ZASTOSOWANIA MATEMATYKI
APPLICATIONES MATHEMATICAE
XII, 1 (1971)

/ ALGORITHM 10
S. PASZKOWSKI (Wroclaw)

DETERMINATION OF THE BEST POLYNOMIAL IN THE SENSE OF
UNIFORM APPROXIMATION BY THE SECOND ALGORITHM OF REMEZ

1. Procedure declaration

Procedure Remez2(n, p, z, f, maxr, a, enf);
value n, p, maxr;
integer n, p;
real enf, maar;
array «, f, a;
comment The procedure Remez2 calculates |
(i) the coefficients of the n-th best polynomial (in the sense of
uniform approximation) for a given function f(x) on the finite set

X = {woywn“-,wp}’

i.e. the coefficients of that polynomial P(w) of degree at most n for
which the error :
(1) max |f(x)— P (z)|
zeX
is minimum, :
(ii) the n-th error of the best apprommatmn of J(«) on the
Set X, i.e. the error (1) for the best polynomial P (z).
Data:
n — the degree of the sought best polynomial,
p — the index of the last point of the set X,
#[0: p] — the array of points of X arranged so. that either v, <z,
<eeo <&y OF TG>Ty > 0ee > Wy
f[0: p] — the array of function f (w) values on the set X,
maxrr — the maximum allowed number of type real in the computer.
Results: sy :
a[0:n] — the array of coefficients of the n-th- best polynomial P(x)
(a[k] — coefficient of #™* for. k' =0,1,...,n),
enf — the n-th error of the best apprommatmn, i.e. the value
of (1) for the n-th best polynomial P(s).

108 Algorithm 10

Remarks:

(i) It is necessary that p > n.

(i) A typical application of the procedure Remez2 consists in am
approximate determination of the #n-th best polynomial (in the sense
of uniform approximation) for a given function f(z) in the given closed
and finite interval (b, ¢), i.e. of such an polynomial P(x) of degree at.
most n for which the error ’

max | f(2) —P ()|

b<z<c
is minimum. To do this in a sufficiently accurate manner one should
choose a set X such which would cover in a sufficiently dense manner
the whole interval, and, additionally, in such a manner that near the
interval ends should be more densely covered (e.g. so that p >n? and
o, ~ }(b+¢)— }(c—b)cos(nk/p) for & = 0,1, ..., p);

begin

integer ¢,11,5,k,1,nl, n2;

real bk, cenf, d, e, exj, pre, r, sk, vk;

Boolean nl, z;

integer array ind[0: n+ 4];

array b, nx[0: n+-1],s[—1: n+4];

procedure refp;

begin
if exj > cenf
then cenf: = exj;
8[j1: = &[§]1+ exj;
ji=j+1;
8[j]: = exj;
ind[j]: = il;
if j=n+4
then compr
end 7efp;
procedure compr;
begin
exj: = maxr;
for k: =j—1 step —1 until 0 do
if s[k] < exj

then begin
exj: = 8[k];
tl: =Fk
end 3[%k] < exj, k;
if ¢1=20

then begin

Algorithm 10 109

for k: = 1 step 1 until j do
begin
s[k—1]): = s[k];
ind[k— 1]: = ind[k]
end %
end ¢1 =20
else if i1 <j—1vnl
then begin
8[i1—1): = s[¢1—1]1—s[i1]+4-8[¢1+ 1T;
for k: = 1142 step 1 until j do
begin
s[k—2]: = 8[k];
ind[k—2]: = ind[k]
end %;
ji=j—1
end i1>0A(@I<j—1Vnl);
Ji=4—1
end compr;
enf: = mawr;
pre: = —1.0;
nl: =n+1;

: = 3.14159/n1;
i — 0,
for k: = 1 step 1 until n do

begin

vk: = e6—dXcos(kXr);

U:i: =4+4+1;
if dx (z[i]—ak) < .0
then go to 11;

if i<k+1
then ind[k]: = ¢
else begin
for k: =k step 1 until » do nd[k]: = k+1;
go to [2

end : > k41

110 Algorithm 10

end %;
12:4: = ind[nl];
nx[nl]: = x[t];
b[n1]: = f(i];
8[nl1]: = e: = 1.0;
l: = nl;
for k: = n step —1 until 0 do
begin
i: = ind[k];
zk: = ne[k]: = x[¢];
bk: = f[i];

sk: = e: = —e;
for j: = nl step —1 until 1 do
begin

r: = nw[jl—ak;
bk: = (b[f1—bk)/r;
sk: = (s[j]—sk)/r

end j;
b[k]: = bk;
s[k]: = sk;
l: =k

end %;

e: = bk/sk;
b[0]: = b[1]—ex s[1];
for k: = 2 step 1 until nl do
begin
xk: = nx[k];
bk: = b[k]—ex s[k];
for j: =k—1 step —1 until 1 do
begin
ri = b[j—1J;
b[j]: = bk—r X xk;
bk: =r
end j
end %;
ji = —1;
e: = abs(e);
nl: = 2: = true;
cenf: = exj: = sk: = s[—1]: = .0;
for i: = 0 step 1 until p do
begin
xk: = x[1];
d: = b[0];

Algorithm 10 111

for k: = 1 step I until n do d: = d X ok b[k];
a: = fli]—d;
fd#0Az2
then begin
sk: = sign(d);
if i>0
then sk : = —sk;
z: = false
end d # 0 A 2;
bk: = abs(d);
if skxd<OA©>0
then begin
sk: = —sk;
refp
end skxd<OA©1>0
else if bk < exj
then go to ¢i;
exj: = bk;
tl: = 4,
ei: end q;
'nl: =fa]se;
refp;
if cenf < enf
then begin
enf: = cenf,
for %: = 0 step 1 until n do a[k]: = b[k]
end cenf < enf;
fj>npe> pre

then begin
pre: = e;
if j >n2

then compr;
if j =n2 A s[0]<s[j—1]

then for %: = I step I until j do ind[k—1]: = ind[k];
go to 12

end j > n A e> pre
end Remez2

2. Method used. The so-called second algorithm of Remez has been
used in the procedure Remez2 (see e.g. Meinardus [3]). It may be describ-
ed most shortly as follows. First, one chooses a subset X, of the set X
congisting of n-+2 points. Given the subset

X = {Tmos Tmry ooy Tmnyr} (M =>0)

112 Algorithm 10

consisting of n4 2 points, one calculates the coefficients of the n-th best
polynomial P, (x) for the function f(x) on X,, and the error |e¢,| of this
approximation. To do this one solves the system of linear equations

f(wmk)—Pm(wmk) = (—1)kem (k =0, 17 seey n"l"]-)'

Next, investigating the difference f(x)—.P, (x) on the set X, one
chooses the subset X,,,;. This should be done so that, theoretically, after
a finite number of steps one obtains the polynomial P, (x) which is already
best on the whole set X (the rounding errors may change the behaviour
of the sequence {P,,(x)}).

Now we shall describe how in the procedure Remez2 the subsets X,
a8 well as the next ones should be chosen, and when the calculations
ghould be stopped. The way of choosing subsets in the procedure Remez2
differs it mostly from all other known to the author procedures having
the same application, e.g. from Boothroyd’s procedure [2].

I. The choice of the subset X, Some of Bernstein’s results (see [1],
pp. 85 and 88) suggest that a good subset X, which would allow a fast
calculation of the best polynomial is the subset consisting of »-+ 2 points
distributed in the interval {z,, #,) approximately in a similar way as the
numpbers

coswk/(n+1) (k=0,1,...,n+1)

in the interval (—1,1). The fragment of procedure Remez2 from the
instruction !: = p—nl to the nearest instruction for k: = I ... calculates
such a subset X,. More precisely, one calculates here the array ind[0: n+ 1]
of indices of those points of X which belong to X,.

II. The choice of the subsets X,, X,, ... Assume that we have found
already the polynomial P, (x) for a given X,. The subset X,,,, is defined
in different ways for different variants of the second Remez algorithm.
Generally, the choice of X, , is the better, the greater is the n-th error
{€ms1] Of the best approximation on that subset. To guarantee the most
great error value we shall use the following theorem of Remez (see e.g.
Meinardus [3]):

If, for a given closed set F, there exist a polynomial Q(x) of degree at
most n and points &, < & <...< &, ¢ F such that the values of f(&)—
—Q(&) (k=0,1,...,n+41) are alternatively non-negative and non-posi-
tive then the n-th error the best approximation of the function f(x) on F is
at least equal to

(2) ‘l‘min(lf(fk)—Q(fk)|+|f(fk+1)_Q(§k+1)|)-

0<k<n

Algorithm 10 113

This theorem is stronger than the theorem of de la Vallée Poussin

in which we have
min |f(&)—@ (&)l
o<<k<n+1

in place of (2) and which is usually used in the second algorithm of Remez.

According to Remez theorem, we will include into X, ., such points
of X which would assure that the assumptions of Remez theorem would
be satisfied for Q(z) = P, (») and, in addition, as to have (2) as great
a8 possible. Now we shall describe the construction of X, , in more detail.

We calculate

(3) 8 =f(@)—Pn(@) (k=0,1,...,p).

o =6,=..= 8, = 0, then the numbers (3) will be temporarily
replaced by the numbers

1, —1,...,(—1)

(essentially, in the procedure Remez2 there are not transformations of
the sequence (3) but equivalent ones). If 6y = 8, =... =6,_;, =0,4, #0
(r > 0), then 8,, 5,, ..., 6,_, are replaced by

(—1)"sgné,, (—1)'sgné,, ..., —sgné,.
I 8, #£0, 8, =... = 8,_, =0 and if either 4, 0 or r—1 = p,
then O¢41y ++-y 6,_, arTe replaced by '
—8gndy, ..., (—1)"1"sgnd,.

The modified sequence &g, 8;,..., 6, 18 now divided into longest
Possible parts congisting of equally signed numbers. After that we return
Yo the initial sequence (3). In each part of this sequence we find the num-
ber with maximum absolute value. Let those be denoted by

(4) €0y €19 <
and the appropriate indices of the sequence (3) by
() Tgy b1y +-+

Example 1. Let p = 10 and let the sequence (3) be consisting of
the numbers

After the replacement of the zeros by -1 this sequence becomes

1, —11,32, —1,16,14, —21,1, —1, —29, 1,

Zastosowania Matamatwlri ¥IT 1 -

114 Algorithm 10

thus the initial sequence is divided into the following parts (separated
by semicolons):

0; —11;32;0;16,14; —21;0; 0, —29; 0.
Therefore we have
(6) g =0,6 =11,65 =32,¢3 =0,¢, =16,¢; =21, ¢, =0,
&g =29, =0,
(7) tg =0,%, =1,4,, =2,4, =3,1%, = 4,1, =6,1% =7,
i, = 9,1 = 10.

According to Remez theorem from (4) one should choose 742 num-
bers

(8) 09 Eiys o009 &1y

so that (i) the expression

(9) 012,:2'5 &t i)
be maximum, (i) the indices %,, ky, ..., k,,, be alternatively even and
odd. The set X,,,, would consist of the points
(10) By s By 9 +oe wifn+1'

Condition (ii) says that in the points (10) the difference f(x)—P,,(x)
is alternatively non-negative and non-positive. An exact fulfillment of (ii)
needs storing of all numbers (4) and (5), thus at most 2p-2 numbers.
We shall describe now a method of investigating the numbers (4) which
need not storing of so many quantities and which gives numbers (8) sat-
isfying condition (ii) and yielding the expression (9) maximum or near
maximum. First we shall describe the method for paper-and-pencil cal-
culations, and then for computer calculations.

The numbers (4) and (5) may be determined during the construction
of (3) and its division into intervals. Suppose we have already found the
modules

(11) Eoy €1y eevy Epty

and assume we know that (3) is divided into at least n-+ 6 intervals so
that e,,, is not the last element of (4). We find now in (11) two neigh-
bouring numbers ¢, ¢,,, such that their sum is minimum. If » = 0, then
we delete ¢, from (11), if A > 0, then we delete ¢, and ¢,,,. The indices of
the remaining numbers of (11) are now changed into successive numbers
0,1, ... Analogously, the sequence i, %, ..., 4,4 Mmay be shortened, to
fix the dependence between the indices and the numbers ¢. Next, we

Algorithm 10 116

calculate further differences (3) and determine further ¢ (the indices will
now be lower than in (4)) up to the moment of obtaining the sequence (11)
anew or to the moment of having investigated the whole sequence (3).

Example 2 (continuation of example 1). If n =1, then we find
the first six numbers of (6):

0,11, 32,0, 16, 21.

The two first numbers have the minimum sum, the first number is
thus deleted. We have now

80 =11’ 81 =32, 82 =0’€3 =16, €4=21’
":0=1’i1 =2,":2=3’i3 =4"I:4 =6.

We calculate one number each of the sequences (6) and (7) and denote
them ag ¢ = 0, 4, = 7. Minimum sum holds now for ¢, ¢; thus we delete
& and ¢ and obtain

g =11, =32,6, =21, =0,
to=1,1% =2,1, =6,1; =1T.
We calculate the two last numbers of each of (6) and (7) and obtain
g =29,¢ =0,
i, =9, 12, =10.

Assume that we have investigated all differences (3) having shortened
the sequences (4) and (5) when they had n+5 elements. Letj be the index
of the last element of these sequences (in the considered example is j = 5
and not j = 8). Thus always holds j < n+4.

The inequality j < » denotes that it is not possible to choose from (3)
7+2 numbers being alternatively non-positive and non-negative. Theoret-
ically, this inequality cannot appear because the difference f(x)— P, (x)
should assume alternatively the values e, and —e, on the set X,,. In
Practice, however, the inequality j <n may appear and this indicates
that great rouding errors which deform the sequence (3) have occurred.
Is that so, further calculations with the second algorithm of Remez have
Do value, and they are finished.

If j = n41, then the numbers

(12) Toy b1y oevy Ung1
Which we have found form the indices of those points of X which belong
to X '

L m41e
If j =n+2, then we compare the sums e+, and &, 4+ &pqe- I

(13) eot &1 < Epyrt Enya,

116 Algorithm 10

then we delete the numbers ¢ and ¢, otherwise the numbers ¢,,, and
ip42 are deleted. In case of (13) a change of the numbers indices is neces-
sary. We obtain now the indices (12) of the points chosen as belonging
to X, 0.

If j =n+3 or j = n+4, then the sequence

(14) €0y E1y ++vy &

undergoes nearly the same procedure as before had the sequence (11).
The difference lies in the fact that for the minimum sum of neighbouring
numbers &;_,+ ¢ we delete only e from the sequence (14). Of course, i;
is also deleted. The shortened sequence (14) is processed according to the
new value of j (equal to n+4-3, n-+2 or n+41) up to the moment of ob-
taining both j = n+1 and the final system (12) of indices of X,,,.

Example 3. In example 2 we have obtained the numbers
11, 32, 21, 0, 29, 0;

thus) =5 = n+44. Minimum sum, is 2140, therefore (4) and () are
shortened to the form

& =11’ €y =32’ €Eg =29’83 =0’

io=1,i1=2’i2=9’i3=10.

Now j =3 = n+2. Since 11432 >2940 we delete additionally
¢ and ¢;. Finally, we have obtained the subset

X¥n+1 = {@1, Tq, Ty} .

The difference f(s)—P,(x) takes on X, ., the alternatively signed
values —11, 32, —29. Expression (9) is here equal to 43. It is easy to
verify that no other subset gives a greater value of that expression (re-
taining alternative signs).

It is possible that the described method does not lead to the maxi-
mum value of (9).

Example 4. If » = 1 and the whole sequence (4) is composed of
the numbers

10, 27, 4,29, 8,17, 7, 33,

then after calculating the first six numbers, the numbers 8 and 17 are
deleted; after calculation of the last two numbers, are deleted, first,
27 and 4, then 10. We obtain

29,7, 33.

Algorithm 10 117

A better result (9) is. possible choosing either 29, 8, 33 or 10, 29, 8.

The situation encountered in Example 4 has a small probability of
occurrence. The procedure Remez2 has been verified on many examples
(see § 3) and of 57 investigated constructions of X,,,, only one was not
optimum (this, however, did not spoil the method of Remez). Therefore
it seems not advisable to improve the probability of optimum choice
of X,,,,, e.g. by investigating the sequence &, &, ..., &,,s instead of (11).

The choice of the subset X,,,, has been described for paper-and-pencil
calculations. For computer calculations another (equivalent) procedure
will be accepted, a procedure in which the sum &,-+ ¢, will not be calcu-
lated many times. The numbers (4) are not kept in memory. In the process
of their formation the sums

(14) 8o = €9+ &, 8 =& +&,...

are calculated. If, at some moment of calculations, the number found
last is ¢_,, then the sequence (14) is terminated by numbers

8j_2 = &_ o1+ €1, i1 = &a-

The elongation of sequence (14) after having calculated ¢; consists
in enlargement of s;_, by ¢; and in putting s; = ¢;. During the comparison
of numbers s,, 8;, ..., 8;_; We choose the minimum one. Let is be s;. Delet-
ing of &, (b = 0) or of ¢, and &, (h > 0) from (4) corresponds to simple
transformations of (14). In the first case the numbers s,, $,, ... are denoted
by s,, 81, ... (i.e. they are translocated). In the second case the numbers
80y 81y -+-9 Sp_s do not change. The number s;_, is replaced by the expres-
sion

Sh—1— 8+ 8ny1 = (en_1t &) — (ept enp1) + (enp1t eny2) = ep_1+ nye

and the numbers 8z, 84,3, ... are denoted by s;, 8;,,, ... If only the last
of the numbers ¢, were to be deleted, the sequence (14) would be unchang-
ed (j were diminished by 1). The sequence (5) is formed and transformed
a8 described earlier.

III. Termination of calculations. As mentioned, the calculations are
terminated if because of great rounding errors the construction of X, 1
is impossible. They may be terminated too if |,.,| < |e,| (see Boothroyd
[2]) which links the errors of best approximations on X, and X,,,,. This
inequality holds, among others, if two successive sets X,, and X,,,, are
identical, i.e. if the polynomial P,, («) being best on X,, is also best on the
whole set X.

Since the first termination cause does not allow to find the best poly-
nomial on X, procedure Remez2 calculates

(15) max |f (@) — P ()|

118 Algorithm 10

for m = 0,1, ... and stores the coefficients of P, (x) such for which (15)
is minimum (it is known that both in theory and in practice the sequence
is not always ascending).

3. Certification. The procedure Remez2 has been verified on the
computer ODRA 1204 for the following functions:

(16) fl (m) = ny

the values of which had been calculated by the computer with absolute
error 2°%;
(17) fa(@) = It (2)— L} (@),

where the Bessel functions values had been taken from tables and were
accurate only to 5 decimal places after point;

Ky (@) [11(-'”) Iy(z) Ky(z) K,(») 4]—1
18 T) = — — —
® 50 =70 1@ L@ TRe Rw e

(Ko(x), K;(x) — Bessel functions), the values of which were tabulated
with 4 decimal places after point accurate;

(19) ful@) = a7 f3(@).

In the case (16) for small » the errors of the values of the approximated
function are very small in comparison with the maximum values of the
difference f(x)— P,,(x). This difference behaves regularly and has exactly
n+2 local extrema. Therefore the set X, ,, is in the procedure Remez2
identical with that occurring in the classical formulation of the second
algorithm of Remez.

In the cases (17)-(19) even for small n the rounding errors of the
values of the approximated function have a great influence on the differ-
ence f(x)— P, (x). This difference may behave very irregularly and may
have very much local extrema (e.g. 33 for » = 4). In such a case the
choice of X,,,,, according with the general requirements of the second
algorithm of Remez, is not unique. The practical importance of a reali-
zation of this algorithm depends, among others, on the accepted criterion
of choosing X, ., (and, of course, on the choice of X, and on the careful-
ness of programming). ,

The procedure Remez2 has been thoroughly investigated, printing
out not only the final results but also the indices of the points chosen
to X,, X;,... and also the values of f(z)—P,(r) on the whole set X.
In all investigated cases the procedure produced a polynomial which was

Algorithm 10 119

indeed best on X. The following table gives a selection of the investigated
examples.

Fune- Tterations
. n| p
tion number

30
30
30
106
30
100
30 1
200
30
30
50
50
60
50
60

(17)

(18)

L O N R T - R Y

(19)

00 Ot Q0 0 Q1 QO I S St O i W N

In all examples the last iteration produced the same polynomial as
the preceding iteration, and this was the termination criterion.

The procedure Remez2 has been compared with the procedure chebfit
[2] to test, any others, which one is faster. The calculation times in seconds
were as follows:

Function (16), p = 50 | Function (17), p = 200
" | Remes2 | chebfit Remez2 chebfit
0 1 0 b 2
1 3 2 11 6
2 4 3 14 16
3 b 6 17 26
4 6 11 27 38
6 6 21 b7 86
8 11 31 144 279
10 14 58 43 3256
12 6 142

In the procedure chebfit the subset X, consists of points
Tipkin+n+.5) (B =0,1,...;n+1)

([a] denotes the integer part of a). Such a subset choice is usually worse
than that chosen by the procedure Remez2; this follows from the theorems
of Bernstein cited in § 2. Only for » < 2 both definitions are identical or

120 Algorithm 10

nearly identical. This is probably the reason why for n < 2 the procedure
Remez2 is slower than the procedure chebfit. For greater n, however, the
advantage of using procedure Remez2 is obvious.

4. Modifications. Ingtead of the usual uniform approximation with
error (1) it is possible to consider approximations with relative error

J(z)—P(=)
%) =
(assuming f(x) # 0) and with weighted error

J(#)—P(x)
(1) oy w(x)

(w(z) — a given function such that w(z) # 0). This last case the most
general one: for w(z) =1 one obtains from (21) the error (1) and for
w(x) = f(x) the error (20).

In case of (21) the polynomial P, (x) which is best for f(x) on the
subset X, satisfies the system of equations

f(wmk) _-Pm(wmk)
w ("‘vmlc)

i.e. the system

-Pm(wmk) =f(wmk)_(_1)kemw(wmk) (k =0,1,..., ’Ib—l—l).

= (=1, (k=0,1,...,n+1),

To solve this system, the auxiliary function 8(#) with values
8(¥me) = (—1f'w(@m) (B =0,1,...,041)

is introduced, the divided differences of the values of f(x) and 8(x) on X,
are calculated, and number e,, is chosen in such a manner that the (n+1)-th
divided difference of the function

(22) f(z)—en8()
be zero:
_ F(@mos By <y Trmypya)

" 8(Lmoy Tinrs +++ 9 Tmnt1) .

Next, lower order divided differences are calculated and the coeffi-
cients of P, (z) are calculated from Newton’s interpolation formula.

Let Remez2rel (and Remez2wt, respectively) be the name of the pro-
cedure which is similar to Remez2 but approximates with error (20) (or
(21), respectively). The procedure differences in all cases are very small.

Algorithm 10 121

Each of them calculates in different manner the values of s(z) and of
(f(®)— P, (@) /w(w). The full list of differences is as follows:

Remez2: procedure Remez2(n, p, z, f, maxr, a, enf);
Remez2rel: procedure Remez2rel(n, p, x, f, maxr, a, enf);
Remez2wt: procedure Remez2wt(n, p, z,f, w, maxr, a, enf);

Remez2, Remez2rel: array x,f, a;
Remez2wt: array z,f,w, a;

Remez2: b[n1]: = f[%]; s[nl]: = e: = 1. 0;
Remez2rel: b[n1): = s[nl1]: = f[i]; e: = 1. 0;
Remez2wt: b[nl1]: = f[¢]; s[nl]: = w[i]; e: = 1. 0;
Remez2: sk: = e: = —e;
Remez2rel: e: = —e; 8k: = e X bk;
Remez2wt: e: = —e; 8k: = e X w[t];
Remez2: d: = f[i]—d;
Remez2rel: d: = 1. 0—d|f[i];
Remez2wt: d: = (fli]—d)|w[s];
Remez2: end Remez?2
Remez2rel: end Remez2rel
Remez2wt: end Remez2wt

In the procedure Remez2wt additional data are provided by the array
w[0: p] of values of w(x) on X.

References

[1] S. N. Bernstein (C. H. BeprmTeitn), Ixcmpemavrble €6oiicmea NOAUHOMOS U HAU-
JAyyuiee npubauncenue HenpepuIeNsIX PYHKYULL 00HOH eeujecmeennoili nepemennoi, 9. 1, Jleman-
rpanm 1937.

[2] J. Boothroyd, Algorithm 318. Ohebyshev curve-fit (revised), Comm. ACM 10 (1967),.
pp- 801, 803.

[3]1 G. Meinardus, Approximation von Funktionen und thre numerische Behandlung,
Berlin 1964.

COMPUTING CENTRE
UNIVERSITY OF WROCLAW

Received on 10. 1. 1970

S. PASZKOWSKI (Wroclaw) ALGORYTM 1o

WYZNACZANIE WIELOMIANU OPTYMALNEGO
ZA POMOCA DRUGIEGO ALGORYTMU REMEZA

STRESZCZENIE

Procedura Remez2 oblicza
(i) wep6lezynniki n-tego wielomianu optymalnego (w sensie aproksymacji jedno-
stajnej) dla danej funkeji f(x) na danym zbiorze skoriczonym

X€{$o, LYy eoey Zp},

122 Algorithm 10

tj. tego wielomianu P(z) co najwyzej n-tego stopnia, dla ktérego blad
(1) max|f(x)— P (x)]
zeX

jest najmniejszy;

(ii) n-ty blad aproksymacji optymalnej funkeji f(x) na zbiorze X, tj. blad (1)
dla wielomianu optymalnego P (x).

Dane:
n — stopieni szukanego wielomianu optymalnego,
P — wskaZnik ostatniego punktu zbioru X,

x[0: p] — tablica punktéw zbioru X uporzadkowanych tak, ze 7y < #; < ... < @p

albo zy> 2, > ... > zp,

fl0: p] — tablica wartoéci funkecji f(x) na zbiorze X,

maxr — najwieksza dopuszezalna w maszynie cyfrowej liczba typu real.

Wyniki:

a[0:n] — tablica wspélezynnikéw n-tego wielomianu optymalnego P (z) (a [k] —

wspélezynnik przy 2% dla k=0, 1, ..., n),
enf — n-ty blad aproksymacji optymalnej, tj. wyrazenie (1) dla n-tego
wielomianu optymalnego P (z).

Uwagi:

(i) Musi byé p > n.

(ii) Typowym zastosowaniem procedury Remez2 jest przyblizone wyznaczanie
n-tego wielomianu optymalnego (w sensie aproksymacji jednostajnej) dla danej
funkeji f(x) w danym przedziale skonczonym domknigetym <b, ¢), tj. takiego wielo-
mianu P(x) co najwyzej n-tego stopnia, dla ktérego blad

max |f(z)— P ()|

b<z<e
jest najmniejszy. Aby ten wielomian wyznaczyé dostatecznie dokladnie, nalezy wybraé
taki zbiér X, ktéry pokrywa dostatecznie gesto caly przedzial <b, ¢>, przy czym gelciej
w poblizu kohicéw przedzialu (np. tak, ze p> n2 i xx =~ 3(b+ c)— 3 (c— b)cos(nk/p)
dla 2 =0,1,...,p). R ‘

W procedurze Remez2 zastosowano tzw. drugi algorytm Remeza (zob. np. Mei-
nardus [3]; jest przeklad polski), z pewnymi istotnymi elementami, odrézniajacymi
te procedure od innych o tym samym zastosowaniu, np. od procedury Boothroyda [2].
Uzyta metode opisano szczegélowo w § 2. § 3 zawiera oméwienie przykladéw kon-
trolnych wykonanych na maszynie cyfrowej ODRA 1204, ktére potwierdzily wyiz-
8z08¢ procedury Remez2 nad procedura Boothroyda.

