+C Nt 1—Nm|?
ggtﬂﬂX(T —ZST)[Z “nm+1/2“1At+ z —+A‘t——— OAt +
(1+C)(2;25+C)M%T(At)4;

Proof. In this case, we have K = 0 and taking in (3.14) ¢ = §/2(2+C)
the estimate follows. =

4. The finite-element approximation of V. In this section we introduce a
particular subspace of V. For this subspace we estimate the right-hand side of
(3.8). We adopt the notations of [3].

Let Q be a polyhedral domain in R". We consider a regular affine-
equivalent triangulation T, of @, where h denotes the upper bound of the
diameters of KeT,. Let ¥ be the Lagrange-type finite-clement space
corresponding to this triangulation [3] and let for each K e T, the restriction
of ¥" to K contains all polynomials of order less than r. Moreover, let IT be

the interpolation operator IT: V — ¥". Then the following approximation
theorem holds [37]:
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THEOREM 4.1. Let r > n/2. Then for any ve H (Q)
(4.1) lo—Moll, < C, W'l (1=0v 1),
where the constant C, does not depend on v. m

Our aim is to estimate the right-hand side of (3.8), thus we are interested
in approximation of functions which have continuous derivatives. In this
case, we have

LemMa 4.1. Let r > n/2. If ve C'(Q) then the interpolation operator Il has
the property

Lv(:, )], = o (-, 1).

Proof. The proof immediately follows from the continuity of the
derivatives of v. =

To obtain the estimation of the error of the Crank—Nicolson—Galerkin
scheme we need

LEmMA 4.2. Let ne W(0, T), then

T

on|?

a4t < -

ot ”,&
0

T

m=0

'7m+1

dt.

0

Proof. We have the identity

(m+1)a
Nm+1—Nm 1 ‘3’7
Tmr 1" m Tar,
At 4t J ot
mat

Using the Schwarz inequality and summing, we obtain

(m+1)4t T
M-1 _ 2 M-1 0 2
Z Nm+1—Nm At < Z J‘ = J‘l dt
m=0 At m=0 a

mat 0

By integrating on €, the lemma follows. =

Now, we can prove the main result of this section.

THEOREM 4.2. Let u be the solution of (3.1) satisfying u(-,1t),
u (-, )e H'(Q). Let U be the solution of (3.6). Then there exists a constant
C, > 0, such that

M-1

Z llem+ 12113 4t < C, [h* 2 +(40)*].
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Proof. By virtue of Lemma 4.2 the estimate (3.8) may be written in the
form

T
M-1

a 2
4.2) Y llem+ ol 4t < L [ Y W 12017 A2+ j“’ﬁ
m=0 eW(o T) ot
0

dt]+C(At)4.
m=0 (1]

We put ITu(-, t) instead of (-

, t). Then by Theorem 4.1 and Lemma 4.1, for
any fixed te[0, T] we have

_ on on
<C K Y, —Il <C, I
lly < Cy ™ Jul “at 0 at\
and
T
2
(43) Hl hz'j—af dt < C'h¥.
ot|,
0
Also, we have
Nm+1+HMm _
Wil = |52 < b s
hence
M-1 M-1
(4.4) Y Mmer2lii 4t < Y Cyh¥ 2 |upy 2|2 At < Ch¥ 2,
m=0 m=0

Substituting (4.4) and (4.3) into (4.2), the desired estimation holds. =

. The linear case. In this section we discuss, in more detail, the linear
case of (3.6). We write a(t;u,v) and f(x,t) instead of a(t, w;u, v) and
f (x t,w). Let the finite-dimensional space ¥~ be given and let the basis
{v;,}}=; be in H'(Q). The solution of (3.6) has the following form

5.1 =Za,-,,,vie“lf, osm<M-1.

From (3.6) we obtain the system of linear equations

(5.2a) 21 Lim+ 1 [(vi, vj>+—Az—ta(t,,,; v;, vj)]+

N
+ Y aim[—<v,-, vj>+A—2ta(t,,,; v;, vj)]
i=1

= S0 tw)s 030
for all 1<j< N and 0SKm<M-1 and

(Szb) %io = Uim» 1 S i S N.-
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If we denote
A= {<U,-, v.i>}?.’.i=l’ Am = {a(tm; Ui, vj)}g.i:l’
Fm = {<f(, tm)? vj>}}v=17 Oy = {aim}zil

then the linear equation system (5.2) has the block form

a4t At
—A+7Ao A+7A0 0 0 0 0 %o Fy
A4t . At
0 —A+7A1 A+7A, 0 0 0 L2 F,
N =

A4t a4t
D 0 ’—A+7AM_2 A+3‘AM_2 aM—Z FM‘Z

At At
A+~2_AM—I 0 0 —A+7AM_1 Xu-1 FM-I

We prove the existence of the solution of (5.3). At first we prove three
lemmas.

LemMa 5.1. Let v;e H! (). Then there exist the constants d and d,, such
that

N
(i) ln.f ” Z é" U,'”O = d > 0,
Kl=1 i=1
N
(i) sup 1Y &ol, <d, < oo,
=1 i=1

N
where for £e RY, we put |¢| = () EH)'2.
i=1

Proof. We have

N
IS ciolo = &macsee,

thus d is equal to the least eigenvalue of Gramm’s matrix A. Therefore (i)
holds. Next, applying the Schwarz inequality to (ii) it is easy to see that

N
d = (3 o). w
i=1

LemMMA 5.2. In the linear case let a;;, ao and f satisfy (2.3). Then

At At
(i) the submatrices A +7A,,l and —A +7A,,l are symmetric,
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At - .
(i) the submatrices A+7A,,, are positive definite,
(i) there exists t >0 such that for every At <t the submatrices

At
——A+7 A,, are negative definite.

Proof. The property (i) is obvious. In order to prove (ii), we observe
that

N .| a4
Y fi[@.’, vj>+—2£a(tm; v;, Uj)]éj = ||Z||<2)+—ta(tm; z, 2)

ih,j=1 2

at
= |IZII%+75IIZII§ > d*|¢)?,

N
where z = ) &v;. The estimation follows from the condition of ellipticity
i=1

(2.3iv) and Lemma 5.1. Similarly we have

Z éi[— <Ui9 vj>+%a(tm; U, Uj)]éj = —“Z“%-ﬁ-ﬁa(tm; Z, Z)

ij=1 2

2

The last estimation follows from Lemma 5.1 (the constant C is the same as in

Lemma 3.1). Therefore, for A4t <t =2d/Cd, the right-hand side is
negative. w

At At
< —I|ZII3+-2—CHZIIf < (—d+—Cdl)|§I2-

Remark 5.1. We note that t depends only on the coefficients a;;, ao and
on the basis of ¥". This remark is used in the next section. m

. At
The matrices A+?A,,, are nonsingular and the system (5.3) may be
written as follows

—Py 1 0 0 ao F,
0 -P 0 oy F,
(54 : = ,
0 0 —Py-, 1 Up- 2 Fy-,
I 0 0 —Pp-q)| | am-1 Fy-,
where '

4 \! At _ -1
Pm=(A+?A,,,) (A—?Am) and Fm=(A+gA,,,) F,,..
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We have
LeEMMA 5.3. The linear equation system (5.4) has a unique solution if and
only if

(55) det(I—PM_lPM_z'...'P0)¢0.
Proof. Let, for 0<m<M-2
(56) Om+1 =Qma0+an'

From (5.4) it is easy to obtain the forms of Q, and R,,. Namely,
a; = Poao+Fo,
thus @, = P, and R, = F,. Next
s =P1fx1+F1 =P1P0a0+P1F_0+F1,

whence Q, =P, P, and R, =P, F,+F,. Generally, we -obtain the
recurrence formulas

Qo = Py, O = POy,

Ro=Fy, Ry=PR_,+F,

for 1 <k< M-1. For k=M-—1, we obtain the linear equation system
(I—Ppy—y Py-2"...-Po)ao = Ry—;.

If (5.5) holds, then we can compute a, and then using (5.6) we can obtain the
solution of (54). =

Now we can prove that for A4t <t the condition (5.5) holds.

THEOREM 5.1. Let t be the same constant as in Lemma 5.2 and let At < 7.
Then (5.5) is true.

Proof. We prove that the eigenvalues of all matrices P,, are less than 1.
First we note that for At < 7 these matrices are positive definite. Let 4 be an
eigenvalue of P,. Thus 4 >0 and

At -1 At
<A+7A,,,) (A—EA,,,>x = Ax.

1-14 2 -1
I—HZX—A A,,,x.

Hence
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This means that 1—1—1 T is an eigenvalue of matrix A~ ' 4,, which is also

positive definite. Therefore

1—42
——>0,
1+ 44t
and the spectral norm of Py _, Ppy_,...-Py is less than 1. Thus (5.5)
holds. =

6. The nonlinear case. In this section we discuss the existence
under additional assumptions, of the solution of (3.6). For any
z=(20, Z1» ---» Zy-1)€¥™ and 0 <K m < M—1, we denote

Zm+1/2 = %[zm+l +Zm]'

In the case m = M —1, we put z,, =z,. Let 7 be the same constant as in
Lemma 5.2 and let the uniform division of the time interval satisfying At <t

be done. This division is fixed in the whole section. For any we ¥ there
exists the unique solution z = Sw of the linear problem

(6.1) /\< ml_ >+a(tm, Wit 1725 Zm+ 1725 V) = S (5 Ly W 1/2)5 D),

Zyq = 2.

The existence of the solution of (6.1) follows from Theorem 5.1. In this
manner we define the operator S: ¥™ — ¥, We show that this operator
has a fixed point. Exactly, we prove

THEOREM 6.1. Let the coefficients a;;

ij» @0 and f satisfy (2.3)H2.5) and let f
satisfy the additional condition

M-1
(6.2) sup ). At | f(X, ty, W(X), tm)dx < c; < 00,
weW(0,T) m=0 0

Moreover, let ¥~ be the space defined in Section 4. There exists ue¥v™
satisfying Su = u.

Remark 6.1. The condition (6.2) is satisfied, if there exists the constant
K >0 and a function ge L?(Q), such that

N f(x,t, w) < Kg(x,1). m

(x,0)eQ

LEMMA 6.1. Let a;;, ay and f satisfy (2.3)(2.5) and (6.2). Then the solution
z.of (6.1) satisfies

M-1

z |Zm+ 1/2"1 4t < Cf/52
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Proof. For any 0 < m < M—1, we consider (6.1) with v = z,,,,,,. We
obtain

301zm+ 18— 11Zmll31+ 8 1z + 1/2lI1F At S ULF (-, tms Wt 1720 1Zms 172110

Summing these inequalities and using (3.12), (6.2), we have

M-1 1 M-1
6-—e ) ”Zm+l/2”fAt<4_£ 2 NFCs tmy Wt 12)lIG 4t
m=0 m=0

for any 0 <¢ <.
Taking & = 6/2, the estimation follows. =

LEMMA 6.2. For u, v, we ¥ M, we have

l<f(.’ tms Wi+ 1/2)_f(.’ trm U+ 1/2), U>| < LZII(W'—u)m+l/2”0”v”0'

Proof. From (2.5) and the Schwarz inequality we obtain
'<f( s Ums Wi+ 1/2)—f(.’ Lms um+l/2)’ U>|

< Ilf(x, tma wm+l/2)—f(xa tm’ um+1/2)l |U| dx
Q
<L, _“(W_u)m+1/2| [v]dx < L2||(w—u),,,+1,2||0||v||0. -
Q

LEMMA 6.3. Let ¥~ be the space defined in Section 4 and let z = Sw. Then
the quantities

(6.3) max ||[ViZpm+1;all and max  ||Zp+ 1,2l
osmsm—1 ML osmsm—1 L@

are finite.

Proof. From Lemma 6.1 it follows that the coefficients a;, in (5.1) are
bounded. Because the functions v; are piecewise continuous then for any
fixed m the quantity |[V,zp .l is finite. Similarly, the finiteness of

max ||Zp+1/2ll follows. m
osmem—1 T HHL@

L)

LemMMA 6.4. The operator S is continuous on v ™.

Proof. We consider (6.1) for u, we ¥™. Similarly as in the proof of
Theorem 3.1, we obtain the following identity

(6.4) /\ <—'}’m+;—}?m’ U>+a(tms Wm+1/25 Im+1/2> V)
vey’ t
= <f(, tm’ wm+l/2)_f('s tm’ um+1/2)a U>+

+[a (tm’ Up+ 1/2; (Su)m+ 1/2» v)_a(tma Wyt 1/2; (su)m+ 1/2» U)],
where we put y =Sw—Su.
We estimate the expression in the square brackets.
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oA = \a(tm’ Um+1/25 (Su)m+ 1/2> U)—a(tm, Wmt1/25 (Su),,,+ 1/25 U)|

n
< j[ 2 ‘aij(xs tm’ um+1/2)—aij(xa tma Wt 1/2)|+

ij=1

Q
ov

o0(Su),,
+lao(x, ty, u,,,H/z)—ao(x, tms Wm+1/z)|] (Su) +1/2 -
J

dx.
0x; *

Analogously as in the proof of Lemma 3.2, we obtain

oA < Cl{(W—t)p12Ml0lI0ll4,
where

_ 3/2
C= ﬁmax{Ll n os:?fﬁ_ 1||Vx(5"4)m+ 1/2||me,, L, max 1“(S“)m+ 1/2”Lw(m}'

osmsM-

We consider (6.4) for 0Sm< M—1 and v = Y, ;. By summing (6.4) and
using Lemma 6.2, we obtain

M-1

M-1
Z_:oII(SW)...H/z—(Su)mH/zIIfAtSC(u) 2 10w = 1217 41,

where C(u) = ((L,+C)/0)*. =
Proof of Theorem 6.1. We have

N
(W =2 =Y Omty, O0<m<SM-1.
k=1

Putting v =v; (1 <j < N) in (6.1) for any m, we obtain a linear equation
system with N xM unknowns a,.

Let

M-1
Bf = {akme R: Z “Z"H. 1/2“¥At < Cf/(sz} < RNXM.
m=0
The set B, is convex and bounded. By Lemma 6.1, S(B,) < B,. Also, from

Lemma 6.4 we know that S is continuous. Then by Schauder’s theorem [5]
the operator S has a fixed point. =

Let woe ¥™. We may generate the sequence
(6'5) wk+l = SWk, k > 0.
From the practical point of view, it is interesting to know, when this

Sequence converges to the solution of (3.6). We give a sufficient condition for
this in the case when the operator A4 is linear.

THEOREM 6.2. Let the operator A in (1.1) be linear and let f satisfy (6.2).
If L, <6 then the sequence {We}i% o converges to the solution of (3.6).
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M-1
Proof. Let ve ¥™. The quantity ( ¥, [[vll? 4¢)"/? is a norm of v in ¥™.

m=0
From Lemma 6.4 follows that the operator S is a contraction with the
contraction constant x = L,/6. The result follows from the Banach theorem

[5]. =
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