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SOME PROPERTIES OF TRUNCATED DISTRIBUTIONS
CONNECTED WITH log-CONCAVITY
OF DISTRIBUTION FUNCTIONS

Abstract. Important properties such as unimodality, dispersivity, etc. have already been
Proved with the assumption of log-concavity of distributions (e.g., [7] and [8]). In this work we
give results concerning truncated distributions, especially translation and central absolute
Mmoments. They may be connected with those about monotone failure rate distributions in the
theory of reliability (e.g., [11). Some of them generalize outcomes of [2] related to the gaussian case.
ESPeCially it is shown that the assumption of log-concavity of density functions and distribution
functions leads to remarkable monotonicity properties.

1. Introduction. Let F be the left continuous distribution function (d.f) of
Some real random variable (r.v.) and |
S={aeR: F(@)>0}, d=infS.

be DEFINITION 1. We define the right truncated distribution at a point a of S to
the df. :

..I..r.._(_{z x<a
Fx)=<% Fl@ =~

1 Vx>a.

Such distributions can usefully be developed as probabilistic models in
Various fields: biology, physics, psychological sciences, etc.

In the following an r.v. with d.f F, will be denoted by X,.

Let :

+ o

M(a) =E(X,)= [ xdF,(x)
and e

+

M,a@= [ x—M(@'dF,(x), neN—{0},
be the expectation and absolute central moment of order n, respectively.

- 4 ~ Zastosowania Mat. 204



532 L. Mailhot

It is clear that the set # = {F,: a€S} is stochastically increasing, that is,
V(a, a)eSxS, a<ada, F,2F,.

This property implies that M is an increasing function. One of the purposes of
this paper is to give sufficient conditions on F to have an analogous outcome
for M,. So we shall generalize a result of Brascamp and Lieb [2] who proved
that for a gaussian distribution M, is at most equal to the absolute central
moment of order n of the non-truncated distribution. Our statements concern
essentially right truncated distributions but it is easy to obtain similar results
for left and two-sided truncated ones. We shall see that these results aré
narrowly related to log-concavity of some functions or measures so we recall at
first some definitions and properties. |

Let P be a probability measure on borelian subsets of R, and F the
associated d.f.

DEeFINITION 2. We say that P is log-concave if and only if for every
non-empty borelian A, and A, and real a, 0 < a < 1, we have

Plado+(1—a)4,) > (P(Ap)f(P(4p)' %,
where
aAo+(1—a)A; = {aay+(1—a)a,: ayed,, a,€4,}.

DEFINITION 3. A function f: R"—[0, o] is log-concave on a convex subset
D of R” if and only if Yae]0, 1[, V(x, y)eDx D,

floax+(1—a)y) = (f (£ ) =

It is clear that if P is log-concave, then F is also log-concave but the
converse is false; however, if P has a Lebesgue density £, P is log-concave if and
only if f is log-concave (see [11] and [13]).

In this work we shall frequently use the following simple lemma:

LEMMA 1. Let F be the d.f. of some r.v; then F is log-concave if and only if
V(x, y, z, t)eR* with x <y<z<t and x+t = y+z we have

(1) F(y)F(z) 2 F(x)F(?).

Proof. Assume first that F is log-concave; then there ex1sts a real number
a 0<a<l, such that

y= ax+(l—-o)t and z= x+t—yy—— (1—a)x+at.
Since F is log-concave, we have
F(y) 2 F*x)F'"%() and F(z) > F* *(x)F(),
SO
FO)F() > Fx)F(9),
that is, (1) holds true.
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Conversely, suppose that (1) is true. If F(x) =0, then obviously
2) Flax+(1—a)y) = (FE)FF)

$0 we may assume that (x, y, z, t)e S*. It is easy to see that (1) implies that F is
continuous on S. Taking first « of the form « = 27"k, neN, ke{l,..., 2"—1},
We can prove by induction that (2) is true. The fact that the set of such «’s is
dense in 10, 1[ and that F is continuous on S implies that F satisfies (2) for
every « in ]0, 1[, that is F is log-concave.

: 2. Truncation and translation: a property of the expectation. For (0, x) e R?
et

°F(x) = F(x—0).

The family & = {"_F : O R} is stochastically increasing. Let a be fixed in § and
O = ]— 0, a—d[. We can establish a necessary and sufficient condition for the
family

F,={(°F),: 06}
"to have the same property.

THEOREM 1. (i) # , is stochastically increasing if and only if F is log-concave.
(i) If F is log-concave, then Y0e[0, a—d[
E(X)<B(X+6), and E(X,) <E(X,.d<E(X)+0.
Proof (i) Let 8 <&, xeR. We have
| Vx 2 a, CF,(x) =CF),x) =1,
Vx < a, (°F),(x) = (* F),(x)
F(x—60) _ F(x-—0)
<> = .
F(a—0)~ F(a—0)
(i) The first relation is a simple consequence of (i).

E(X,) < E(X,,,) because F,.y < F, (even if F is not log-concave).
Integrating by parts we obtain -

< F is log-concave by Lemma 1.

1 a
E(X) = e _jm F(x)dx

and ,
- 2 (F(x+0) F
E(X,.)—E(X) = 0— | (Ff;j_ - T

-

)dxsﬂ

if F is log-concave, ie., the second part of (ii) holds true.

Remarks. 1. For a negative exponential distribution, right truncation
reduces to translation. ' '
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2. We cannot deduce any general relation between E((X+6),) and
E(X,+0).
. For example, if we take for F the df. & of the gaussian distribution
A(0; 1), we have
P'(a)
@(a)’

d'(a+0 "(a—0
B(X+6))—E(Xar) = 0+ gt — G

the sign of this expression depends on a (e.g., numerical calculations for § = 2
lead to the values —1.368 if a= —2 and +1.202 if a = +2).

The gaussian case is interesting: we shall prove later (Section 4) that the
mapping a— E(X,) is concave. We can also prove that

lim (a—E(X,)=0.

E(Xa)'x -

In fact (see [12]), we have: Va < —1, 31€]0, 1[ such that
&'(a)
@)= — T vy

@ A
E(X,) = —%((3 = a(1+-‘;5).

Nevertheless, we may compare E((X+06),) and E(X,) in the case of
a log-concave density. This result appears as a corollary to a more general one
connected with the Fortet-Mourier distance between two distributions.

DEeFINITION 4. Let P and Q be two real probability measures with
respective d.f’s F and G and finite expectation. The, Fortet—Mourier distance
between P and Q is defined to be the number

a(P, Q)= { IF(9—G0oldx

(also denoted by d(F, G)).

Remark. This distance has been defined and widely studied especially by
Dudley [3] and [4]; for a definition and properties of this distance in more
general spaces, see [14].

Let fand ¢ be two functions R— R* such that for every real 0 the product
(1) f(t—0) is Lebesgue-integrable and consider the function H: RxR—R
defined by '

| o fe—0)d
H(@, x) = =~

J o0 f@—6)ar
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Note that if ¢ = 1,_ , 4 and f is the density of a probability measure, then
H(, ) is the df of (X+6),.
THEOREM 2. If f and ¢ are log-concave, then
d(H(©,"), HE, ") < |6I.

Proof. We may suppose that f and ¢ are differentiable. The general case
Mmay be reduced to this one: convolution with log-concave functions can
Tegularize them. ' \

Let

P() =d(H(O,-), H®, ") = *_fd |H(0, x)—H(9, x)|dx,

Z0)= | 90)fC-0).

First, suppose that 6 > 0. We shall prove that
H@Q,)-H@,)>0 and ¥@O)<I
As ¥(0) = 0, we conclude that ¥(0) < 6. We have

1

0
EEH(G, X) = -Z—Z(—B)

(~20 | o0 C- 0

+ 00/ C-0dt | 90 (~0d}.

The numerator of this expression may be decomposed as the sum I, +1,,
Where -

Li= § 0@ § o0)(/~05 w0~ =01 ¢—0)d]du,

L= § o[ | 0@ (t—0)f u—0~f u—6)f'¢—8)de]du.

An easy calculation gives I, =0 and

+w0 x

L=1{ [ e@oe®Lf u—6f@t—0)—fu—06)f(t—0]dtdu<0

X — o

Since f is log-concave. Hence
9

00

To prove that ¥'(0) <1 we integrate by parts:

H@,)<0 and H@O,)—-H@® )20

[ o) f(u—0)du= —p(®)f(x~0)— | ¢()fu—6)du
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and

_JIC @) f'(t—0)dt = p(x) f(x—0)— _f @'(t)f (t—0)dt;
then
L= —9()f=0) | ¢()f(—0)dt

+ T 1T J6=070-0)0we0-p0)0 @) du

~0()f(=0) | 9()/C~)ds

since ¢ is log-concave. Hence

P'(6) = T (—%H(G, x)dx)

1 + o + o0
< 720) _fw @(x) f(x—0)dx “Im @) f(t—0)dt < 1,
Y@ <0 for every 0 =0.

For 8 < 0 the first part of our proof remains valid:

JHO,)<0 and HQ,)-HE,) <O,

¥(0) = j -——H(B x)dx

> — ZZ(H) I @(x) f(x—0)dx I (1) f(t—0)d.

Then 0 2 ¥'(0) = —1 and ¥(0) <6}
COROLLARY 1. Let X be an rv. with df. F, log-concave density and finite
expectation. Then VaeS, V0e[0, a—d[,
E((X+9),) <EB(X,)+0.
Proof. Take ¢ = 1,_, 4 in Theorem 2. It is easy to see that
F(x) F(x— 0)|
E(X+6),)—EX l
(@+0)-E= § [r0 - o)
Hence, with the hypothesis of log-concavity of the densny f (which 1mpheS

log-concavity of F), we have the following relations as consequences O
Theorems 1 and 2: V0e{0, a—d[,

E(X,) < B((X+6)) <E(X,)+0,
E(X,) < E(X,,¢ <E(X)+6.

= d(°F,, °F,).



Truncated distributions : 537

3. Truncation and dispersive ordering.

DEFINITION 5. Let X and Y be two r.v.’s with respective d.f’s Fy and F,.
We say that X is less than Y for dispersive ordering and we write
disp disp

XSY or FXQFY

if and only if V(a, B), 0 <a < B <1, |
Fz'(B)—F5'(2) < Fy '()—Fy (),

Where F~!(u) ='inf{t: F(t) > u}, ue]0, 1[.

This partial ordering, defined by Lewis and Thomson [7], has been
Studied especially by Bartoszewicz [1], Lynch et al. [8], Saunders and Moran
[15], Shaked [16]. Following Karlin and Novikov [5], Shaked stated that if

disp
X< Y and if ¥ is a convex function from R to R, then

E(¥(X—E(X)) < E(¥(Y—E(Y)
(if these expectations exist).

TueOREM 3. If F is log-concave, then the famtly F ={F, aeS} is
increasing for dispersive ordering.

COROLLARY 2. Let F be a log-concave d.f. and ¥ a convex function from R to
R. The mapping

am | P(x—M@)dF,()

defined on S is increasing. This is, in particular, the case for M,, the central
absolute moment of order n.

The proof of this theorem and Corollary 2 can be found in [10].

We can also deduce a property of two-sided truncations when F has
a log-concave density.

By left and right truncation of F at a and b, respectively, such that
F(b) > F(a) we define the d.f. F,, by

0, xe]—oco0, al,
Fus) = Fep—pa.  xela, bl
1, x€]b, +oof.
Let |
M(a, b) = +f° xdF,,() and  Wia,b)= +jw W (x— M(a, b))dF, ,(x),

where ¥ is a convex function from R to R.
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COROLLARY 3. If ]a,, b,[ < Ja,, b,[ and if the density fis log-concave, then

_ disp
(l) Faz,bz < Fahbl’
(i) W(a,, b)) < W(ay, b,).

Proof. Since fis log-concave, F and 1—F are also log-concave. Let G,
and G,, be the left truncated d.f’s of F at a, and a,, respectively. A s1m11ar
proof to that of Theorem 3 permits us to establish that

disp

G‘,2 <G,;

S being log-concave, so are G,, and G,,. We can then apply Theorem 3 to the
right truncation of G,, at b, and G,, at b,, that is F,,,, and F,,,,, to obtain

disp disp
FaZ:bZ S Faltbz S Fahbl

and (ii).

4. The special case of the variance of a truncated distribution. Theorem
3 and Corollary 2 give a sufficient condition for M, to be increasing, n > 1. For
n = 2 we establish now a necessary and sufficient condition for this result in the
case of continuous F. We also give a sufficient condition for a lattice
distribution, this case not being included in Section 3.

Suppose that F is the d.f. of some r.v. with finite variance. Let Fy; and
Fy,; be the first and the second primitives of F vanishing at —oco (these
primitives exist with the hypothesis on F). Integratmg by parts one can easily
estabhsh that

j xdF(x) = aF(a)—Fll](a),

1]

} x?dF(x) = 2F 3 (a)—2aFy,(a)+ a*F (a),

so that
® M@ =e-fu

- 2Fp@)  Fiy@
@ - MOTFe TPe

4.1. The continuous case. Suppose here that F is continuous. The following
three lemmas are useful to state Theorem 4 and applications.
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LEMMA 2. Let Y be an r.v. with values in an interval [a, b} and continuous
df. G. Let ¢ be a real function of class €' on [G(a), G(b)}. Then V(a, p)[a, b]
X [a’ b]s o S ﬁ,

8
§ @' (GO)GH) = ¢(G(B)— {G(®).

The proof of this lemma is obvious.
LEMMA. 3 If F is continuous, then

M,(b)— M, (a) = 2 (F&(x)— F(x) Fy(x)) F~* (x)dF (x)

Whenever b > a > d.

Proof. It suffices to apply Lemma 2 to the func.tiohsr G(y) = F(y),
?() = y~? and @(y)=y~', then to compare the integral on the right-hand
Side to the expression M,(b)—M,(a) obtained by (4).

LemMma 4. Let X =(X,,..-, X,) be a sample of size n of an rov. X with
log-concave density and ¥ a convex function from R" to R; then the r.v. ¥(X) has
a log-concave df. F.

Proof. We must prove that Voce]O 1[, V(x, y) e R?,
| Flax+(1-9)y) > (FOF(FO)
Following the definition of F we have
Flax+(1—a)y) = P(X e P71 (1—c0, ax+(1 —a)y[)).

The convexity of ¥ implies that

“YJ-o0, ax+(t—a)y[) o a¥ (-0, x[)+(1—) ¥~ (J— o0, y[).
Hence

Pg]— o0, ax+(1—a)y[) > Pf(d'F_l(]—CO, xD+(1—a) ¥~ (]— o0, y[)).

The density of X being log-concave, so is the probability Px (see [13]). Taking
the borelian subsets A, = ]— o0, x[ and A =]- o, y[ in the definition of
log-concavity we obtain the result. .

THEOREM 4. Assume that F is continuous. M, is increasing if and only if
Fyy, is log-concave on I = {0 < F < 1}. M, is decreasing if and only if Fpy is
log-convex on I.

Proof. Let H = Ff;j— FFpy;. The condition “F|,, log-concave on I” is
equivalent to “H(x) > 0 for every xeI”. If H > O on I, then M , is increasing on
1, and also on § by Lemma 3. :

: Conversely, assume that M, is mcreasmg and that there exists x, in I such
that H(x,) < 0.
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Being continuous, H is not greater than a strictly negative number on an
interval Jx,—¢, xo+¢[ < I. On this interval F must be constant (clse Lemma
3 would lead to M,(x,+¢)< M,(x,—¢), contradicting our hypothesis). Let
Jo, B[ = I be the largest open interval containing x, on which F is constant.

We have

F(xo) = F(@), Fyy(%0) = Fyyy(0) +(xo— ) F(2),

(xo—a)®

Fia)(xo) = F?(o)+(x — @) Fr1y(#) + Fi5(a)-

Then
(xo— “)2
2

Accordingly, there exists an interval [x—#, «] on which H is strictly
negative and F is not constant; hence, by Lemma 3, M,(a—n) > M,(«),
contradicting our hypothesis “M, increasing”.

The second part of Theorem 4 can be proved in an analogous way.

COROLLARY 4. Let F be a continuous df.
() If F or Fy, is log-concave, then M, is increasing.
(i) If F has a log-concave density, then M, is increasing.

H(®) = H(xo)— F*(@)—(xo—) Fiy, ) F(@) < 0.

Proof. It suffices to apply a well-known result (see, e.g.,, [11]): if a real
function is log-concave, then its primitive which vanishes at —oo is also
log-concave. Thus we find again a result of Section 3.

EXAMPLES. (a) As a special case we can give the gaussian one, the density
being obviously log-concave (but mixtures of gaussian distributions do not
have this property, in general). In this case we have

B L _P@ @
®(@) 9*(a)

M, being increasing, we find that M is concave.

M,a@=1-a = I—M’(a)'

(b) Consider now two independent r.v.’s X and Y with respective densities
f and g both assumed to be log-concave; then the density of X +Y is also
log-concave and Theorems 3 and 4 apply for this sum.

(c) Let X =(X,,..., X,) be a gaussian vector with independent com-
ponents A"(m;; ;) and let ¥ be the mapping from R" to R defined by

Plxy,..., x) = D, x?.
i=1

Following lemma 4 the r.v. Y=¥(X) has a log-concave d.f. Thus, as a special
case we find a y*-distribution with n degrees of freedom (we may notice that for
such a distribution the density is log-concave for n > 2 and log-convex for
n=1, but the df. is log-concave whatever be n).



Truncated distributions ‘ 541

(d) Statistical application. Let X = (X,,..., X,) be a sample of size n of an
‘I.v. X with log-concave density f. Applying once again Lemma 4 to various
Convex functions ¥ we can see that empirical mean, empirical variance,
Maximum, range, etc. are such that their central absolute moments are
Increasing functions of the truncation point a.

This property of the maximum X} is interesting for the point-estimator of
a. If f is log-concave, then the expectation of the quadratic difference between
@ and X7 is an increasing function of a. In fact, for the df. of X* we have

(F)'=(F"), and E(X}—a)®=var(X})+(a—E(X})*.
Our preceding results prove that var(X?¥) is increasing with a since F" is
log-concave with F; h(a) = a—E(X?¥) is positive and, following (3),

h(a) = g’%‘# with (F"),,(a) = _} F(x)dx.

_ P being log-concave, (F™)y; is .also log-concave; therefore h and h? are
Increasing. The result about E(X* —a)? follows. \

4.2. The case of lattice distributions. Assume now that the support of the
distribution is an interval I of Z (or a lattice of real numbers). Let
{(k, pp: keZ} and F be the distribution and d.f, respectively. With a hypoth-
esis similar to log-concavity of F one can prove the increasing property of M,.
However, the proof is more technical than that given in the continuous case; it
Can be found in [9].

THEOREM 5. Assume that
(5) VkeS, F2(k) > F(k—1)F(k+1).
Then M, is increasing.

COROLLARY 5. Assume that
(6) VkeS, pf 2 Px-1Pu+1-
Then M, is increasing. ‘

This corollary follows from the fact that (6) implies (5). Note that relations
(6) are stable by convolution (see [6]).

As examples satisfying the assumption of Theorem 5 we have Bernoulli,
binomial, Poisson, negative geometric distributions (in this latter case M , 18

Constant, as it is also true in the continuous case for negative exponential
distributions).
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