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0. This paper is devoted to a certain modification of the alternating
direction implicit (ADI) method [3] leading to an application to any
region of the boundary value problem. We are interested in solving a sy-
stem of linear algebraic equations of high dimension on a symmetric
and positive definite matrix A which may be decomposed into a sum of
symmetric, positive definite, but not necessarily commutative, mat-
rices.

From the mathematical point of view this problem is resolved as
a uniform approximation of the zero in an interval by particular rational
functions with an additional normalizing condition. The obtained results
show a close connection of the optimal modification of the alternating
direction implicit (MADI) method with von Neumann’s method [4].

1. Introduction. Let us assume that our problem lies in finding a so-
lIution of linear algebraic equations of high dimension written in the form

-

(1) Ax = b,

where A is a symmetric positive definite matrix of dimension » xn,
and b denotes a given vector. By x* = A~ 'b we denote the solution
of (1).

Let a constructed sequence {x,} satisfy asymptotically (for & — oo)
the condition

o, — || = ox”|lawy — |

for some constant ¢, where x, denotes an initial approximation of a*
and the positive number x is smaller than 1. » is the quotient of the
geometrical sequence which is a majorant of the error of the method.
The value

(2) k= ——t,
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where ¢ denotes the cost of performing one step in the iteration, is called
index of labouriousness of the method. Let k, and k, be indices of labourio-
usness of two methods, respectively. By

(3) B = ky/k,

we may compare the efficiency of these methods. We may say that the
method with index k, is R times more effective than the method with
index F,.

In the previously defined class of methods, we shall look for the
most effective method, i.e., thg method with the smallest index of labour-
iousness.

2. The von Neumann method. System (1) may be solved by von
Neumann’s method. It requires a transformation of system (1) to the
form

(4) x* = Bx+g,

where B is a symmetric matrix of dimension n xn with spectral norm
smaller than 1, whereas g is a given vector.
By a standard transformation of (1) into (4) we shall understand
the following procedure:
Multiplying (1) by a constant y and adding to both sides the solution ,
we obtain
x =I—yAd)xe+yb.

We take such a constant y which will minimize the spectral norm
of the matrix B = I —yA,i.e., Y.t = 2/(Anin + Amax), Where A, and A,
denote the smallest and greatest eigenvalues of A, respectively. If we
do not know these eigenvalues exactly enough, we can set y = 2/(a+b),
where a > 0 and [a, b] denotes the narrowest known interval containing
Amin and A,,.. The convergence quotient of von Neumann’s method with
a standard transformation equals

_ Vbla—1
Vbla+1
3. The alternating direction implicit method (ADI). Let us assume

that A = A,+ A,, where the matrices 4, and A, are symmetric. The
constructed sequence {x,} of the ADI-method is defined as

I+ akAl)wkH/z =I— akAz) Ty + akb’
(I+Brds) @y = (I—PrAy) Tyt B

for certain sequences of numbers {o;} and {f,}. Each step of the ADI-
-method requires solving the system with matrices I + a; A, and I+ 8,4,.

XN

(5)
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We must assume that the form of the matrices 4, A, is relatively simple
(usually they are tridiagonal). Using (5), we obtain the expression of
the error of the k-th approximation of the solution a* as

wk+1_w* = Py(4,, 4,)(x,—x*),

where
1
Pule,y) = [ 1A +B83) (1 —Biw) (L + a;2) ™ (1 — o;9)]
ik
1
with the notation [[ a; = a@;-a;_,"...a,. The vector a, denotes now the

i=k
initial approximation.

If we put o; =f; =a for ¢ =1,2,...,k, where a > 0, the ADI-
-method is convergent (see [3], p. 306). In addition, if we assume that
4, and 4, are commutative, then we may, for a certain ¥, give the optimal
sequences {a;} and {8}, ¢ =1,2,...,k, and an approximation of the
convergence quotient of the ADI-method (see [6]). Namely, if we assume
that the eigenvalues of A, and A, belong to the intervals [a,, b,] and
[ay, by], Tespectively, where a,+a, > 0, and write

_ 2(b— ) (b —ay) _ 1

’

(@1 +a5) (by+b,) C1+m+Vm(m+2)’

we obtain _
%y o exp(n2/ln(k’/4)).

The essential assumption of this result is the commutation of the
matrices 4, and A,. When we consider the numerical solution of the
Poisson equation and take for 4,, 4, the matrices from a discrete appro-
ximation of the second derivatives 0%/0x2, 3%/0y?, respectively, we can
check that the condition of commutation is satisfied if and only if the
region of the boundary value problem is a rectangle (see [1]).

Regions which are not rectangles lead to non-commutative matrices
and the only possibility to use the ADI-method with ensured convergence
i8 for @; = B; = const. > 0.

4. Modification of the alternating direction implicit method (MADI).
Now we assume that A = A,+ A, which can be replaced by the identity
A = A+ A,, where A, = A,+al, and 4, = A,—al. Let us consider
the sequence {z,} defined by

(I+ By A10) 2 pyy = (I — @B, 4,0)2, + o B, b,

(I+ﬂkB2A;G)zk+l = (I—ﬁkB2A;.C)zk+1/2 +ﬂszb.

The matrices B,, B,, C and the coefficients a;, f, ought to be defined
in such a way that this process be convergent. We assume that € is a non-
-singular matrix and we set u = 0" 'a.

(6)
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Let E;, = z,—u be the error of the approximation z,. Using the
identities

I“"‘a"BlA;G =TI— a,-BlA;O-l— a,iB]_.A.O,
I+4$;B,4,0 = I1—$;B,A,0+$;B,AC,
we obtain from (6) the expressions

(1) By

1
= [] [Z+8:B.4;0)"" (I — B; B, A;C)(I+ a; B, 4;0) (I — 0; B, 4;C)]E,.
i=k

Obviously, we must assume that suitable inverted matrices exist.
We notice that in the case B, = B, = C = I formula (6) expresses as
formula (5) which defines the ADI-method. We shall define the matrices
B,, B, and C so that the matrices in (7), i.e., the matrices

(8) B,4,0, B,4,0, B, 4,0, B 4,0

were symmetric and commutative. If we assume 4,4, = 4,4,, we
may put B, =B, =C =1, a =0. The choice of the matrices B,, B,
and C can be connected with any given problem, i.e., with given matrices
A, and A4,.

In the general case we define the interesting matrices with the ad-
ditional condition

(9) B,A.0 = B,A,C =1.

Let us write P = B, 4,C, hence the matrices in (8) are now equal
to I,P',I,P, respectively, thus they are commutative. Moreover,
we shall define the matrices B,, B,, C so that the matrix P will be sym-
metric and, for a suitable parameter a, positive or negative definite.

Let us assume that the eigenvalues of the symmetric matrices 4,, 4,
belong to the intervals [a,, b], [a., D], respectively. Let a belong to
the interval (—a,, + o). Matrix A4, is positive definite now; this implies
the existence of a real lower triangular matrix L such that 4, = LL".

Matrix L depends, of course, on parameter a. Putting B, = L™!,
C = (L*)™ and B, = LT A;7', we obtain P = L' A4,(L~Y)T.

The matrix P is symmetric and its eigenvalues are equal to the eigen-
values of the matrix 4;7'4,. We must define the parameter a so that
matrix P will be non-singular or, equivalently, that matrix A, will be
non-singular. Notice that, for a certain type of matrix A4; (for instance,
for a tridiagonal matrix), the decomposition into the product LL” is as
labourious as multiplication by matrix A4;; thus the cost of multiplication
of a given vector by matrix P is approximately equal to the cost of multi-
plication of a vector by the matrices 4; and A;.
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Taking into account the previous notation, we may present (7) in
the form
(10) Elc+1 =fk(P)E17

where

T1-Bw™ 1—as _ wy)

1+ﬂ, 1—I—a1- o w" ’

Jul®) =

i=k

and w,(x) is a polynomial of degree 2k with normalization condition
wy(—1) = ('fl)k-

Now, if we assume that one of the parameters o;, f; is zero, one
of the steps of (6) will be trivial. So we can perform one of the steps of
(6) at the same cost twice and as a result we obtain the expression for
the k-th error,

(11) Eiir = grr(P) Ey,
where
Wy \ T
(12) o) =220 o <r s,

and w,;, () denotes, as previously, a polynomial of degree 2k with normaliz-
ation condition w,,(—1) = (—1)". The parameter r denotes the number
of non-zero coefficients g;. If r =k, formula (11) changes into (10),
which means that every step of the iteration consists of two different,
not trivial, half-steps done in accordance with (6).

From equality (11) and from the definition of matrix ¢, we obtain

-bl—l—a
a,+a

(3) (L") #ppr— ¥l < ]/ 19k, (Pl I(LF) ™" 2, — 2.
Let us assume that the eigenvalues of matrix P belong to set I.
From the symmetry of matrix P we obtain

1gr (P2 < [191rllz = SUD |11 (2)] -

The coefficients a;, f; and also the parameter r are defined so as to
obtain the best convergence of process (6), i.e., 80 as to minimize [|g;, ,.(P)||;.
Thus, we consider an approximation problem of finding a rational function
of form (12) which minimizes ||gy,||;. Let

(14) 0y = Inf infllge, ;. ’
0<r<2k a;f;
Depending upon parameter «, we obtain different estimations of
eigenvalues of the matrix P and, consequently, different sets I. We ghall
congider three versions, assuming, without loss of generality, that a, > 0.
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1° Case — a4, < a < a,. For o in this interval, the matrix P is positive
definite and its eigenvalues A(P) satisfy the inequality )

a2—a bg—a

< AP) <
b,+a (P) a,+a

=d.

'Assuming that we have no additional information about the eigen-
values of matrix P, we put I = [e, d].
Using the results from [5], p. 52-56, we obtain

d — Va1l — 2k
(15) infllgk,rllzgz[('/ (e+1) ‘/c(d+1)) (l/ +1 l/c+1) N

aj, B4 Va+1—Ve+1 Va+1+Ve+1
(l/d(c +1)+Ve(d+1) )2( Vad+14+Ve+1 )”‘]"1
+ )
Va+1+Ve+1 Vd+1—Ve+1

Minimizing the right-hand side of (15) with respect to r, we check
that for ¢d < 1 the optimal value of r is equal to zero and, for ¢d > 1,
the optimal r equals 2k. Minimizing now the results obtained with respect
to a, we obtain the solution of problem (14) for r =0, a = a,, as

~9 ( '/(bz +a,)/(a;+a,) —1 )2k
= '/(bz +ay)/(a;+ ay) +1

The parameter a may be equal to a,, because if »r = 0 we use in
the iterative process (6) only the matrix P which may now be singular.

If ed >1, we do not obtain a better result, because the optimal
a equals —a,, from which singularity of the matrix 4, follows. Keeping
in mind that we have 2k steps to perform, the convergence quotient
of the optimal MADI-method in the first version is equals to

_ Vbata)/(a;+a,) 1
o ‘/(b2+“1)/(061+“2) +1

137

2° Case a > b,. The ma,trii P is now negative definite and its eigen-
values satisfy the inequalities
A, —a b g— a

< AMP) <
a,+a ) b,+a

Let us take I = [¢, d]. Notice that, for each » =0,1,...,2k, the
inequality

Wy, (00)

mr

sup < Sup [y ()]
xel xel
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is true, from which it follows that the optimal » in formula (14) equals
zero. Now we use, as before, only matrix P, and the optimal a equals b,;
hence 0y, = 05y aANd 257, = %p7,-

3° Case a, < a < b,. Now the eigenvalues of matrix P satisty the ine-
quality

max(a—ay, by —a)

A (AL
_ A ey < —e

b1+a a1+a

0< e

where 1,(A4;) denotes the abgolute smallest eigenvalue of matrix A,.
To obtain. a convergent process we must assume that ¢ < 1 which is

equivalent to
by —a,

max (az, )<a< b,.

By the same argumentation as in 2°, we come to the conclusion
that the optimal r equals zero. Using results from [2], we obtain the so-
lution of problem (14) as

62k,3 =~ 2 (

V(1 —e?)/(1— %) —1 )"
Vi—e)/(1—od)+1/

If we do not know the eigenvalues of matrix 4,, we may put ¢ = 0,
and taking a = (a,+b,)/2, we have

VE—l)k

Oap,3 =2 2
o (VE+1

where f = (by+ @y +2a,)?/[4(ay+ a5) (a1 +b,)].

It is easy to check that in this case 0y, = 0y = 055 if we take
in the respective formulas an equality instead of an approximate equa-
lity. '

If we know the eigenvalues of matrix 4,, we may hope that the
third version would lead to the best convergence; particularly, if the
eigenvalues of matrix A, do not lie near the point (a, 4 b,)/2 (see chapter 7).

For an even number of steps, the convergence quotient is equal to

VB—1
VB+1

M3 —

At last, notice that we have in inequaﬂﬁty (13) the multiplier
V(b,+ a)/(a,+ @) which is equal to

-l/.bl'l'a'z l/b1+b2 ]/2b1.+b2+a2
al-l-a,z’ al—l—bz’ 2a,+b,+ a,

4 — Zastosowania Matematyki 12.4
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for the three versions, respectively. This multiplier is smallest in the
second version.

COROLLARY 1. If we do not know the eigemnvalues of matriz A,, the
optimal version of the MADI-method is characlerized by the convergemce
quotient

(16) %y

and we obltain

bi+b, 3
”(LT)_IzkH—w*“z < 2]/ 2 "Izri[”(LT) lzl_w*llz-
@+ b,

_ '/(bz + “1)/(“1 +a;) —1
V(bo+ay) (@, +ag)+1

If we know the eigenvalues of matrix 4,, we ought to compare x,,
with the convergence quotient x5 (for ¢ =0 and e = (a;+b,)/2 we
have xjp = #p3), and if xy 3 < %y, We may apply the third version of
the MADI-method.

Note that the convergence quotient given by (16) does not depend
upon b,, i.e., upon the highest eigenvalue of matrix A4,. In certain systems
of algebraic equations (which is equivalent to certain regions in the boun-
dary value problems (see chapter 7)) this is convenient. For a = b, we
obtain the matrices 4,4+ b,I and A,—b,I, where the second one, and
thus also matrix P, is singular. From that follows the independence of
the convergence quotient of b, (case f; = 0).

To conclude our considerations in this chapter, we want to show
that the optimal MADI-method is equivalent to von Neumann’s method
with non-standard transformation to (4).

We transform a given system Ax = b changing matrix 4 as

A =A+4, =(4;,+a)+(4,—al) = LL" 4 4,
= LI+ LAy (Z") )" = LI +P)L”.

Writing, as previously, u = LT«*, we obtain (I+P)u = L'b.

Applying now the standard transformation, we infer that the con-
vergence quotient equals x,,.

Summarizing, the modification of the alternating direction implicit
method is equivalent to von Neumann’s method with non-standard
transformation to (4) under assumption (9).

5. A comparison with von Neumann’s method. From chapter 2 it
follows that we obtain the convergence quotient of von Neumann’s method
with standard trnasformation as equal to

. _Vbja—1
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where [a, b] denotes the interval containing the eigenvalues of matrix A.
If we know the intervals [a,, b;], [@;, b.] containing the eigenvalues
of the matrices 4,, 4,, respectively, wemay set a = a,+a,and b = b, +b,.
. Let us compare the von Neumann method with the second and
third versions of the MADI-method: To do this, let us consider the quo-
tient of the cost of one step in both methods T = ty/t,, (see (2)). If
the matrix B = I —2/(a+b)A in system (4) is primitive (see [4]), this
quotient T approximately equals 1, and if B is a cyclic matrix, then,
remembering (see [4]) that successive steps in von Neumann’s method
one may have at the half cost, we obtain T ~ 1/2.

Thus, for the second version of the MADI-method, we obtain from (2)

ky. _'lan,zT N Vb;—%—bz +Va,+a,

= o T.
kar, s In l/bz +a, —I—l/a,, + a,

Usually we have an ill-condition system, i.e., b, > a,, b, > a,,
hence

by Yi¥b,/max(b,, a)) T.

M,2

. If we can decompose matrix 4, or matrix 4, into the product LL”,
we may assume that b, > b,, obtaining ky/ky, ,> VaT.

Summarizing, we formulate

COROLLARY 2. If B is a primitive matriz, the second version of the
M ADI-method is V1 + b, /max (b,, a,) times more effective than von Neumann’s
method with standard transformation. If B is a ecyclic matriz, the use of
the second versiom is only profitable for b; > 3 max(b,, a,).

Let us consider the third version of the MADI-method now. By the
same argumentation as before, we can obtain

Vb1+b2V
kMa a,+a, -82

If we put o = (b2+a2) /2, we obtain

(17)

— 2|4 .
. by,—a, and & = — |20(4,)| :
by,+a,+ 2a, by+a,2+b,

where, as always, 1,(4;) denotes the absolute smallest eigenvalue of
the matrix A, = A,—(b,+a,)/2I. If ¢> 0, this version leads us to
the smallest convergence quotient and formula (17) may be presented as

r~

. L b 1
kas ~ max (by, a;) V1 __sz
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Finally, we obtain
COROLLARY 3. The third version of the M ADI-method for a = (a,+b,)/2
18 1 /l/l—s2 times mare effective than the second ome, whereas it is

b 1
1+ ! T
max (by, a;) V1— e

times more effective than von Neumann’s method with standard transfor-
mation. '

6. The algorithm of the MADI-method. In the second version of
the MADI-method, the matrix P has eigenvalues in the interval [d, 0],
where d = (a,—b,)/(a,+b,) (case §; = 0).

Formula (6) may now be written in the form

Bry1 = II]-;;(II—%P)ZN‘ 1—T—kak B,b,
and the (k —l—l’)-th error of approximation is' equal to
(18) B = u(P)Eyy
where now

awto) = T~ Fo+1) 12,225,

and T,(u) denotes the k-th Chebyshev polynomial of the first kind.

Using the recurrence formula for Chebyshev polynomials and also
(18), we obtain the recurrence formula -for successive members of the
sequence 2z;, namely

Rrt1 =tk(sz+g+tk—lzk—1)’ k =1’27°--7

where B.= —4/d(P—d/2I), and g = 4/dB,b.
The coefficients ¢, may be computed from

..
o =0, 1= 1/[2(%'1)— t,,_l].

In the third version of the MADI-method the eigenvalues of matrix P
belong to I =[—p, —e]Ule, o]. We set the parameters o, u,» to be
equal to

92 + 82 (92 —_— 82)2
@ = 51 b= vy =1—o0.
Using results from [2], we obtain the recurrence formulas
zl == _.Pw0+Blb’

Zrir = @~ P2+Bb—2 )2+ ,, k=1,2,...,
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where ¢, is equals to
¢ =2,
_ Wy (¢ox—1 —1)
Qo1 (owy +1) —wy,
Qo1 = Wi[qor-

" The parameters w, are equal to wy, = 2/v, w;, = 1/(v — pw,_,).

Qax

7. Numerical examples. In order to illustrate our previous consider-
ations let us investigate the equation

2 2

0“u 0°u
(19) ﬂja?(“f'y?/)'*‘a—yz'(w,?/) = f(z,y)
for (z,y) belonging to the set D presented.in Fig. 1.

A

y

' 16 [23 |29 [33 |35,
D
DY ___
15

22 28 |32

T [8 [4 |21 27

=8
[

\j

Th 13 7 13 |20 T

RN EREE

10 7 (24 |30 154

Fig. 1

For the boundary of D we assume the boundary condition
u(z,y) = ¢(x,9), (#,y)edD (Dirichlet problem).

The operator
0* 0*
=% Top

is approximated by a five-point difference approximation for any p0i~nt
belonging to the square grid on D, i.e.,
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i
Au,

IR

—ui g+ 2ui—w_ | —uit - 2uf — Tt
— | K? + h? ’

where %} = u(w;, 4;), #; = @+ jh, y; = yo+ih.

Let p denote the maximal number of internal points on the vertical
linés, r — the number of internal points on each horizontal line, and
s — the number. of vertical lines with p internal points. In Fig. 1 we
have p =7, r =5, s = 2. The total number of unknowns, i.e., of values
of the solution in internal points, is equals to p(2s+4p—1)/2. We take
ag matrices A4,, 4, matrices from discrete approximation of the second
derivatives with respect to v, x, respectively (with numeration presented
in Fig. 1).

Let S; be the dimension matrix ¢ in the form

i

2 -1
-1 2 -1
-1 2
Sz':ﬂ
2 -1
—1 2

Matrix A consists of the matrices S; being on the diagonal in the
order

Sn ‘837 Ss: LR Sp—27 Szn sy Sp’ S(p—l)/27
—— —

8 times

S(p—l)/Z’ S(p—s)/27 S(p—3)/2’ ceey By 83, 84, 8.

The form of matrix 4, is more complicated, but also in this case
the natural fragmentation corresponding to horizontal lines may be
observed.

The eigenvalues of 4,, 4, relevant for the convergence of the MADI-
-method are equal to

_ agsin? (L b=4‘-21L)
a, ﬁsm(2p+1), 1 ﬂsm(2 P11}’
™ 1
= 4sin®|— = 45in’ (— .
@y sm(2 7‘-‘!-1)’ b, sm(2 r—}—l)

The MADI-method requires the introduction of the matrix 4, = 4,+
+a,I in the form LL”. Matrix L has a form analogous to that of matrix
A,, namely, matrix L consists of matrices L; being on the diagonal in the
same order as matrices 8;, where
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-~ [~ l].
B I,

A

with I, =Ve, §, =Ve—f[E_,, § =2,3,...,0, where ¢ =28+a,. In
practice one needs only to store the numbers ;.

Let us compare the MADI-method with von Neumann’s method
for our problem. Because by a different numeration of the grid-points
we obtain a cyclic matrix, we have the cost quotient T ~-1/2. Using
the considerations from chapter 5, we obtain, for the second version of
the MADI-method,

k b
T gi]/1+ -
kM’z 2 b2+a1

1 — 1
il for Bsin?
5 Vi+p8 Bsin o

<1,

IR

1 ©t 1 ) ) 1
—1V/ 1+ etg?’{— ——) for Bsin:i—— .
2]/+cg(2 p+1 Poing 1 >

If Bsin®1/(p+1) <1, the use of this version of the MADI-method

is reasonable for 8 > 3.
If we want to apply the third version of the MADI-method, we

notice that the different eigenvalues of matrix 4, are equal to

@ .
li(A2)=4Sin2(‘£ )7 1=1,2,..,r.

2 r+1

For r even, A;(4,) # (a,+bs)/2 = 2, and putting

4 si T sini—H_% sinTC 1
_sm4 r+1 2 r+1 4 r41
£ = o
by +2 F+3
for Bsin*1/(p+1) €1 we obtain
kN 1 l/_"—_— 1
oS VITh = .
ka,s — 2 V1 ¢
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We want to indicate that usually 1/V1—e2? ~ 1, so we do not obtain
an essential advantage with respect to the second version of the MADI-
-method.

Equation (19), for § =1, has also been considered on a triangle
and a regular hexagon with a hexagonal grid. The matrix in this system
is primitive, so T' ~ 1, and comparing the second version of the MADI-
-method with von Neumann’s method, we obtain

by ]/?
kyo ¥V 27

All the numerical computations were done on the Gier computer
in the Numerical Centre of Warsaw University.
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H. WOZNIAKO WSKI (Warszawa)

MODYFIKACJA METODY NAPRZEMIENNYCH KIERUNKOW
I JE]J ZWIAZEK Z METODA VON NEUMANNA

STRESZCZENIE

Praca zawiera pewnsg modyfikacje metody ADI, rozwiazujaca uklad réwnan
algebraicznych wysokiego stopnia (4,+ A,)x = 0, o symetrycznej dodatnio okres-
lonej macierzy 4, + A4,. Nie zaklada si¢, ze macierze 4, i 4, 83 przemienne, mozna
zatem uzywaé tej metody, zwanej w skrécie MADI, do dowolnych obszaréw, nie-
koniecznie bedacych prostokatami.

Metoda MADI wymaga rozlozenia macierzy 4, na LLT, gdzie L jest macierza
_dolng tréjkatna o elementach rzeczywistych. W pracy pokazano, ze metoda MADI
jest al/1+(b1—a1)/(b2‘+ a,) razy efektywniejsza od metody von Neumanna (a,, b,
i ay, b, 0znaczaja tu odpowiednio najmniejsze i najwieksze wartoSci wlasne macierzy
4,1 A,). Stala ¢ jest r6wna 1, jesli macierz

2
a;+as+b,+b,

B=1I- (4,+A4,)

jest prymitywna, natomiast réwna sie 1/2, jeéli B jest macierza cykliczng.



