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1. Introduction and summary.

The purpose of this paper is to present and summarize some results
concerning the number of possible genotypes and the probabilities of
their occurrence through generations in polysomic inheritance. The general
pattern for genotype with several loci and multiple alleles at each locus
in 2m-autopolyploid breeding populations is considered. Using combi-
natorial analysis and generating functions, formulae for the number of
different genotypes, the number of different gametes produced by the
same genotype, the number of genotypes producing the same kind of
gametes, etc. are obtained.

These results are useful in evaluating the expected frequencies of
occurrence of gametes (segregation distributions) and the proportions of
genotypes in random mating populations.

Although some of these results are known or have been discussed
by other authors (Fisher [3], Geiringer [5]-[10], Moran [12]), it is still,
perhaps, worthwhile to revise them, find more general and simpler models
which can be applied in the population genetics of polyploids under fairly
general conditions.

An extensive discussion of gamete distributions under random chro-
mosome and random chromatide segregation in panmictic populations
has been presented in a series of papers by Hilda Geiringer [5]-[10].
She emphasized that maternal and paternal influence on the frequency
of gamete production can be of significant importance. She introduced
in her models some kind of “chromosome linkage” which results in tenden-
¢y of maternal (and paternal) genes to segregate more or less closely
together. The genotype distribution in the offspring is affected by this
assumption. Moran ([12], p. 39) expressed some doubts whether the
distinction between the maternal and paternal origin is of biological
significance.
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Without loss of generality this assumption is omitted in this paper;
this also has the advantage of making the presentation rather simpler
and more comprehensive. If under a certain hypothesis on the mode
of inheritance on finds the segregation probabilities, then using the ge-
neral model presented in section 4.1, the genotype distribution in the
offspring can be obtained.

To avoid some ambiguity in defining terms like: genotype, chro-
mosome and chromatid segregation, etc. we first discuss briefly these:
terms and their definitions.

2. Some basic ideas and definitions.

Let us consider a bisexual, 2m-autopolyploid population. Suppose
that we are interested in r loci, denoted by a,, a,, ..., a,, and that s,
randomly segregating alleles are assigned to the locus a,. We denote
these alleles by ani, apsy ..., ans, (b =1,2,...,7). The zygote of a 2m-
-ploid individual can be represented as a set of elements ax/Y, where
h=1,2,...,r denotes the locus number, t=1,2,...,8, denotes the
t-th allele a,t the az-th locus; wht =0,1,2,...,2m denotes the number

of alleles of the type ap, and 2 wp; = 2m at each given locus a; for any

set of w’s. More explicitly, the genic pattern for the zygote can be for-
mally written

r Sh
w. w.
(2.1) (ol ... ¢y lag2 .. age?] o flon o o) = [ [ ] oii,
h=1 {=1

sh
with the condition > wp =2m,h =1,2,...,r
=1

Similarly, the genic pattern for the gamete can be represented as

,
Urs,
1 ars,.r)—“ll l]aht7

“r

(2.2) (a"“ . alsll ..

51
with D' up = m.
t=l

Let us first consider the definition of genotype. If by genotype we
understand simply an individual’s genic constitution, the terms: “zygote”
and “genotype” are interchangeable. If the genotype does not only
describe the genic formula of an individual, but also the way it breeds,.
the “zygote” and “genotype” do not necessarily have the same meaning..
For example, in the case of two linked loci in diploids, the zygotes
A1 051[01205, aNd ay;090/a15a,, have the same genic pattern, but they
are different when regarded as “segregating genotypes”. To distinguish
between these two meanings we introduce the terms: genotype in “broader
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sense” as equivalent to zygote pattern (2.1), and genotype in “narrower
sense”, when the breeding process (production of gametes) is taken into
account.

With each “segregating genotype” we can combine the probabilities
of occurrence of a series of gametes (segregation distribution). The prob-
lem of evaluating the segregation probabilities in polyploids is much
more complicated than in diploids and needs special attention. Here
we restrict ourselves to two limiting cases of segregation distributions,
that is:

a) random chromosome segregation which corresponds to the model
of forming the gamete by choosing a set of m chromosomes at random;

b) random chromatid segregation, that is, when each of the 2m chro-
mosomes divides into two chromatids, and then a random selection of m
out of 4m chromatids is made.

The.numbers of different kinds of genotypes and gametes depend
only on whether one or another process of segregation occurs and does
not depend on whether the process is random or not. But the segregation
probabilities depend on the frequency of occurrence of different modes
of segregation and on whether the segregation process is random or not.
Only random segregation processes are considered here.

In evaluating the numbers of different genotypes and gametes we
apply combinatorial analysis, using generating functions. An important
problem in combinatorial analysis is that of finding in how many different
ways n objects can be assigned to k¥ boxes. The objects can be distingui-
shable or not, the boxes can be ordered (numbered) or not. The excellent
book by MacMahon [11] can be used as a reference to this subject.

Let us first discuss the simplest situation of one locus.

I. ONE LOCUS WITH s ALLELES IN 2»-PLOID CELLS

3. Genotype constitution of 2m-ploid population.

3.1. The numbers of different genotypes and gametes. We consider
one locus, a, with s alleles: a,, a3, ..., a;. The chromosome pattern for
a zygote in 2m-ploid germ cell is :

(3.1) (atla3? ... ass),

S
where w;, = 0,1,2,...,2m; t =1,2,...,8 and Y w; = 2m for any set
=1

of w’s.

The question arises: how many different zygotes of pattern (3.1),
N,, can be obtained under chromosome segregation? The model is as
follows: The number of s different genes corresponds to s ordered bowes.
Each gene can appear at most once in each of the 2m chromosomes.
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Since the number of chromosomes is immaterial, 2m chromosomes can
be treated as 2m indistinguishable objects. The distribution of genes in
the chromosomes corresponds to assigning to each of the numbers
1,2,...,8 (ordered boxes), 2m or fewer chromosomes (indistinguishable
objects). The number of different ways in which this can happen is the
coefficient of #°" in the expansion of

(3.2) Al(.’l}‘) = (1+m+w2+‘“+w2m)s
and is equal to

s+2m—1 . [84+2m—1
(3.3) sz( om )=( 2m- )

Replacing 2m by m we obtain the number of different gametes

(3.4) N, = (8“"”1).

m

These results are known (see, for example, Geiringer [8], [10]).
If we use for zygote the chromatid pattern, that is

(3.5) (a@1ad*2 ... a3s),
8
where Y 2w, = 4m, then for chromatid segregation the generating funec-
t=1

tion (3.2) remains the same, and so the numbers of genotypes and gametes
are again given by (3.3) and (3.4) respectively.

3.2. The number of genotypes having exactly ¢ < s different genes.
The genotypes can be of homogenic type; ai",t =1,2,...,s; of digenic
type: ajlay?, where w;,w,=1,2,...,(2m—1),w,+w, =2m,1,,1,
=1,2,...,8 and ¢, #1,; and generally, of g-genic type: a;'ai’%... ay4,

q
where w, =1,2,...[2m—(¢—1)],y =1,2,...,¢, D) w, =2m,t =1,2,
y=1
..., 8 and ¢, #1,, for each »,»' =1,2,...,4q.

The number of genotypes having exactly q different genes is equi-
valent to the number of ways of selecting first sets of ¢ different genes;

this can be done in (;) ways. For each set, ¢ chromosomes must be assigned,
and the remaining (2m— ¢q) will be distributed randomly in

(3.6) (q+(2;n_—1q)—1) _ (2qm——-1 1)

ways (using (3.3)). Therefore, the eract number of g-genic types is

(3.7) Fogenie = (3) (5

q/\ ¢—1
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EXAMPLE 1. Let 8 =55 2m = 4; N, = (Z) = 70 different genotypes.
Types Number of genotypes
homogenic (i) (g) =5
digenic (g) (‘;’) = 30
trigenic (3) () = 30
tetragenic (i) (g) = -7%

3.3. The number of different gametes which can be produced by
a given genotype (ai!...ays). The given genotype (da!...ass), where

> w; = 2m, can produce different gametes of the type (o} ... a;°), where
iz

S
D' ug = m. It is obvious that 0 < w <wy, t=1,2,...,8
t=1 '

We want to know the number, N,,, of different gametes, which
can be produced by the same zygote (a!... ag¢).

(i) under chromosome segregation, the mathematical model is as
follows: there is a set of 2m elements, where w, elements are of type a,
(indistinguishable), w, of type a,, and generally, w; of type «(t =1, 2,

, 8). The number of different subsets of type (a¥! ... az?) which can
be obtained from the set (ai ... a%®) is equal to the coefflclent of 2™ in
the product

s 8
(3.8) A,(z) = n(1+m+w2+...+m“’t) = (1—w)-’n (L—a™tthy,
=1 =1
Applying the principle of inclusion and exclusion, the coefficient of 2™
in (3.8) is

8

o0 e () S S -
_ZZZ(H—’M wt—wt—wt 4)_{_“‘%0.’

where the summations are defined by the conditions that (s-+ m—w;,—2),
(s+m—w;—wy — 3), ete.,... are positive.

We notice that if in some population the gametic output consists
of N, different gametes, then the number of genotypes is Nz. But only
N, (defined in (3.3)) have different genic patterns; some patterns are
repeated. The quantity N, calculated from (3.9) gives also the number



of different gametes which could be components of a given zygote. The
gametes can be paired according to the rule

u U, u u. w w,
(' veeas®) X (ag ooeay®) = (a1 ... ag’),

8 8
where Y u, = Y u; =m and w+u = wy, L =1,2,...,8.
t=1 =1

If we denote the Ny, for the I-th zygote (I = 1,2, ..., N,) by Nyp.q,
then N .q given by the formula (3.9) gives also the number of genotypes
having the same patterns (repeated genotypes) among all N, genotypes.
Thus, we have

NZ
(3.10) D Noy = N,
1=1
Also
(3.11) P(l) =N;’Nyoqy, 1=1,2,..,N,

defines the distribution of different genotypes in the population (of the
total size Nj).

ExAMPLE 2. Let s =3, 2m = 4 (tetraploids with three alleles).
There are N, = (;) = 6 different possible gametes, i.e. o, af, o3, a,a,,
ayag, azaz, and N, = (i) — 15 different kind of genotypes. With this
gametic output, the distribution of 62 = 36 genotypes is

Type of Genotype constitution
genotype
‘. 4 4 4
Homogenic: a} d, a;
.Ng|z(l) 111
Digenic a}a, dda, ala, aja, a}a, dla,
Digenic duplex alal ald? ala}
Ng'z(l) 3 3 3
Trigenic: af a,a, a; ag a, a,a, a§
Nyzqy 4 4 4

(ii) Under chromatid segregation formula (3.9) can be applied with
w;, Wy, Wy, ete. replaced by 2w, 2wy, 2w,., ete. respectively.
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EXAMPLE 3. Let s =3, 2m = 8, w, = 4, w, = 3, w; = 1. (i.e. the
zygote is (ajaja;)). The numbers of different gametes which can be pro-

duced by this zygote under chromosome segregation is N, = (6) — [(1) +

+(§) +(;)] = 8. And these gametes are: 2 2

(alaga:i)? (al(lg), (afazaa)y (a%ag), (a?az)y (aiaa)y (agaa), (a‘{’).
Under chromatid segregation N, = (g) — (Z) = 12. The additional 4
gametes are: (alazag)’ (afag), (a§a§), (a3).

3.4. The number of different genotypes which could produce a given
S

gamete (ai’...as*). If we “fixe” the subset (aj’...os*), where > u; = m,
=1

then the problem is reduced to that of section 3.3, where %; should be
now replaced by w;— u;, and w; by 2m—w,;, when the chromosome segre-
gation takes place.
Under chromatid segregation the situation is a little bit more compli-
cated. We now replace w; by 2w; and 2m by 4m. Since the subset (a}l... a}®),
S
2w1—u1

with Y u; = m, has been fixed, we have now to select subsets (a]
t=1 8

ce.al?s™¥), with sz’ (2w;— u;) = 3m, where each (4m—u;) objects in

each subset (1 =1,2,...,s) are indistinguishable, but subject to the
additional conditions that

uy+ (2wg—w;) is even for t=1,2,...,s.

The number of different ways in which this can be done, is the coefficient
of w(sm-no. of odd wuy’s) in
S

(3.12) Ay(a) = 1—a®)™" [] a—atm—r),

ut=1

where u, = wu; if u, is even, and u; = u;+1 if u, is odd.
EXAMPLE 4. Let 8 =3, 2m =8, u; =2, u, =1, uy = 1. (i.e. the
gamete is of the form (a}a,a,)). The number of different genotypes which

can produce the gamete (a}a,a;) under chromosome segregation, N,,, is
(g)+[0+...+0] — 15. And they are:
3 2 4 2 2 5
fazag)y (afagag), (afazag), (10503), (a10z03),
3 3 2
iaz ag), (alagag)a (020203)9 (aia;a3),

4 3 4 2 2 4 3
10203), ala2a3)7 (ala2a3)7

(
2
’ (ai asas),



Under chromatid segregation we have 3m-no. of odd u/’s = 10. We

have to find the coefficient of ' in (1—2°)~*(1—2')* which reduces

to finding the coefficient of 2° in (1—2)~°, and this is (3+‘Z*1) = 21. The

additional 6 genotypes under chromatid segregation are: (a,aya3), (a;e3a3),
(a; ag ag) y (@ a‘; ag) y (ay ag a:) ’ (alag az)-

4. Segregation distributions.

4.1. Some definitions and notations. Let us denote the gamete
(af! ... ds%) briefly by ;. The complete set of all possible gametes at
one locus with s alleles in 2m-ploids can be simply written as the 1 XN,
vector

(4-1)_ Y = (Y1) V25 -0y )’Ng)

and can be also called the gametic output vector. Each genotype can be
represented as

(4.2) Fii=7i7’7" i7j=1a27'--7Naa

where y; is the maternal and y; the paternal contribution to the zygote I7;.
Random mating here corresponds to the mathematical relationship

(4.3) Pr(I% = yiy;) = Pr(y:)Pr(y;).

The expected result of random mating, where the gametic output
is given by (4.1) is a population I of genotypes I';; which can be represented
in the form of the N,xX N, matrix

(4.4) ' ={I'y}.

If we do not distinguish between the maternal and paternal effects
on the genotype, we have I';; = [;; also some other genotypes I (¢ # ¢/,
j # j’) might have the same genic pattern as I; as has been pointed out
in section 3.3.

Let us denote the conditional probability of occurrence of the gamete
v« among those produced by the given genotype I; (segregation proba-
bllltY) by Ck(ij) that is

(4.5) Pr(yelly) = Cruiy-
The N,X N, natrix
(46) Ck = {ok(i:i)}

gives all the segregation probabilities for the gamete y, in the popula-
tion TI', and the vector

(4.7) iy = (Cu(isyy Ca(ijys -+ -9 cNg(iJ'))
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Ng
with )’ craj) = 1 represents the segregation distribution of the gametes
k=1

(Y1) Y2y -++y ¥n,) for the genotype I%;.
If the genotype distribution matrix

(4.8) Z = {Zij}.
corresponds to the genotype matrix I' = {I3;}, then
(4.9) Pr{yx, [} = Cugisy 2455

and the probability of the occurrence of a gamete y; in the population I' is

Ng Ny
(4.10) Pr(yi, T) = 2 2 oxgiy2is = 98
i=1 j=1
for k=1,2,...,N,.
The vector
(411) g = (g, ", ..., o¥)
Vg

with 3' gi) = 1, represents the probabilities of occurrence of the gametes
k=1

(Y1 Y2y o5 ¥N,) in the population T, or the gamete probability vector for
the next generation. The N,X N, matrix

(4.12) 7o — g(l)g(l)'

represents the genotype distribution in the next generation.

Assuming the segregation probabilities, cxj, in each generation are
the same and applying (4.10) and (4.12), we obtain the following recur-
rence formula for the occurrence of a gamete y; in the n-th generation
(gamete probability for the (n-+1)-st generation)

Ng

Ng
(4.13) gt = 2 Z‘Q%n)g§n)0k(ia’)-
i=1 =1

II. MORE THAN ONE LOCUS WITH MULTIPLE ALLELES
AT EACH LOCUS IN 2m-PLOID CELLS

Suppose that there are » loci and to the locus a; there are assigned s,
alleles: ani, apgy ..., ang (b =1,2,...,7). The general patterns for the
genotype and geamte constitution are given by (2.1) and (2.2) respectively.
But now we have to distinguish between genotype in “broader” and
“narrower” sense, so the cases of independent and linked loci should
be treated separately.



5. Independent loci.
5.1. Number of different genotypes and gametes. Let N, , N,,..., N

[2
denote the numbers of possible  genotypes corresponding to the loc{
Qyy Oy ..., @ Tespectively. The number of all possible genotypes with

respect to r independent loci is

r

[

h=1

.
(5.1) N, = ”N,h =
h=1

Replacing 2m by m we obtain the number of possible gametes.
The number of exactly ¢,-genic types in a,, g,-genic types in as, ..., gp-
-genic types in a, i

- om—1
5.2) Noaeemo = ] () (5721).

h=1

In a similar way we can find the number of different gametes which
can be produced by a given genotype, and the number of different geno-
types which could produce a given gamete.

5.2. Segregation distributions. Under the assumption of independent
segregation of all » loci, the segregation probabilities ¢ with respect
to all r loci are the products of segregation probabilities at each locus.

Denoting by cxy(an) the segregation probability at locus ax, we
have

,
(5.3) Pr(yi| L) = oxe) = n Crii) (an)
h=1

where the genotype I';; and the gamete y; are each defined with regard
to all r loci analogously as in section 4.1.

6. Linked loci.
6.1. When the r loci are linked ; each chromosome can be made up in
(6.1) S = 8;"85"..°8

ways. Therefore, the number of ordered boxes” is now 8, and the number
of different “segregating” genotypes (i.e. in “narrow sense”) is

S4+2m—1
2m *

(6.2) N, =|

{see also Geiringer [8]-[10]). Replacing 2m by m we obtain the number
of gametes in “narrow sense”. The numbers N, or N,, can be calculated
using the generating function (3.8) or (3.12) respectively, where s is
replaced by 8.
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To find the number of segregating genotypes which arc exactly ¢;-
-genic with respect to locus a;, ¢,-genic with respect to locus a,, ... and
g,-genic with respect to locus as, i.e. Ny o -genic, we use differences of
the function

e ®r4-2m—1
(6.3) D@y, -eey &) = ( Tom )

It can be shown that
8
. Sh
(6.4) Noy.acgemic = [[] (i) 48] 2@s, - aleca

where the difference operator 4., is defined by
6.5) Ay (24, ... X4)
= D(Xyyeeey Tho1y Tnt1, Tngny ey @) —DP(Lyy ovvy Tho1y Thy Thp1y ooy Tr).

The cases of r = 2 and r = 3 are discussed in more detail by Fisher [3].
EXAMPLE 5. Let r =2,8, =5,8, =3,2m =4,q, =3, ¢, = 2.

o,y = (),
B0(@,Y)lamo = 23, 9)— (5) 22,0+ (}) 21, 9)— 00, 9)
=("7) = (7)o (0
B0, ool = [(757) =3 (757) +3(°17)] -
O o 1] -

Ny, = (g) (g) X 30 = 900.

Therefore

6.2. Segregation distributions. Assuming as in the case of one locus,
the gametic output y’ = (y,, y2y ..., ¥n,), Where each gamete y; is a com-
posite gamete in respect to r (linked) loci and defined in “narrower sense”,
we obtain the population matrix I' analogously as in the case of one
locus.

The general considerations and formulae of section 4.1 are still valid,
but a new problem arises in evaluation of the segregation probabilities,
Ck(ijy- In the case of linkage we cannot simply take the products of g (as)
as in 5.2. The recombination fractions for all cross-overs should be taken

() Note that A7 = f(z-+m)— (%) f@-+m—1)+ (7)f (@+m—2)+(— 1™ ().



into account and also all possible modes of gamete formation. The mecha-
nism of crossing-over and gamete formation in polysomic inheritance:
is not known precisely and so far the frequencies of occurrence of geno-
types and gametes have only been estimated empirically.
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