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A NOTE ON OPTIMAL C(a)-TESTS FOR HOMOGENEITY
OF THE POISSON DISTRIBUTION

1. Introduction. Neyman and Scott have shown [2] that the test
for homogeneity of the Poisson distribution, based on the classical dis-
persion coefficient (for short, test Z), is an optimal C(a)-test for a vast
family of sequences of alternatives converging to a Poisson distribution,
each sequence specifying a different character of possible inhomogeneity.

In this paper”, necessary and sufficient conditions for an optimal
C(a)-test for homogeneity of the Poisson distribution to be the same as
the test Z are given. These conditions show that the test Z is an optimal
C(a)-test for a much larger family of sequences of alternatives than it
has been pointed out by Neyman and Scott. Also, two examples of optimal
C(a)-tests for homogeneity of the Poisson distribution, which are not
equivalent to the test Z, are given. The last section contains some remarks
concerning the performance of the derived optimal C(a)-tests for testing
the homogeneity of the Poisson distribution.

2. General expression for optimal C(a)-tests for homogeneity. Con-
sider N experimental units Uy, ..., Uy and suppose that, for every
unit U;, ¢ =1,..., N, a Poisson random variable X; is observed. It is
assumed that the expected value, say 4, can vary from one experimental
unit to the next and is subject to a probability distribution, say F(1).
In that case the unconditional probability distribution of X; is

1 -4z
(@) = ——'fe AR ().

€X.:
0

The random variables X,, ..., Xy are assumed to be independent.
The problem is to test the hypothesis that all the experimental units
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are characterized by the same, though unknown, value, say 4,, or, equi-
valently, that A4 = 4, with probability one.

In order to bring the problem into the general framework in which
the theory of C(a)-tests is applicable, one has, as indicated by Neyman
and Scott [2], to postulate a family of distributions {#.(1)}, £¢(0, a],
such that {F.(4)} converges as £—0 to a distribution degencrated at
A = 24, say e(A—A4,), so that the corresponding scquence of unconditional
probability distributions of X;, say {p(x|£)}, converges to the Poisson
distribution with expected value A,. Clearly, there are infinitely many
such families of distributions. Let p(wx, 0) = e %A% /x!.

In this setup the problem of testing the homogeneity of the Poisson
distribution reduces to the problem of testing the hypothesis Hy,: & =0
against the alternative H,: &> 0, while 1, Is a nuisance paramecter.
Clearly, with appropriate restrictions of regularity of the functions in-
volved, this problem can be tested by the optimal C(a)-test.

In this paper considerations are restricted to families of distributions
{F¢(A)} satisfying the following conditions (conditions A, for short):

(a) F'e(4) =0 for A< 0 and £¢(0,al;
(b) Fe(A)—>e(A—4,) as £—0;
(c) for all k> 1, the limits

_ k
(1) Cp = llmm
]

exist and are finite;

(d) there exists a value &,, 0 < &, < a, such that (5) can be inte-
grated termwise for all &, 0 < & < &, and that the order of lim and >
can be subsequently reversed.

The following theorem gives a general expression for test functions
of optimal C(a)-tests with respect to families of probability distribution
functions which satisfy conditions A:

THEOREM 1. Let {F.(1)}, £€(0, al, be a family of distributions satis-
fying conditions A. Then the corresponding optimal C(a)-test criterion for
testing H,: &€ = 0 against H,: &> 0 has the form
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while io stands for a locally root N consistent estimator for A,.
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Proof. As it is well known (ef. [1] and [2]), the test function
g = g(x, ) of the optimal C(a)-criterion has the form

g = q)f - a")zo’
where
2 — 0 logp (x]&) __0logp(]0)
3 0§ e=07 (plo al 1_;_0,
and
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it is easily seen that
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Replacing ¢ *4% by its expansion around A = i,,
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reduces (4) to
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Finally, in view of assumptions A,

(A—2)'dF¢(4).
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Using (3), it is easily seen that

(7) P2y =z(‘)—1°

6 — Zastosow. Matem. 13.4
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To find cov(ge, ¢;), first note that
X, d¥(e~*A%q) - ara for T 1
—_—_—— = —_— or ==
A ar dik ’

and, therefore,

X; d¥(e " 2% (et it k=1,
xooo@k o it k> 1.

An application of this formula gives

(8) cov(ps, p;) = E__1 N c_"____dk("_ux") | (‘}73‘_1)
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Using (6), (7) and (8), it is easily seen that

1 or d5(e*1°) |
T g Ak

This completes the proof of theorem 1.

COROLLARY. Let {F. (1)}, £€(0, al, be a family of probability distri-
butions satisfying conditions A. Then the optimal C(a)-test criterion of the
hypothesis H,: & = 0 against the alternative H,: &> 0 has the form

N .
DX —Ag)2 — X,
(9) Zy ="
Y Ven i,
if and only if ¢, > 0, while ¢, = 0 for k> 3. Here 4, stands for any root N
consistent estimator of the nuisance parameter 2.
Proof. The formula for Z, follows immediately from theorem 1.
In fact, simple arithmetic calculations show that

G B, d) X =

47} e Y

which combined with (2) leads to (9). On the other hand, if Z, is of the
form as given by (9), it can be easily shown that ¢, = 0 for k > 3.

Varg (X, 4,) =

3. A theorem on the class of sequences {c,}. In view of theorem 1,
the optimal C(a)-test with respect to the family {F. (1)}, £€(0, a], is
uniquely determined by the sequence {¢;} of limits defined by (1). This
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being the case, the question arises how to characterize the class of those
sequences of finite numbers {¢,} for which there exist families of distri-
butions {F.(1)}, £€(0, a], satisfying conditions A. A partial answer gives
the following theorem:

THEOREM 2. Let {F:(1)}, £€(0, a], be a family of distributions satisfying
conditions A. If ¢, > 0 and if there exists an even integer k, > 2 such that
¢k, = 0, then ¢, =0 for all k> 2. If ¢, =0, then ¢, =0 for all k= 2.

The proof of theorem 2 will be divided in lemmas 1 and 2. It is as-
sumed that assumptions A hold.

LEMMA 1. If k, and k, are even, ky, <k, and ¢, = 0, while ¢, > 0,
then ¢, = 0 for k< k< k,.

Proof. Without loss of generality, it can be assumed that E4A, = 0.
Let ¢> 0 and let k;, < k< k,. Now

EAf = [ AFdF(2)+ [ #dF.(2).

1At<e Al >€

Because A* < ¢F7%23% for |A] > ¢, it is easily seen that

[ AFaFea) < e [ 22dFy(2) < &% [ A2dF,(2).

1A >¢ 1Al >¢€

Thus, for any 0 < ¢ < a,

A% A e (A2
E G < fngE(l)—l—s 2f?dF5(l)

12 <e
and, therefore,

Ak Ake
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A<e
since [A|¥ << &¥~%12%1 for |A| < e. Hence, in view of the assumptions,

P e (A
] < e5F1lim f £ dF.(2) < & *1lim ~ AFL(3)

=0 )A1<e §-0

or
lex| < &7 "1y .
This implies that ¢, = 0, since ¢, > 0 and ¢ can be chosen arbitrarily
small.
LEMMA 2. If k, and K, are even, ky > k,, and ¢, = 0, then ¢, =0.
Proof. Similarly as in the proof of lemma 1, it is assumed that
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EA, = 0. Suppose that ¢, > 0. For any ¢> 0
EAp > [ #1dF(h).

A1<e

Since A*1 > 1% J%2 for |A| < ¢, it follows that

Bl > éah [ A*aF(2).
1A<s
Hence
k.

PR 2
ckl > Ekl_kz llm f —_— dFe (l).

£—0 lAj<e

To complete the proof of lemma 2, it is sufficient to note that by
assumptions A there exists ¢, > 0 such that
- ke
ckz(eo) = lim f— dF.(A) >0,

=0 1ii<e

since ¢, (eo) > 0 implies that ¢ > 0.

The proof of theorem 2 can be now completed as follows:

Proof of theorem 2. In view of lemma 2, the relation ¢, =0
implies that ¢,, = 0 for all even k, > k;. From lemma 1 it then follows
that if k, > 2 is even and if ¢, = 0. while ¢, > 0, then ¢, =0 for 2 <k
< k,. Thus the first assertion of theorem 2 is proved. To prove the second
assertion, note that, in view of lemma 2, the assumption ¢, = 0 implies
that ¢, = 0 for all even k. However, this implies that ¢, = 0 for all k > 2.

4. Examples. We shall present three different test criteria for ho-
mogeneity, each of them being an optimal C(a)-test criterion with re-
spect to a particular family of probability distributions characterizing the
inhomogeneity of the experimental units.

a. First, consider a family of random variables 4,, £¢(0,1], distri-
buted as follows:
For every £¢(0, 1], let

(10) P(de = ér) = 6‘10"5—(/1;/'5) ’

where » = 0, 1,... Then, whatever £> 0 is, the random variable X; has
Neyman’s A-distribution. It is casily seen that the corresponding family of
distributions {¥,(4)} satisfies conditions A. Moreover, since E[4, —1,] =0,
E[A4,—2]% = 2,¢ and E[4.—2,]* = o(¢&) for k > 3, it follows that ¢, = 0,
¢, = Ay and ¢, = 0 for k > 3. Consequently, in view of the corollary, the,
optimal C(a)-test statistic is given by (9) and represents an optimal C(a)-test
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criterion with respect to the family given by (10). Using the maximum
likelihood estimate 4, = X, it reduces to ‘

— N
N (82 , 1 —
= 22 S E' X._X)e.
Z\n ‘/2 (X 1), where S Ni=l( i —X)

This is the classical dispersion coefficient.

b. Next, consider a family of random variables A, = 4,+ R, £¢(0, 1],
where 4, > 0 is an unknown constant and R, stands for the Poisson
random variable with expectation equal to &. This implies that

r

&
P(A; = Ao+7) =€ 57—',

where r = 0,1, ... The probability generating function corresponding
to the distribution of X; has the following form:

Gx,(u|§) = exp{&(e' ™ —1)+ A (1—u) (1 &)}.

Clearly, the family of distributions {F.(4)} of the random variables
Agy E€(0,1], satisfies conditions A. However, ¢, =1 for k =1,2,...,
and the optimal C(a)-test function with respect to the considered family
{F:(A)} has the following form:

N - A A
3 [+ o) o5 — X,/

1

Z2N =

VN (6o —1—1/ky)

With the use of the estimate A, = X, this reduces to

g [~ {(L+ X)) X)%i 1]

Z"N =

] VN (X —-1-1/X)

This is also an optimal C(a)-test function with respect to the family
Agy £€(0,1], where A, assumes only two values, say 1, and 4,+1, with
probabilities 1 —& and &, respectively.

c. Finally, consider the family of random variables £¢(0, 1/2], where
Ag assumes the values 1,—1, 2, and A,+1 with probabilities £/2, 1 — &
and £/2, respectively. Also in this case assumptions A are satisfied, and
casy calculations show that ¢,;, =1 and ¢y, =0 for k. =1,2,... An
application of (2) and the use of 1, = X lead to the following optimal
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C(a)-criterion:

N
;: [e(X —1)/X)Yi+e (X +1)/X)%i—2]

Z v —
31\ 1/2N(e”i—{—e"”x—2)

5. Comments on the performance of optimal C(a)-tests for homo-
geneity. The weakness of any asymptotic optimal test is connected with
the question how large should the number N of observations be that
would insure a reasonable approximation to the limiting properties of
the tests. Comparing the three optimal C(a)-tests presented in this paper,
there is no doubt that the number N of observations insuring a reasonable
approximation for Z,,- is substantially smaller than the number of obser-
vations needed to insure the same approximation for Z,, and Z,,. More-
over, in view of theorem 1 and theorem 2, one is willing to conclude that
the test statistic Z,y converges to the limiting normal distribution faster
than any other C(a)-optimal test statistic.

Monte Carlo methods seem to support these conjectures with respeet
to Z,x, Z,yv and Z,;y. Under the null hypothesis the empirical distri-
bution of Z,, was always closer to the normal distribution than there
were the empirical distributions of Z,, and Z,,.. Also, under alternatives,
such as considered in examples b and ¢, the empirical powers of Z,, and
Z,~ never exceeded the power of Z,\-. Only in a few cases, where N was
as large as 400, the empirical powers of Z,\ and Z,, seemed to coincide
with those of Z,,- for some particular values of 4, and &.

Neyman and Scott [2] pointed out that Z,, has a remarkable prop-
erty of optimality, which they call robustness of optimality, namely that
Z,y 1s an optimal C(a)-test criterion with respect to the family of random
variables

AE = )'06/1'/27 5‘(0’1]7

no matter what the distribution of A is, provided that it has a finite
support and EA = E A% = 0. From the results presented in this paper,
it is seen that the classical test of homogeneity for the Poisson distri-
bution has — besides the property mentioned by Neyman and Scott —
some further remarkable properties of optimality.
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0O OPTYMALNYCH TESTACH (C(a) DLA WERYFIKACJI HIPOTEZY
O JEDNORODNOSCI ROZKEADU POISSONA

STRESZCZENIE

Pokazuje sie, ze dla weryfikacji hipotezy o jednorodnoéci rozkladu Poissona
test Z, oparty na klasycznym wspoélezynniku zmiennosei, jest optymalnym testem
O (a) dla szerszej niz to wskazali Neyman i Scott [2] klasy rodzin alternatyw nieskon-
czenie bliskich hipotezie o jednorodno$ci. Podanc sg zarazem rodziny alternatyw
(nieskonczenie bliskich hipotezic o jednorodnosci), dla ktérych test Z nie jest opty-
malnym testem C(a). Gléwnym wynikicm jest twicrdzenie podajace warunki ko-
nieczne i dostateczne na to, aby optymalny wzgledem danej rodziny altcrnatyw
test C'(a) byl identyczny z testem Z. Omowione sy tez krotko wyniki obliczen,
wykonanych na maszynie eyfrowej, w celu poréwnania mocy testu Z z dwoma innymi
optymalnymi testami O (a). Sugeruja one, ze dla weryfikacji hipotezy o jednoro-
dnosei rozkladu Poissona test Z jest lepszy niz inne optymalne testy C(a).



