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REGULAR POSITIVE BASES

1. Introduction. The present paper is a continuation of Romanowicz’s
work [8], so we shall use the same notation and apply the results obtained
there.

Let B be a positive basis for a finite-dimensional linear space L. For
each element x # 0 in L there exists a family of sets D — B such that

(1.1) xerelint pos D and  x¢relint pos D’ for all D' & D.
The union of all such sets augmented with the origin is denoted by B(x).
Moreover, we assume that B(0) = {0}. The set .
B°(x) = relint pos B(x)
is called a basis cone for x. Let us notice that the basis cone for x can be
defined also for an arbitrary set A in L such that card A < o0 and xe pos A.
Using Romanowicz’s partition theorem for a positive basis [8] it is

possible to find a recurrence formula for B(x). It is easy to see that each
xeL has a unique representation in B = B; u(4+c¢): -

X =p; () +p2 (0,

Where
_ pl(x)=x1—“ Z a,C,
(1.2) . acd(x3)
P2(X) =X+ Y wc= Y aa+o).
, aed(x3) aed(x3)
Here

x"—'xbl‘i“x:', xleLl = lin Bl,r . X2EL2 =1in A,

Xy = 3 0pa, a,>0,
acA(x)) .

LIUL2=L, L10L2={0}.
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By (1.2) one can show that

[(B1 v {C}) (P1 (x))\ {C}] u(d+c) if ce(Byu {C}) (Pl (x)),
B; (p1 () L (4 +¢)(p2(x) if ¢c¢(B,u {c})(py(x).

In the case of a strong positive basis (cf. [3] and [5]-[7]), formula (1.3)
takes the form '

B(x) =4 (x))udz(xz)u... LAy (x),

(1.3) B(x) = {

whence

B (x) = A9 (x,) + 43(x2) + ... + 42 (xp),

where
: k
x=x1+x2:=l-...+x,‘, XgEL,'_——“lin Ai’ B = U Ai’

L=L1+L2+ "'+Lk3
LinL;=10), i#j,i,jeil,2,..., k.

For an arbitrary positive basis of L, however, the basis cones can
contain the whole line or even can coincide with the entire space L. It is
sufficient to consider the following example of the basis B = |b,, b,, ..., be}
for L, dim L = 4, where

by =(1,0,0,0), by,=(—1, -1, —1,0),
by=(0,1,0,0, bs=(1,1,1),
by =(0,0,1,0), bsg=(, 1,1, —1).
Clearly,
B=B,u(d+c), B;=b, by, bs,b,,
c=04,1,1,0, 4={bs—c,bs—c}

and for x = (3, 2, 2, 0) we have B(x) = Bu {0} by (1.3).

Thus there appears an interesting problem of determining positive bases
for which none of the basis cones contains the whole line. These bases are
called regular. The problem of characterizing regular bases was formulated
by Romanowicz [8]. The present paper is mainly devoted to this problem.

Note that simplicial bases and strong positive bases are the examples of
regular bases. Let us remark also that the concept of regularity can be
extended to that for positively spanning sets.

The set C < L is called strongly critical in a regular basis Bif CuBis a
regular set. In our considerations we shall confine ourselves to sets C which
satisfy the following conditions:
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(1.4a) Ab¢ C  for beB and A > 0;
(1.4b) if ¢,, c,eC, ¢, # ¢y, then ¢, # Acy, 2> 0.

An element of a strongly critical set is called a strongly critical vector. The
strongly critical vectors are of the same weight in the partition of regular
bases as critical vectors in Romanowicz’s partition theorem for positive
bases.

In Section 2, we prove that a positive basis B = B, u (4 +¢) is regular iff
B, is a regular basis for the subspace L, and c¢ is a strongly critical
vector in B;.

The usefulness of this theorem is apparently connected with the possibil-
i?y of finding strongly critical vectors (as well as strongly critical sets) in a
regular basis. A method for determining strongly critical vectors is given in
Section 3.

The class of regular positive bases is of great importance since the closed
full-dimensional basis cones K; (1 <i < m) in a regular positive basis B of L
have the following properties (Section 4):

(i) pos K; = K;;

(ii) int K; nint K; = @ for all i, j (i #j);

(i) no K; contains the whole line;

(iv) K; U K; contains the whole line for all i, j (i #j);

W UK =L;
i=1

(vi) card {K;: 1 €i<m} <2" n=dim L.

. From these properties it follows that the regular .positive bases can be
applied to find a partial solution of two unsolved problems.

The first one, formulated by Barany [1], is to determine the number m
of elements in the family of cones which satisfy properties (i)—(iv). Evidently,
for the family of closed full-dimensional basis cones, Barany’s hypothesis that
m< 2" is correct.

The second problem, known as the “inner illumination problem”, is to
determine the minimal number s of the illuminating directions for an
arbitrary convex body. Hadwiger’s hypothesis is s < 2". The application of
regular bases allows us to prove (Section 21) that some nontrivial class of
Polyhedrons (dual to polyhedrons generated by regular positive basis) satis-
fies Hadwiger’s hypothesis.

2. Theorem on the geometrical structure of regular bases. Let us notice
first ‘a few lemmas resulting from the properties of convex bodles and the
definition of basis cones.

LemMA 2.1. Let B be a positively spanning set in L and xe L\ ‘0} If a
Set A — B satisfies the conditions
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(i) xerelint pos A,

(ii) pos A does not contain the whole line,
then A < B(x) and relint pos A = B°(x).

LemMma 2.2. If B is a regular posztwely spanning set and ye B°(x), then
B(y) = B(x).

LemMMma 23. If B is a regular positively spanning set and ye pos B(x),
then B(y) = B(x).-

Lemma 2.3 allows us to prove
Lemma 24. C is a strongly critical set for a regular basis B iff

(2.1) pos(Bu C)(x) =pos B(x) for all xeL.

Proof. Let us assume that C is a strongly critical set for a basis B.
Then, for each x, the cone pos(B u C)(x) does not contain the whole line. By
Lemma 2.3 we have

B(c) = (Bu C)(c) =(Bu C)(x) |
provided that ce C ~(BuU C)(x). Using (1.4a) and (1.4b) we obtain
pos(B L C)(x) = pos((B L C)(x) N B),

whence pos(B U C)(x) < pos B(x) and due to B(x) < (B L C)(x) we have (2.1).

The sufficiency of condition (2.1) can be easily shown by virtue of
regularity of the positive basis B

By Lemmas 2.3 and 24 we have now

CoroLLary 2.1. C is a strongly critical set for the regqular basis B iff, for
an arbitrary set D such that D = Bu C and pos D does not contain the whole
line, the condition xerelint pos D implies '

D < pos B(x).

From Lemma 2.4 we have also

CoroLLARY 2.2. Every strongly critical set for the regular basis B is also
a critical one for B. '

One can assume that not all critical vectors are strongly critical ones.
For éxample, let us consider the basis B = {b,, b,, by, by} for L, dim L

‘=3, where
b, =(1,0,0), b;=(0,0,1),
b,=0,1,0, b,=(~1, —1, —1).
Clearly, ¢ =(3, 1, 1) is a critical vector for B but not a strongly critical one.

THEOREM 2.1. A positive basis B = B, u(A+c¢) is a regular one iff B, is
a regular basis for the subspace L, =lin B, and c is a strongly critical
vector in B;.
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Proof. Let us assume that B is a'regular basis. Then B, as a subbasis
of B is also a regular one. Let ¢ # 0 (c = 0 is a trivial case), xe L, and let
D < B, U {c} be determined by condition (1.1). If c¢D, then D < B, (x) by
Lemma 2.1. Thus-

2) D < pos B, (x).

If ce D, then ce(B, U {c})(x) and, by (1.3), 4+c < B(x). Hence cepos B(x),
and using Lemma 2.3 we c get

B(9) = B(x).
Putting now x = ¢ into (1.3), we obtain
B(c) = B, (c)u(d+0)
and
B, (9 = (B; v {c) )\ {c}.
Further
cepos((By U {ch 3\ {c}).

The cone pos((B; U {c}) )\ {c}) does not contain the whole fine since it
is a subset of the cone pos B(x).
Moreover, xerelint pos((B; v {c})(x)\{c}) and, by Lemma 2.1,

(B, v {c})(x)\ {C} < pos B, (x)
and
cepos B, (x).

Two last relations give finally (2.2), which together with Corollary 2.1
Completes the proof in one direction.

Let now B, be a regular subbasis of B, ¢ be a strongly critical vector for
By, and let xe L. If

c¢(By v {cD(p1 (%),

‘f!l‘?n 1t is easy to see from (1.3) that the .cone pos B(x) does not contain the
Whole line. Similarly, if :
ce(By v {chpy (x)),

then due to Corollary 2.1 and formula (3.1) the cone pos B(x) also does not
“ontain the whole line, which completes the proof.

Theorem 2.1 allows us to partition a regular basis B (a nonsimplicial
One) as follows:

B = Al U(Az""ci)u...U(Ak"-Ck—l)’
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where 4; is a simplicial basis of the subspace L; for i=1,2,...,r, L;nL;
=1{0} fori#j L=Ly+L,+...+L,, whereas c; is a strongly critical vector
for the basis
BJ = Al U(A2+CI)U...U(AJ'+C]-_1)

of the subspace L, +L,+...+L;, where By =4, and j=1,2,...,r—1L

Clearly, all subspaces B; are also regular bases.

Theorem 2.1 together with Romanowicz’s theorem about a simplicial
decomposition [8] gives us a complete characterization of regular bases. For

full clearness it is necessary to determine additionally the set of strongly
critical vectors for a regular basis.

3. Strongly critical sets for regular basis. Let C* (B) denote the set of all
strongly critical vectors for B. Then, according to Corollary 2.2
C*(B) = C(B), where C(B) is the set of critical vectors for B.

LemMma 3.1. If B is a regular basis and ze C*(B), then
B(—z)nB(z) = {0}.

Proof. It is sufficient to confine our considerations to the case z # 0..
Suppose that B(—z) N B(z) # {0} and let D denote a subset of B such that

—zerelint pos D,
—z¢relint pos D' for all D'& D, DnB(z) # Q.
Clearly, 0¢D, —zepos D and D — B(—z). Let
D,=DnB(zy and D, =D\D,.

Since the cone pos B(z) does not contain the whole line, D, ¢ and
—z¢pos D,. Furthermore, pos(D,u {z}) does not contain the whole lin¢
and by Corollary 2.1 we have, for xerelint pos(D, U {z}),

D, u {z} < pos B(x).

Hence, by Lemma 2.3 we obtain D, u B(z) = B(x), and further D = B(x). In
this case, however, ze pos B(x) and —ze pos B(x), z # 0, which contradicts
the assumption of regularity of the basis B

Note that a critical vector z in a regular basis B which satisfies the
condition B(z) N B(—z) = {0} may not be a strongly critical one in this basis-
As an example, one can consider the basis B = {by, b,, ..., bg} for L, dim L
=4, where

b, =(1, 0, 0, 0), b, =(0,1,0,0),
b; =(0, 0, 1, 0), by =(—-1, -1, -1, 0),
b5=(_19 0: 07 1)’ b6=("150, 03 _1)

and z = —b,.
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Nevertheless, the following lemma holds:

Lemma 3.2. If 4 is a simplicial basis, then ze C*(4) iff ze C(4) and
4z nA(-2) = {0}

Proof By Lemma 3.1 it is sufficient to show that if ze C(4) and
A(Z)r\A( —z) = {0}, then zeC*(4). Let z# 0. Suppose that D=4 is a

simplex such that the cone pos(D U {z}) does not contain the whole line and
let

x e relint pos(D u {z}).

I D < A(z), then 4(x) = A(z) and D v {z} = pos A(x). In the opposite case
We have DnA(—2z)# @ since 4 =A4(z)ud(—z) for each zeL, z#0.
Moreover, 4(— z)\ D # {0}, since the cone pos(D U {z}) does not contain the
Whole line. Thus, from the above and the assumption A(—z) N A{z) = {0} it
follows that D U (4(2)\{0}) is a simplex and

xerelint pos(D L (4(z)\ {0})).

Therefore, we have also DU {z} < pos A(x), which completes the proof.
CoroLrarY 3.1. Let 4 = {a,, a4, ..., a,} be a simplex basis and let

0=Y¢a, &>0, Y &=1, N={0,1,...,n.

ieN ieN
Then zeC*(4) iff
z =)-Zélav
=

Where 1 >0, IE N, card I > 2.

The set I is called a support of vector z.
Note that the set

Ed) = {e()=(% &) Laa Ie 2(4)},
iel I

Where

@A) ={I: IcN, card I > 2

(e, the set of all centres of proper simplicial faces with dimension 7 > 1) can
be considered instead of C* (4).
-Remark 3.1. The set E(4) is finite for an arbitrary 31mphc1a1 basis of
ite dimension. -
Let %*(4) denote the family of strongly critical sets for a simplicial basis
- Now we present an additional characterization of strongly critical sets for
Simplicia] bases, which will be useful in further considerations



456 D. Jacak

LemMMA 3.3. The set C = E(4) is a strongly critical one for the basis A iff
for every set D < AuC such that

3.1 U 4(d)\{0} = 4
| | deb

we have |

(3.2). Occonv D.

Proof. Assume that C is a strongly critical set for 4 and consider the
set D < 4 C satisfying (3.1). If O¢conv D, then the cone pos D does not
contain the whole line and, by Corollary 2.1, 4 < A(x), where
xerelint conv D. This contradicts the fact that A is a regular basis.

Suppose now that condition (3.2) holds for each D < 4 U C satisfying
(3.1). Let D =« AU C be an arbitrary set such that the cone pos D does not
contain the whole line. Then O¢conv D and by assumption we have

A=) 4@\ {0} # 4.
deD

The set A is a proper side of the simplex 4, and if xerelint conv D, then
xerelint conv A.

Thus A = A(x) and, by Corollary 2.1, Ce €*(4).
Further, instead of p, C*(4) (cf. (1.2)) defined as

P2C*(4) = {z: z= 1) &(a+c), IE N, card I > 2, 4> 0},
i

we write C*(4+c). A vector ze C¥(4+¢) is called a strongly critical vector
for A+c. Analogously, instead of p, ¥*(4) we write €*(4+c). Now, by
Lemma 3.3 we have (9(4+c) denotes the set () pos((4\{a})+c)

aegd
Lemma 34. A set C < d(4+c) is strongly critical for A+c, ¢ # 0, iff for
arbitrary D < (4+c)u C the condition

(3.3) Ud+o)d)=4+c
deD
implies
cepos D.

We shall now present a characterization of the family %*(B) whos¢
elements aré strongly critical sets for regular bases B =B, u(4+c). BY
8% (C), Ce ¥*(B), we denote the set of elements z such that

zeC*;(B) and Cu {z}e%€*(B).
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S*(C) is called a star of strongly critical vectors for the basis B, generated by
the strongly critical set C. Analogously, we put

$%..(C) = zeC*(d+0): Culz}e®*(4+0)).

:Let us prove first

LemMma 3.5. If z is a strongly critical vector for the regular basis B
=B, U(4+c¢), then ze L, or ze d(4+c).

Proof. Let ze C* (B), z = py(z)+Pp,(2) (cf. (1.2)). We have to show that
Pi(z) =0 or p,(z) =

Let us assume that p(z) #0 and p, ;é 0. Then the cone pos D,

= {z} UB,(—p, (2)), does not contain the whole line. It is clear because
usmg Theorem 2.1 we see that B; is a regular basis and the cone
Pos B, (~p, (2)), z¢ L,, does not contain the whole line. Thus, by the reg-
ulal'lty of Bu{z} in L and Corollary 2.1 we obtain

D < pos B(x),
Where xerelint pos D. Further, by virtue of Lemma 2.3,
‘B(z) UB; (—p, (Z)) < pos B(x).

lI:’IOI‘eover, using Theorem 2.1 as well as formula (1.3) for the regular basis we
ave |

B (P1 (Z)) < pos B(z) < pos B(x).

:‘Ience p1(z)epos B(x) and —p; (z)e pos B(x), which contradlcts the assump-
1on,

. From Lemma 3.5 it follows that a strongly critical set for the regular
818 B = B, u(4+c¢) has the partition

C=CIUCA,
Where
C,cLy,, Cycdd+c, C;nC,c{0}.

- Turorem 3.1. A finite set C is strongly critical for the regular basis B
=B, u(d+c) iff C is of the form C,u C,, where

Ciuicle®*(B)), C,e€*(d+0).
Proof Let Ce%*(B). By Lemma 3.5 we have
C=C,uC,;,, C,cL,and C, ca(A+c).

We prove first that C, u {c} e €*(B,).
The set Bu C, is strongly critical in L = lin B. Let

Bl =B1UC1U{C}.
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Note that if xe L,, then
pos Bt (x) = pos(Bu Cy)(x).

Hence, using again the regularity of the set BuUC, we infer that for an
arbitrary xe L, the cone pos B¥(x) does not contain the whole line. This
means that C, u {c} e ¥*(B,).

Now, we will show that C,e *(4+c). The set Bu C,, is regular in L-
= lin B. Moreover, C, < d(4d+c¢). If ¢ =0, then C, e %*(d4). Suppose that
¢ # 0. Assume that the set D c(4+c)u C, satisfies condition (3.3). Thet
there exists

xerelint pos D nrelint pos(4 +c).

Suppose that c¢pos D and consider the vector x—c. The cone pos(D w {c}
does not contain the whole line and |

‘x—cerelint pos(D U {—c}).
By Lemma 2.1 we have
Du{—c} < pos(Bu CQ(x—0),
and thus xepos(Bu C )(x—c). Due to Lemma 2.3 we have also
Ad+ccpos(BuC)(x—c),

and further cepos(Bu C /) (x—c). It is, however, impossible, because by the
regularity of the set Bu C, it follows that the cone pos(Bu C)(x—c) dO?
not contain the whole line. Hence, it cannot contain nonzero vectors ¢ an
—¢. Thus cepos D and by Lemma 3.4 we obtain C e %*(4+c).
Suppose that C = C, U C,, where C; U {c} € 4*(B,) and C e #*(4+9)
Let the set D<cBuUC, D= D, uD,, where

DicB;uC; and D,c(4+c)uC(C,

satisfy condition (1.1).
If c=0, then x = x,+x;, x;eL, =lin B;, x,eL, = lin 4, and by th¢
assumption we obtain
D, cpos B;(x;) and D, < pos 4(x;).
Hence, by (1.3),
D < pos B(x) = pos (B, (x;) U 4(x,)).

‘Due to the arbitrariness of the choice of the set D and the regularity of the:
basis B, the cone pos(Bu C)(x) does not contain the whole line.
If ¢ #0, then

x=p1(x)+p2(x), pi(x)eLy, p2(x)ed(4+c).
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Since xerelint pos D, we have
Where
X,erelint pos D; and X erelint pos D,.

I x,e (4 +¢), then X, = py(x) and X, = p,(x), and by the assumption we
llave ,

D, < pos B, (p, (x))
and
| D, = pos(4+¢)(p,(x)) = pos (4 (xz)+c).
Using formula (1.3) we obtain |
(3.4 D < pos B(x).
If X, erelint pos (4+c), then
U (d4+c)(d)=A4+c

deD 4

and due to Lemma 3.4

3.5) cepos D,
the that there exists a 4> 0 such that
| X,—Ace d(d+c).

Then x = (Xy +Ac)+(X,—Ac) and taking into account the uniqueness of the
Partition x = p,(x)+p,(x), we have p,(x)=Xx,+4c and p,(x) =X,—Ac.
Oreover, the cone pos(D, U {c}) does not contain the whole line and

p1 (x)erelint pos(D, L {c})

by (3.5) and since the set D satisfies condition (1.1).
Hence C,e %*(B,) implies

Dyv {C} < pos By (P1 (x)).
Slnce in that case cepos By (p;(x)) by (1.3) we have
B(x) = By (py (x)) v (4 +0),

nd consequently '
| D < pos B(x).

Thas using (3.4) we obtain

(BU C)(x) < pos B(x),
Which proves the regularity of the set Bu C and completes the proof.
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As a consequence of Theorem 3.1 we have
Tueorem 3.2. If B =B, u(d+c) is a regular basis, then
C*(B) = S5, ({eh) v C*(d+9).
Using Romanowicz’s partition theorem for a positive bas1s and Remark

3.1 we can immediately show

CoroLLARY 3.2. Every regular positive basis of a ﬁmte—dlmenszonal spact
admits a finite number of strongly critical directions.

From Theorem 2.1 we obtain also

TueorEM 3.3. If B=B, u(d+c) is a regular basis and C = C,uUCy4
is in €*(B), then

S§(C) = 83, (Cy U {c}) US4 (C)).

Theorems 3.2 and 3.3 give us a recurrence method for determining
strongly critical sets for an arbitrary regular basis -

B = Al U(A2+CI)U...U(Ak+Ck_.1)

by means of the union of the appropriate stars for simplex bases.
TueoreM 3.4. Each maximal set in the family €*(4), 4 = {ao, a4, ..., G
is uniquely determined by the following (i) or (ii): '
(i) the choice of the partition I, w1, u...U I, (k = 2) of the set N, wheré
={0,1,...,n},card ; 2, I, nL, =@, i, je {1, 2, .. k} and the choice of
the maximal chain
Ijcl}c..cll=1I,
where card I} =2 and j=1,2, ..., k;
(i) the choice of a single chain
LclBc..cIy,
where card I} =2, card I} =n—1, n = dim 4.
Theorem 3.4 is a consequence of the following

LemMMA 3.6. A set C c CE(A) satisfies the condition Ce 6E(4) iff the
followmg implication is true:

Il’ IZE?(C) I}_ #IZ:II nlz=¢ or Il CIz or Iz CII

. 4. Some related results and problems. Recently Bariny [1] has formulat<
ed the problem of determining the number of cones whlch satisfy conditions
(1)—(1v) from Section 1.

It turns out that this number is not bounded by 2" (see, e.g., an exampfe
by Vretica [2]). It is easy to see that the family of full-dimensional basis
cones for regular basis. satisfies the above-mentioned conditions. This fact
follows from Lemmas 2.1-2.3 and from the following simple ‘
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LemMma 4.1. If M is a maximal subset of a positive basis B such that the
cone pos M does not contain the whole line, then

(1) —(B\M) = pos M;

(2) relint pos(—(B\M)) < int pos M;

(3) for each proper subset Z of B\ M,

relint pos(—Z) nint pos M = Q; -

(4) if yerelint pos(B\ M), then B(y) =(B\M)u {0}.

Let us remark that the union of all full-dimensional basis cones coincides
with the entire space (see (v) from Section 1). The remaining question is’
whether the number of cones which satisfy conditions (i)—(v) from Section 1
is bounded by 2". Here we shall show that for the full-dimensional basis
cones for a regular basis the answer to this question is affirmative.

~ Let us remark that by Theorem 2.1 and formula (1.3) one can obtain

CoroLLARY 4.1. If B = B, u(4+c) is a regular basis and c # 0, then the
basis cones for B are of the form

K, +K,,
where K, is a basis cone for B, such that
céclK,, K, =relint pos(D+c), D § 4,
or of the form
K, +relint pos(4+c), |
Where K, is a basis cone for B, such that cecl K,.
Corollary 4.1 together with formula (1.3) for ¢ =0 lead to the mequahty
s(B) < s(By)card 4,

Where s(B) (s(B;)) denotes the number of full-dimensional basis cones for the
regular basis B (B,). ' |
By Romanowicz’s partition theorem for a positive basis we have

s(B) < card 4, card 4,...card 4,.

The equality holds iff ¢, =¢;=...=¢-; =0 (ie, iff B is a strong
Positive basis).
Note also that

card 4, +card 4,+ ... +card 4, =card B

and, by the obvious inequality r+1 < 2" for all re N, we obtain

. TueoreM 4.1. If B is a regular positive bas:s of a linear n—dumensmnal
Space L, then

n+1<s(B) <2"
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The equality s(B) =n+1 is .attained only for a simplicial basis while the
equality s(B) = 2" only for the maximal basis.

For an arbitrary positive basis B of L, the set W(B) = conv B is called a
basis polyhedron. The positive basis B is called a proper basis provided that
for each proper face K of W (B) the set relint pos K coincides with a certain
basis cone. Note that every proper basis is regular.

LemMa 4.2. A positive basis B is a proper one iff conv D < oW (B) for an
arbitrary set D — B for which

xerelint pos D and x¢relint pos D’ for all D' & D.

LeMMA 43. Let W, and W, be convex polyhedrons in L and let
aff W, naff W, = {c} cerelint W;, ce oW,,
W = conv(W; u W,).

Then
(i) K is a proper face of the polyhedron W, ceK, iff

K =conv(K, U W,),

where K, is a face of the polyhedron W,, ceK,.
(i) K is a proper face of the polyhedron W, c¢K, iff
K = conv(K, U K)),

where K , is a face of the polyhedron Wy, c¢ K, and K, is a proper face of W;
(note that K; =@ or K, =@ can happen).

Let us remark that if the set B = {bl, b, ..., by} is a positive basis of L,
then the set

B*={ﬁ1b19 ﬁzbz,---» ﬁmbm}s ﬂi>0’

is also a positive basis of L. The bases B and B* are called equivalent ones.

TueoreM 4.2. For every positive basis B there exists a proper basis B*
equivalent to B. |

The proof of this theorem is carried out by induction on n = dim lin B
taking into account Corollary 4.1 and Lemma 4.2.

Using Theorem 4.2 and Lemma 4.2 it is easy to prove the following.

THEOREM 4.3. The basis B = B, U (4+c¢) is proper iff B, is a proper basis
of the subspace L, = lin 81 and ¢ is a strongly critical vector for Bi,
ce dW(B,) or ¢ =0.

Theorem 4.3 gives us a simple method for constructing proper bases-
Especially, for ¢, = ¢, =... = ¢; = 0 the basis B is strongly positive and also
proper.
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Let now V be a full-dimensional convex polyhedron and Ilet
81, S5, ..., S, be its faces. By #™* we denote the family of polyhedrons which
satisfy the condition

| Ocint ¥V n ) conv(S; uS,)
i#j

Note that for an arbitrary proper basis B . we have W (B)e #™* (cf. (iv)
from Section 1 and Lemma 4.1).

We say that the direction k illuminates a convex body S of the n-
dimensional space L at point xeéS if

(x+tk: t > 0} nint S # Q.

It is clear that if w is a vertex of the polyhedron W, then the set of directions
illuminating W at the point w is equivalent to int C,. In our notation, C,,
+w means the cone supporting the polyhedron W at the vertex w. On the
other hand,

={xeL: x=t(y— w) t>0 yeWl.

TWO different vertices w, and w, of the polyhedron W are called independent
With respect to illumination if

int C,,, nint C,,, = Q.

Let us denote by #  the class of polyhedrons for which every pair of
different vertices is independent with respect to illumination.
. Let W be a full-dimensional convex polyhedron in L and let Ocint W.
he set

W* = {xeL: (x,y) <1 for ye W}

i$ also a full-dimensional convex polyhedron in L and it is called the dual
Polyhedron of W. For W* we have also Ocint W*.

It is easy to prove the following

THeorREM 44. We W iff W =V*+p, where Ve # * and pelL.

CoroLLarY 4.2. If B is a proper basis, then W*(B)e #".

One can assume that the family of polyhedrons dual to the basis
Polyhedrons for the proper basis is not equivalent to #".

Finally, let us' remark that the class # has some other interesting
Properties.

Let %", be the class of polyhedrons such that each pair of their vertices
'S antipodal [4]. Let %", denote the class of polyhedrons such that for each

ee of their vertices we have

int (W+w, ~ws) ~int (W+w; —ws) = @.

II::EIIS easy to prove that " = %", = ¥, (for the proof of the last equality see
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