ZASTOSOWANIA MATEMATYKI
APPLICATIONES MATHEMATICAE
Hugo Steinhaus Jubilee Volume
X (1969)

K. URBANIK (Wroclaw)

SELF-DECOMPOSABLE PROBABILITY DISTRIBUTIONS ON R™

Let Xox(k=1,2,...,k,;2 =1,2,...) be an array of random
variables, whose values are vectors in R™. In each row X,;, Xp,, ..., Xk,
we assume the variables to be independent and uniformly asymptoti-
cally negligible, i.e. for every ¢ > 0

lim sup P(|Xnu| >¢) =0,

n—oo 1<k<k,

where | | denotes the norm in R™. Consider sums
kn

(1) D Xu—an  (n=1,2,..),
k=1

where a, are constant vectors in R™. It is well known that the class of
all possible limit distributions of (1) coincides with the class of infinitely
divisible distributions. Moreover, a complex-valued function ¢ on R™
is the characteristic function of an infinitely divisible distribution if
and only if it has a Lévy-Khintchine representation

(2)
@(2) = exp {i(a, 2)— % (Az, 2)+ f(ei(z’“)—l—
Rm

1(2, u) ) 1+ |ul?

R BT ”M*

where a is a vector from R™, A is a symmetric non-negative operator
in R™, i is a finite Borel measure on R™ vanishing at the origin and (z, «)
denotes the inner product in R™. Further, the function ¢ determines
a, A and g uniquely (see [1], [6] and [7]).

Let X,, X,, ... be a sequence of independent random vectors in R™.
Consider normed sums

1

(3) — Xg—a, (n=1,2,..)),

Cn k=1

n

where a, are vectors from R™, ¢, are positive numbers and the random
. X .
variables Xp = —o (k=1,2,...,n;n =1, 2,...) are uniformly
Cn
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asymptotically negligible. It is clear that the limit distribution of (3)
is infinitely divisible provided it exists. Moreover, the class of all possible
limit distributions of sequences (3) coincides with the class of self-decompo-
sable probability distributions in R™. We say that a probability distri-
bution in R™ with the characteristic function 3 is self-decomposable
if, for every number ¢ satisfying the inequality 0 < ¢ < 1, there exists
a characteristic function y, such that, for every ze¢R"™, y(2) = p(c2)y.(2)
(see [7], p. 322). For real-valued random variables P. Lévy established
some mnecessary and sufficient conditions for self-decomposability in
terms of the Khintchine measure x in the representation formula (2)
([6], p- 196; [7], p. 324). The aim of this note is to prove an analogue
of the Lévy-Khintchine formula for self-decomposable distributions
on R™. Namely, we shall prove the following theorem.

THEOREM. A function ¢ on R™ is the characteristic function of a self-
-decomposable distribution on R™ if and only if

@) ple) = exp {ita, )~ 3 (42,9)+

&u
e —1 . (zyu) 1
+ f(f ——t—dt—z l arctanlu[)mv(du)}7

where a is a vector from R™, A is a symmelric mon-negative operator in
R™ (the same as in the Lévy-Khintchine representation) and v is a finite
Borel measure on R™ which assignes zero mass to the origin. Moreover,
the function ¢ determines a, A and v uniquely.

For the one-dimensional case this representation formula has been
proved in [8]. The method of proof, stimulated by results of Kendall [4]
and Johansen [3], consists in finding the extreme points of a certain
convex set formed by Khintchine measures x corresponding to self-
-decomposable distributions. Once the extreme points are found one can
apply a theorem by Choquet on representation of the points of a compact
convex set as barycenters of the extreme points.

Before proving the theorem we shall prove some lemmas. Let S,
be the m-dimensional unit sphere and [0, co] the compactified positive
half-line. Put @™ = [0, co] X 8y_,. Further, for every z<R™\ {0} we put
h(z) = (|z|, z/|z|). It is clear that h is a one-to-one continuous mapping
from R™\ {0} onto (0, c0)X8m_,. In what follows we shall identify
R™\ {0} and (0, co) X S;u_;. Consequently, @™ can be regarded as a com-
pactification of R™\ {0}. Let ¢ be a positive number. Given re[0, co]
and’weSn,_,, we put q(r, w) = (gr, w). It is easy to verify that for every
e R™\ {0} the formula h(gx) = qh(z) holds.
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Given a finite Borel measure u on Q™

define a set-function u, by the formula

and a positive number ¢ we

1+ |zf?
1+eap
~1g

pe(B) = p(B)—c?

[

(d),

where F is an arbitrary Borel subset of Q™, ¢ 'E = {¢"'a: z<E} and
the integrand is defined as its limiting value ¢~* when x<Q™\ R™. Let
M,, be the set of all finite Borel measures x on Q™ such that, for every
number ¢ satisfying the inequality 0 < ¢ < 1, the set-functions u. are
measures, i.e. are non-negative. Further, by M,, we shall denote the
subset of M,, consisting of measures concentrated on R™\ {0}. Let K,
be the subset of M,, consisting of probability measures and let K, = K,, ~
~ M}, It is obvious that all sets M,,, My,, K,, and K3, are convex. The
space of all probability measures on @™ with the weak convergence (i.e.
weak topology) is a metrizable compact space. We consider the induced
topology on K,,.
LemMA 1. The set K,, is compact.

Proof. Of course, it suffices to prove that the set K,, is closed in
the space of all probability measures on Q™. Suppose that u™eK,
(n=1,2,...) and the sequence u",u®,... is weakly convergent to
a probability measure x. Then, for each positive number ¢, y, is the weak
limit of the sequence u{), ul?, .... Hence it follows that for ¢ satisfying
the condition 0 < e¢ <1, p, is a measure. Consequently, ueK,. Thus
the set K, is closed which completes the proof.

We know that self-decomposable distributions are infinitely divisible.
A description of those infinitely divisible distributions which are self-
-decomposable is given by the following lemma.

LEMMA 2. An infinitely divisible distribution on R™ is self-decompo-
sable if and only if its Khintchine measure from the Lévy-Khintchine repre-
sentation formula belongs to MS3,.

Proof. Let ¢ be the characteristic function of a self-decomposable
distribution on R™. By a, A and u we shall denote the corresponding
parameters from the Lévy-Khintchine representation of ¢. Let 0 < ¢ < 1
and let ¢, be the characteristic function satisfying the equation

(5) p(2) = p(c2)pe(2)  (2eR™).

It is known that ¢, is the characteristic function of an infinitely divisible
distribution (see [7], p. 323). Denoting by a°, A° and u° the parameters
from the Lévy-Khintchine representation of ¢., we have, by virtue of
(2), (5) and the uniqueness of the Lévv-Khintchine representation, the
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formulas
(6)
o = 1—c)at(t—c) f

RM

& [ c
m‘lg pldw), A°=1A—c4, p = p.
Hence, in particular, it follows that p, is a measure concentrated on
R™\ {0}. Since the measure x is concentrated on E™\ {0}, we infer that
[JGM,C;,.

Suppose now that weM;,. Let a be an arbitrary vector from R™
and A an arbitrary symmetric non-negative operator on R™. Then the
triplet a, A and x determines, by means of the Lévy-Khintchine for-
mula (2), the characteristic function ¢ of an infinitely divisible distri-
bution on R™. Furthermore, for every ¢ satistying the condition 0 < ¢ < 1,
the set function y, is a measure on R™ vanishing at the origin. Thus the
parameters a’, A° and u° defined by (6) determine, according to (2), the
characteristic function ¢, of an infinitely divisible distribution. It is easy
to verify that ¢ and ¢, satisfy condition (5). Consequently, ¢ is the cha-
racteristic function of a self-decomposable distribution which completes
the proof.

Let W be a Borel subset of 8,,_, and F, = {0} X W, F, = {oo} X W
and F, = (0, co) X W. Taking into account the definition of the mul-
tiplication of elements of @™ by positive numbers, we infer that the sets
F,, F, and F, are invariant under this multiplication. Hence and from
the definition of the set-function g, (¢ > 0) it follows that (x| Fy), = u. | F;
() =1,2,3), where x| F denotes the restriction of the measure y to the
set F. Consequently, if ueM,,, then u|F;eM,, () =1,2,3). Hence we
get the following lemma.

LeEMMA 3. The extreme points of the set K., are measures concentrated
on one of the following sets: {0} X {w}, {oo} X {w}, (0, co) X {w}, where
weSm_;-

By 2, for ueQ™\ (R™\ {0}) we shall denote the probability measures
concentrated at the point w. Further, for ueR™\ {0} we put

2 ||
«(B) = w(de),
B = oy ) T

nl,

where I, = {cu:0 < ¢ <1} and ¢, is the Lebesgue measure on the in-
terval I,. It is evident that A, are probability measures. Moreover, by
simple computation we obtain the formula (1,), = 0 for 0 < ¢ < 1. Thus
MK for all ueQ™. Moreover, A, Ky, for ueR™\ {0}. By e¢(K,,) we shall
denote the set of extreme points of K,,.

LEMMA 4. ¢(K,,) = {A,: ueQ™}.
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Proof. It is obvious that the measures A, for ueQ™\ (R™\ {0}) are
extreme points of K,,. Moreover, by Lemma 3, they are the only extreme
measures which are not concentrated on R™\ {0}. Consequently, the
remaining extreme points of K,, are extreme points of K7, and, by Lemma 3,
they are measures concentrated on half-lines. We note that a measure u
concentrated on a real line L is an extreme point of Kj, if and only if
its restriction to L is an extreme point of K} on L. In [8] all extreme
points of K3, i.e. extreme points of the set of probability measures which
are the Khintchine measures of one-dimensional self-decomposable di-
stributions were found. From this result it follows that the measures 4,
with ueR™\ {0} are the only extreme points of K;,. The Lemma is thus
proved.

Proof of the Theorem. By Lemma 4 ¢(K,,) = {4,: weQ™}. Further,
the mapping A, - % is a homeomorphism between ¢(K,) and Q™. Now
we can apply the theorem of Choquet [2], which in this case is a corollary
of the Krein-Milman theorem [5]. We then get that for every measure
ueK,, there exists a probability measure w on @™ such that for all con-
tinuous functions f on Q™ we have

(7) Sf@pdn) = [( [f@)i(do) o(du).
Qm

QM QM

Moreover, the measure o will assign zero mass to the set @™\ (R™\ {0})
if and only if x does so. Further, the formula (7) holds for all bounded
continuous functions on R™\ {0} whenever uec¢K,. Hence we get the
following statement: ueMp, if and only if there exists a finite Borel mea-
sure v on R™\ {0} such that

® [ t@uan =5 [ [ j@ @)

R™MN\(0) RTN\(0} B"™\(0}
for all continuous bounded functions f on R™\ {0}. Setting

(2, ) ) 14 |x|?

5 2 (2eR™)
1+ | ||

(9) fol(@) = (e“z"”’—l—
into (8), we obtain the formula

(10) ffz(w)u(dw)
Rm\{o}
(2,v) it
—1
— f(f i dt—z'(z’u) arcta,n]ul)
; t |l
R7N\{0}

which implies, in view of Lemma 2, the representation (4).

————v(du)
log (14 |%|?)
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We note that the formula (8) establishes a one-to-one correspondence
between the measures x and ». In fact, it is obvious that the measure »
determines the measure g uniquely. Further, let 0 <7 << oo, weSnu_,;
and let h(r,w) be an arbitrary continuously differentiable with respect
to r function with a compact carrier. Put g(z) = h(|z|, #/|z|) for z< B™\ {0}.
Then the funection
0g (x)

] log(1+ lwlz)——a ]

1 2
(@) = 2g(a) + ~ 122

is continuous and bounded on R™\ {0}. Moreover, it is easy to verify that

f fH (@) A, (dz) = 2g(u) (uweR™\ {0}).
RTN{0)

Hence and from (8) we get the formula
[ f@pds) = [ glu)y(du)

R™\{0} R™\{0}

which shows that the measure » is uniquely determined by the measure u.

Now we shall prove that the characteristic function ¢ determines
parameters a, A and v in (4) uniquely. Suppose that the function ¢ has
two representations (4) with the triplets (a,, 4,,7,) and (a,, 4,5, ;)
respectively. Then, denoting by u, and u, the measures corresponding
in (8) to »; and v, respectively, we have, by (4) and (10), the formula

. 1
2(e) = explila, 91— g (At 1+ [ flo)m(a)
R™\{0}

f fz(w)l‘z(da?)}

. 1
- exp{z(az, 9—5 (4 2)+
R™\ {0}

Hence, by (9) and the uniqueness of the Lévy-Khintchine representation,
we obtain the equalities a, = a,, A, = 4, and g, = u,. Since the measure
v; is uniquely determined by the measure y; in formula (8), we have the
equality », = », which completes the proof.
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