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AN EXTENSION OF CHEBYSHEV'S INEQUALITY

1. Introduction. Let F(x) be a probability distribution function
with [ «dF(x) =0, [a?dF(x)= 1, then, according to the well-known
inequality of Chebyshev [3] for any ¢ > 0 holds

1>2F@)—F(—t) =>1— 1/,

Several improvements of Chebyshev’s inequality may be found in
the literature concerning restricted classes of distribution functions ([1],
(2], 151, (8], (9], [10], [11]).

Among them, two papers of Barlow and Marshall ([1], [2]) give
extensions for the so-called Po6lya density functions of order 2. A density
function f(x) is said to be a Polya density function of order 2 or stron-
gly unimodal if logf(x) is convex over a finite or infinite interval (the
support of the distribution) and 0 otherwise. The distributions having
Poélya densities of order 2 form an important class of probability
distributions: they include the normal, exponential ete. distributions
and some other distributions of practical importance. Several papers,
e. g. [6], pp. 332-392, [4], pp. 15-34, [7], [12], [13] deal with various
properties of this class of distributions.

In this paper we suppose that F(x) has a density f(x) which is of
Poélya type of order 2.

Barlow and Marshall in their paper gave bounds for a subclass of
that class of distributions characterized by the eondition F(0) = 0. Our
paper does not contain this restriction.

In {1] and [2] the essential part of the solution of the problems con-
sisted in finding the extremal families of distributions. If # (F(z)) is
a functional defined on a family & of probability distributions, then

Y < & is called extremal with respect to 5 if sup o (F) = sup #(F)
FeF Fe¥

or inf #(F) = inf 5 (F). The extremal families were, in the mentioned
FeF Fe¥

cases, sufficiently small, thus the bounds could be evaluated by nume-
rical methods. Similar methods had been used by Royden [11] and
Mallows ([9], [10]).



In this paper we derive some extremal families. In general, these
families are larger than the mentioned ones and thus the computation
seems more difficult. We do not give the bounds except in some trivial
cases.

2. Bounds. Throughout the paper, probability distribution functions
and their density functions will be denoted by the corresponding capital
and small case letters, respectively.

Let us denote by # the family of all distributions with Pd6lya density
functions of order 2 (PF,) having the expectation 0 and variance 1. We
may suppose, without loss of generality, that, if Fe#, f(z) = F'(x) is
continuous from inside in the finite endpoints of the distribution (if such
endpoints exist). Note that f(x) is continuous anywhere else and f'(x)
is piecewise continuous. We remark for the sake of definiteness and
simplicity that we may assume that f’(x) is continuous from the left, i.e.
f'(x) = f'(x—0); this does not restrict the generality.

Let the families ¢,, 9,, 9, and ¢, be characterised by the following
relations:

Ge¥d,, if GeF and logg(x) is linear between — oo and ¥,, and
between y, and oo.

Ge¥Y,, if GeF and logg(x) is linear between y, and y,(— oo < v,
< ¥, < 00), and if G(y,) =0, G(y,) = 1.

Ge9,, if GeF and logg(x) is linear between — oo and ¥,, between y,
and y,, and between ¥y, and oo (y, < ¥,).

Ge9, it GeZ and logg(zx) is linear between y, and vy, and between
Yo and y; (— oo <y <Yy <Yy < o0), and if G(y,) =0, G(y;) = 1.
(For some %;,7 =0,1,2,3.)

In the above definitions, linearity of logf(«) on an interval includes
the cases where f(z) vanishes on the interval identically.

Our main result is expressed in the following theorems:

THEOREM 1. Let 0 <<, then it Fe% holds

inf G(t) < F(t) < sup G(t),

Ge¥y Ge%y
THEOREM 2. Let t, < 0 <t,, then if FeF holds

inf [G(t,)—G(1)] < F(t)— F () <sup[G(t)—G(t)].
Gefﬂ; Geg3
a. Before proving these theorems let us formulate two simple lemmas
in which f(x) and g(x) are piecewise continuous nonnegative functions
in (a, b) with
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LeMMmA 1. If f(x) crosses g(x) from below in their only crossing point x,
between a and b, in other words if

() for o<z <a,,
()

g\,
g(x), for =z <ax<b,
then

b b
LeMMA 2. If [af(2)de = [xg(x)dz and f(x) crosses g(x) exactly twice

¢n the interval (@, b) and in the left crossing point f(x) crosses g(x) from
below, in other words if for some =, v, we have

flo) <g(x) for a<o<ay,
f@) = gl@) for @ <<,

fle) <g(z) for =z, <ax<bH,

then
b

b
fwzf(m)dw <fng(w)dm.
a a
In both lemmas the equality sign occurs if and only if f(z) = g(«) a.e.
Both lemmas express simple and known statements; the second one
is a consequence, e.g. of the fact that the function (x—a,) (x—=,) (f(x)—
—g(«)) is nonpositive on the whole interval (a, b).
b. We begin with the proof of Theorem 2. First we consider the right
hand side inequality in the case when

f(t) >0, f(t) >0.

We determine the numbers a, and a, to fulfil the following relations:

21 © 2] oo
(1) flty) [ O Vdatf(t) [ 2w = [ f@)do+ [ f(z)da,
—o0 ty —00 12

t 00 4 o
(2)  f(t) flweal"”"l)dx+f(t2)f:ve"?(”’“tZ)dw = fwf('w)dw—{— fmf(m)da:.
— 00 ty —o0 ty

Let us denote the left-hand sides of (1) and (2) by P,(a,, a;) and
M,(a,, a;) the right-hand sides by p and p respectively. Let us denote
the solution of the equation P (a,, — o©) = p by a,; and if a,; < a,
the solution of the equation P,(a,,a,) = p for a, by a, = ¢,(a,) i.e.
P,(as, ¢1(a,)) = p. The function ¢, (a,) and consequently M,(a,) = M,(a,,
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@ (al)) are monotonically increasing functions of a, and — according to Lem-
ma 1 M,(ay) <p, M,(+ o) = u, therefore (1) and (2) can be satisfied by
the appropriate choice of a, and a,. If, for these a,, a,, the relations

4y > J'(t) and  a, < I (%)
f(t1) f(t2)
hold we define the function ¢g(x) as follows:
ALY it z<T,,
g(z) = ft) "l if 1w < Ty,
F(ty) e it T, <a,

where

o = logf(t,) —logf(t,) + as(To—1ty) — ay (T1— 1)
N T,—T, '

The constants T, and T, will be determined by the following rela-
tions

ty ty

(3) [ 9@)de = [ f(@)da,
4 &
ty ty

(4) fwg(w)dw = f zf (z) dx.

Let us denote the left-hand side expressions of these equations —
which are functions of T, and T, — by P,(T,,T,) and M,(T,,T,), re-
spectively.

Ht,<T, <T and T <T, <t, where

_ l_qgf(tz)_ logf(t,)+ a,t, '__aztz
a,—a,

T

(T is the abscissa of the crossing point of the curves f(t,)e™*~ and
f(tz)e“z‘“‘t”) then P,(T,,T,) is monotonically increasing in 7',, mono-
tonically decreasing in 7T, and continuous in both.

P(T,T,) = P(T,,T)>1—p
since

J'(ty) I'(t)

1= “a, .\ ! 2<
"= S T

and
fle) <g(z) if ¢t <ox<t,
and, by similar arguments,

Py(t,1%) <1-—p.



An extension of Chebyshev’s inequality 147

Therefore, let T,, be a value for which

P(Ty,t) =1—p,
and if ¢, <T, <T,,, then let ¢,,(T,) be such a value for which
Pl(Tn‘Pu(T])) =1l—p.

Naturally ¢,,(7,) is a monotonically increasing function of 7, and
by Lemma 1 M,(T,, ¢,,(T,)) is a monotonically decreasing function and

ﬂ1(t1¢11(t1)) = —p = Ml(Tu’ t)

i.e. the equation M,(T,, ¢, (T,)) = —u has a solution and thus, g(z)
can be determined according to the requirements.
If
I ()

53 1
(5) RN TTR

then we define g(z) as follows:

f(tl)ef'(‘l)(“—‘l)/f(‘l) if w<T, .

NIt +a @~ 1)) . ,
gl@w)={f(t)e 1 T ! if T, <s<T,

FENT )+ O+8 (Ty-T)+ay=-Ty)  if Ty < w,

f(t)e
~where the constants ¢’ and T, are determined to fulfil the equations (3)
and (4) and in the second step a, and T, > t, will be determined in such
a way that the equations

12 (%}
(6) [ 9(@)de+ [ g(a@)de = p,
— 00 iy
4 oo
(7) [ wg(@)dz+ [ ag(@)de = p
—00 ty
be fulfilled.

Now we prove possibility of the first step.
Let us denote the left hand side integrals of (3) and (4) by P}(T;, &)
and M7(T;,a’). Let us define T;, by the equation

Ty
f(t,) f PACCSUVEUVY M P,
y

and for any 7T; with ¢, <T; < Ty, the function ¢;(T;) such that
P} (T, ¢5(T1)) = 1—p. Again, with help of Lemma 1 we may conclude
that '

Mr(tn ‘P1(t;)) = —p = M:(T;u —00).
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M,(T1, ¢1(T})) is a monotonic function, therefore (3) and (4) can
be satisfied. It follows from Lemma 1 that g(¢,) > f({,)-

Now the left hand side expressions of (6) and (7) can be considered
as functions of T, and a,, let us denote them by P} (T,, a;) and M} (T,, a,).
The condition (5) implies that P} (oo, a;) > p. We define the function
@1 (T;) in such a way that Pj (T, ¢*(T,)) = p. If M7(ts, 91 (%)) < m, we can
prove by the same argument as before, that (6) and (7) can be satisfied.
It M (t;, @1 (z)) > m then we change the last definition of g(z) by putting
T, < t, instead of T, >1,. In this case we determine first the constants
a, and ¢ = f(t;) X eXP(f’(tl)(T{—‘tl)/f(tﬂ—l— o' (T,—T)) —|—a;(t2—T;)) from (6)
and (7) easily. The determination of the remaining constants with help
of (3) and (4) can be performed in the same way as in the first case.

The case a, > f'(t,)/f(t;) can be treated similarly.

c. Let us now suppose f({,) = 0 and by virtue of the log-concavity
F(t,) = 0 (and vice versa). First we choose the constants ¢, a to fulfil
the equations

ta ty
cf "Dy = ff(w)dw,
t t

) 2
cf eIy = f of (x) de .
£ &

By Lemma 1 we have ¢ > f(t,).
If F(t,) =1 then we define

0 if x>t,
gx) =1ce’™? if t, <ax<t,,
0 it x>1,.
If F(t,) <1 we choose the constant a,, to fulfil the equation

cf e~ gy — ff(w)dw.
ty ty

cf wenE= D dg > f xf () do
ty
then let us define
0 if x<t,
(8) g(z) = { e if ¢, <x<T,,
06a2(z_T2)+a’(T2—t2) lf T2 < w’

where T,, a, are chosen to fulfil the relationships (6) and (7). (Here
I, <1T,.)
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In the opposite case the definition of g(x) is the same with different
constants a’, a;, T5, ¢’. In this case first ¢’ and a, are to be determined
from (3) and (4) (again, Lemma 1 implies that ¢’ > f({,)) and in the
second step the values of a’ and T, are obtained from (6) and (7). In
this case t, > T.

The possibility of the mentioned choices follows in the same manner
as in the previous steps of the proof.

d. The case f(t;) >0, f(t,) = 0 i.e. F(t,) =1 can be treated in the
same way.

e. Now applying Lemma 2 separately in the interval (¢,, ;) and the
complementary set of the real line and summing the inequalities we
obtain for each of the above cases

0r = f xg(x)dr > f w2f (x)de = 1.
Since — being ?, < 0—
F(ty)—F () = G(l)—G(t1) < G(0,8)—G(0ty)
- Ga(tz)—Ga(tl)
and G;¢%; the second inequality of Theorem 2 is proven. Note that in
the case F(t,) = 0 we have G(t,) = G(o,1,) = 0 simultaneously.
f. To prove the left-hand side inequality of Theorem 2, let us first

suppose f(t,) > 0, f(t,) > 0. In this case we try to define a function g(x)
in the following way:

0 it »<T,,

Fl)e™= it T, <z <

f(t) 2™ if T,<ax<T,,
0 if Ty<w

with 7, <t, <T, <t, <T;, where

_ logf(t,) —logf(t;) + a,t,— ast,
o a,— a,

(9) g(x) =

T,

and the constants a,, a,, T, T3 are to be determined by the relations (3),
(4), (6) and (7).

In the first step we try to satisfy (3) and (4) by the appropriate
choice of a, and a,. Let us now denote the left-hand side expressions
of (3) and (4) by Ps(a,, a,) and My(a,, a,).

Again, P,(a,, a,) is a continuous function of ist arguments, and it
iIs monotonically increasing in a, and decreasing in a, if

logf(t,)—logf(t,) <a < f'(t)
ty—1t ST f(ty)
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and

f’(tz)_ <a < logf(t,) —logf(t,)

tz_t1

Similarly as before, we obtain the conclusions

Pz( logf(t,)—1logf(t,) ’az) _ P, (al, logf(t:) —logf(t,)
t,—1, to—1,

)<1_1’1

where 1—p denotes, as before, the right-hand side integral of (3) and
- ('@ (¢
Pz(f(l),f ( 2>) 1.
f(t) " f(t2)

Again let us define a,, in such a way that 1—p = Py(ayy, f' (£:)/f(%,),
and define ¢,(a,) for

J'(t)
f(t

0y < 6 <

so that
Pz(“u ‘Pz(‘h)) =1—p.
@z(a,) turns out to be monotonically increasing and, using again
Lemma 1, M,(a,) = M,(a,, ¢,(a,)) is a monotonically decreasing con-
tinuous function. Moreover, we obtain

Ma(a’u) < —u < Mz(

~,
2
——
sl
I
e
S ————

and thus (3) and (4) can be satisfied.
The solvability of the remaining two equations (1) and (2) can be
shown in a similar way: we define the function

f(t)e™ it @<,
g(@) = 1f(t,)e2" 2 it ¢, <a,
0 otherwise.

Then, similarly as before, we conclude that two limits 7',, Ty can be
found in such a way that

Ty T,
f g(z)dz = p, f x§(x)de = u
Tl T1

I T, <t and t, < T,, then the function g(z) defined by (9) is ap-
propriate for further investigations.

In the opposite case and in the cases F(t,) =0 or F(t,) =1 we
define g(z), instead of (9), in the following way:



I T,>t or if F(t;) =0 and F(f,) =1, g(xr) will be defined as
follows:

0 it x<Ti,
e it T <ax <t,,
ce2" it 1, <o < Ty,

0 it T,<u,
where given ¢ with 0 < ¢ < f(t,), the constants ay, a,, Ty, T, are to be
determined by the relations (6), (7), (3) and (4). (We dispose on the con-
stant ¢ later.) Clearly this is possible. It follows from Lemma 1 that
t, < T;.

Choosing ¢ = f(t,), we have a; >a,. When ¢ tends to 0, then
a, > — oo and a, - co. For reasons of continuity the relation a; = a,

must hold for some ¢,. In this case the definition of our function reducés
to the form

g(x) i

0 it a<T,
{10) g@) =16e" " it T <a<Ty,
0 if T, <.

The cases T, < t, and F(t,) =1, F(t,) > 0 can be reduced to the
above case by placing 1—F(x), —?, and —¢, instead of F(z), ¢, and t,,
Tespectively.

In each of the mentioned cases we can again apply Lemma 2 and
obtain that

oz = fng(w)dw < fa:zf(x)dw =1,

from which the first inequality of Theorem 2, except the case F(¢,) = 0
and F(t,) =1, can be proved in the same way as the first one.
In the case of F(t,) = 0 and F(t,) = 1 let us define g; (x) as follows:

(11) g (@) =1 ¢ —e
0 otherwise,

where the constants a and T are to be determined in such a way that
Gy €%, = 9,. Clearly this is possible.

Lemma 2 proves that T < {, cannot occur. Therefore @ (,)— G; (t,)
=1 = F(t,)—F(t,) and the proof of Theorem 2 is completed.

g. It remains to prove Theorem 1. Let us put in equations (8), (10)
and (11) ¢, = — oo, t, = t; the proofs remain valid and the distribution
function G4(x) will be an element of ¢, and in the same way G, and G,
become elements of ¥%,. This proves Theorem 1.
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3. Remarks.

REMARK 1. The bounds given in Theorems 1 and 2 are sharp, since
Y, <& (i =1,2,3,4). Moreover, if FeF—%; then the corresponding
inequality is strict.

REMARK 2. Applying Theorem 1 to ¥(0) and 1— F(0) and taking Re-
mark 1 into account we obtain the following exact bounds for F'(0) (FeF):

e <F(0)<1l—e .
Here 9, ~ 9, consists of the two distributions
0 if < -1,

e P R
and
‘ Gy(@) = 1—Gy(—).
REMARK 3. If ¢t > 1 and Fe# then the bound
P(t) <1
is sharp. Similarly, if ¢, < —38"% ¢, > 3"* then the bound
F(t,)—F(t) <1

is sharp, or in general, it is sharp if ¢, < m,, t, > m,, where m,, m, are
such that the distribution

x

[ e*azx
my
—my 1 M1 ST < me
[ e*dz

ml
has the first two moments equal to 0 and 1.

REMARK 4. Every of the families ¢, and ¢, occurring in Theorem 1
may be parametrized by a single parameter; consequently the evaluation of
the corresponding bounds can be carried out relatively simply. However,
this is not the case with Theorem 2. The question arises whether it is
possible to replace ¥, and ¢, in Theorem 2 by narrower families. The
authors will make efforts in this direction.

REMARK 5. Polya density functions of order 2 represent an impor-
tant family of density functions both from the point of view of practical
applications and with respect to the results of the present paper. These
results, however, can be extended to other families.

Let y(x) be a strictly monotonic, continupus function defined on
the interval (0, oo); let be lim p(x) = — oo, lim yp(x) = oo.

T—>40 T—00

Let us modify the definition of the family # in such a way that,
instead of Inf(x), 1,0( f (x)) should be convex over the support of #. Other-
wise, the definition of # should be left unaltered.
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Similar modifications are to be made in the definitions of the families
gly gz’ gaa 9,.

Evidently, theorems 1 and 2 are valid in this case too. In the proof,
the function ¢* is to be replaced by the inverse function of y(x).

REMARK 6. (c¢f. Remark 5). Let y(x) be a strictly monotone, con-
tinuous function defined on the interval [0, oo); let y(0) be finite and
let lim yp(x) = oo.

Let the definition of # be the same as in the case of Remark 5.
(Distributions of this type have always finite support.) Similarly, the.
same modifications concerning the definitions of ¢,,9,, 9,, 49, are to
be applied, and in addition, in the definition of ¥, and ¥; “linearity
between — oo and y;” and “linearity between y; and oo” are to be replaced
by “linearity between the left end point of the distribution and y;” and
“linearity between y; and the right end point of the distribution”, respecti-
vely. In these cases, additionally, continuity of the density function in
the involved end point is to be postulated.

Our theorems are valid in this case.
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