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ON A CLASS OF TWO-DIMENSIONAL FLOWS
OF A DIPOLAR INCOMPRESSIBLE FLUID

Bleustein and Green [1] examined in detail the continuum theory
of dipolar fluids, the simplest of multipolar fluids introduced by Green
and Rivlin [2] based on the conventional kinematics. A simple dipolar
fluid admits of monopolar and simple dipolar fluid body forces (f; and
F;) and non-symmetric monopolar and simple dipolar stresses (¢; and
2r). Further, these stresses are linear functions of the velocity gradients

of higher orders. The equations of motion of a simple dipolar incompres-
sible fluid can be written in the simplified form

(1) u(1—120,0,)v; i+ oF; —p ;= 0(1— @ 0;,0,) 0; + 0d® (v 150 ; + Vp. 159 1)
together with the continuity equation

(2) v, =0,

where F; = f;—F;; ;. In these equations, v is the velocity vector in the
direction of the coordinate z,, p the dipolar (modified) pressure, o the
fluid density, u the coefficient of viscosity, I and d are material constants,
having the dimensions of length and which characterize the dipolar nature
of the liquid.

The theory of dipolar fluids predicts a non-parabolic velocity profile
and a considerably reduced mass flux in isothermal Poiseuille flow in
capillary tubes [1] and an increase in the surface drag on a sphere placed
in a uniform streaming, the fluid inertia being neglected [3].

The non-linearity of equations characterizing the motion of dipolar
fluids is of a greater degree than that in the Newtonian theory. It is,
therefore, understandable that these equations admit very few exact
solutions to yield the velocity and pressure distributions which fit into
the differential equations without any sort of simplification either by
approximations or truncations. The aim of the present paper is to exhibit
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a class of exact solutions of a special type, when the flow is two-dimen-
sional and the external force ficld is introduced in 2 suitable manner.
The method of obtaining the solution rests mainly on the possibility of
balancing the non-linear inertial and dipolar terms with the pressure
contingent on the suitably introduced external force. It is of interest
to note that the solution is just similar to those obtained in the classical
viscous case [4] and in the visco-elastic case [5] but, for a suitable modi-
fication of viscosity parameter due to dipolar material constants d and I.
Special cases of (i) impulsive force, (ii) steady force and (iii) sinusoidal
force have been treated in detail.

A class of exact solutions of equations (1). Employing plane rectan-
gular coordinates r and y, we obtain the solution of (1) and (2) for the
given force field F* with the components expressible in cellular form
with single Fourier space components (F, F}),

F = fo(t)+ f.(t)cosky + f,(t)sinky,

3
) = golt) + gc(t)cos ko -+ g, (t)sin ke,

with the conditions fo =f, =f, =90 =9¢9. =9, =0, t<0 and %k # 0.
Further, it is supposed that the liquid starts from rest. Also, the functions
f’s and g¢’s are arbitrary but of CZ-class.

We notice that, for such a foree field, the velocity which is the solu-
tion of (1) has the components « and v expressed as

U = ay(t) + a.(t)cos ky + a,(t)sinky,

4
“) v = by(t) + b.(t) cos kx + b, (1) sin kx,

which evidently satisfy the continuity equation. The functions a’s and b’s
are of (*-class and are determined from equations (1) under the assump-
tion that non-linear terms arising out of the inertial and dipolar parts
of (1) balance with the pressure terms.
Substituting (3) and (4) in (1) and comparing, we infer that
('10 = f 0)
dc + 77k2a’c+ kboas = fc/(l + k2d2)7
ds"{" ’7702“3"— kboa’c = fs/(l + k2d2)7
bo = o,
bt 1k bo+ kaoh, = go/(1+ K@),
by+ 7k2b, — kagb, = g,/(1+ K@),

(3)
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and
dp 2 7 ; ;
= —ok (142K d") (b,cos kx4 bysinkr) ( — a.sinky 4 a,cos ky),
@
op 9 2 . .
F il ok (1 +2k*d°) (a,cos ky + agsinky) ( — b sinkx + bgeos k),
y

where 7 = u(1+PE)/o(1+ K d%).

The initial conditions require that all the a’s and b’s vanish for ¢ < 0.
These equations are structurally the same as those obtained for a classical
viscous liquid [4] and for a visco-elastic liquid [5] but for a modification
in the viscosity parameter due to the dipolar material constants ! and d.

Equations (5) yield the solution

t
a.(t) = [exp(—nkp) {fct~ cos fkb ) de* —

0 t—p
t

—fo(t—p)sin [ kbo()dt}dp /(1 + a* k),
t—-p

¢
a,(t) = fexp(-nk2 {fc t—p)sin fkb t')de' +
0

+,(t—p)cos f kbo(#')de'}dp (1 + 4 B)

t-»p
and two similar expressions for b,(f) and b,(?). From these results we have
the velocity distribution

t t
w(y, 1) = ag(t) + [ exp(—uk*p) {folt —p)eosk|y— [ by(t)at'|+

t—p

¢
+h—p)sink|y— [by(t)ar|lap /1 + @),

t—p
t ¢
v(2,1) = bo(t) + [ exp(— 1) {go(t—p)cosk |z — [ ay(th)ar]+

l-»p
+ ¢, (t—p) smk[m— fb dtl]}dp/ 14 d21?),
and hence the pressure

11
1+2d°K
= rame | v i pinkfy— [

0

8 — Zastosow. Matem. 13.4
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fmyp—

¢
—fs(t—p)cosk[y— fbo(tl)olt1 dp X
t—p N

14 t
x]}mu—nvpﬂ%u~pnmkx—.[%awmq-

0 ) t—p

—w

—gs(t—p)cosk[oc— ao(tl)dtlj}dp

t—

3

but for an additive constant of integration.

Special cases.

(1) Impulsive force. f (1) = fo(t) = Ud(t—1t,) and g.(t) = g,(t) =
Vé(t—1t,), 6(t—1,) being the Dirac unit impulse function, and a, = a,
b, = b are constants.

In this case, we obtain the velocity

u(y,t) = a+2" Uexp{—nk*(t—1,)}sink y—b(t—t0)+—4% /(L +d*K?)
i

and

v(x,t) = b+2"Vexp{ —nk*(t—1t,)}sink (w—a(t—to)-h " /(1+a k)
together with the pressure

p—p,  20V(1+2dK)

: _ 204 . _ ._TC___
0 o (1 + k2d2)2 eXp{ 277k (t tO)} cosk [y b(t tO) + 47‘;] X

T
X cosk[a;—a,(t—to)—}-ﬂ].

The initial cellular structure of the velocity is blown down the stream
by the mean flow with components (a, b) and decays exponentially with
the characteristic time 1/nk* The pressure, being quadratic in velocity
components, decays at twice the rate of the velocity.

(i1) Steady force. f,(t) = f,(t) = X and ¢.(t) = g,(t) = Y, where X, Y
and aq(t) = a, by(t) = b are constants.

In this case, we obtain the velocity

w(y,t) = a+2X{cosk(y—e) —exp(—nk*t)cosk(y —e—bt)}/kR(1L+ d*k*)
and

v(w,t) = b+2Y {cosk(x— 0)—exp(—nk’t)cosk(x — 0-—at)} /kS(1 + d°k*)
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together with the pressure

— 4XY (1 42a8%%%) . 54\ b
P on _ _];’]_QS(—(f_-{_-_d_zk—ﬁz— {sink(y —e) —exp(—nk*t)sink(y — e — bt)} x

X {sink(x — 0) — exp ( —nk*t)sink(x — 6 — at)},

where nk—b = Rcoske, nk+b = Rsinke, nk—a = Scosk0 and nk+a
= Rsink6. In this case, the solution consists of a transient part which
decays exponentially as it is blown down the stream and a steady part.

(iii) Sinusoidal force. The system at rest is agitated by the force
F.(y,t) = Acosk(y—Ut) and F,(r,?) = Beosk(x—Vt).
In this case, we obtain the velocity
u(y,t) = A{cosk(y+e— Ut)—exp(—nk*t)cosk(y+e)} kR (1L + d*k?)
and
v(z,t) = B{cosk(z+ 6 —Vit)—exp(—nk*t)cosk(x+ 60)}/kS (1 + d*k?)
together with the pressure

— AB(1+2d°F) _ . .
p on = k"’RS('(1+d2k2)2 {sink(y —e— Ut) —exp(—nk’t)sink(y + )} x

X {sink(x+ 6 — Vt) —exp(—nk’t)sink(z + 0)},
where nk = Rcoskf, U = Rsink0, nk = Scoskf and V = Ssink6.
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0 KLASIE PRZEPLYWOW DWUWYMIAROWYCH
DIPOLOWE]J CIECZY NIESCISLIWE]

STRESZCZENIE

W pracy znaleziono dokladne rozwigzanie réwnan ruchu dwuwymiarowego
cieczy dipolowej w przypadku ,,komoérkowego” typu ruchu. Zastosowana metoda
oparta jest gléwnie na mozliwosci zrownowazenia nieliniowych wyrazéw bezwladnos-
ciowych i dipolowych przez cisnienie w przypadku odpowiednio dobranych sit zew-
netrznych. Dokladnie rozpatrzono trzy rodzaje sil: (i) impulsu, (ii) stalej oraz (iii)
sinusoidalnej.



