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FURTHER APPLICATIONS OF THE T*-TEST
TO TIME-SERIES ANALYSIS

1. Introduction. A test of the hypothesis that a discrete-parameter
process is purely stochastic, i.e. has a zero expectation all the time, and
that it is linear is described in [10], the alternative hypothesis being that
the process is composed of a purely stochastic linear part and of a deter-
minate periodic trend with an unspecified frequency and a zero temporal
mean. The power of this test — which we shall call the T*-test — tends
to 1 as the sample size tends to infinity.

Section 3 of the present paper extends the class of alternative hypoth-
eses for which the power of the T*-test is asymptotically 1. These re-
sults are then used in Section 4 to describe a T*-method of polynomial
trend estimation in the case where the degree of the polynomial is not
assumed to be known. It is shown (Theorem 4.12) that the proposed
estimator is asymptotically distributed as the least-square estimator in
the case of a known degree of the polynomial.

Methods of polynomial trend estimation published till now assume
that the degree of the polynomial is known. In contrast with these methods,
the procedure presently outlined not only dispenses with assumptions
on the degree of the polynomial, but also includes a test for the presence,
after its removal, of a determinate component of a wide class. Obviously,
trend elimination is an essential prerequisite of spectral analysis.

2. The description of the T*-test. For the convenience of the reader
we shall repeat now the definition of the T*-test given in [10].
It will be assumed that the investigated stochastic process {z} is
\

given by
2 = T+ Y,
where {z,} is linear, i.e.

o= D hge (=0, %1, £2,..)

g=—0o0
o0 oo}

with h, real for all k, b, = 0 whenever k <0, }|k| < oo, 3 kh} < oo,
k=0 k=1

{¢} being a sequence of independent equally distributed variables with
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zero means and finite moments up to the order 2M (M > 1), while {y;}
is a real function defined on ¢ =0, +1,...

The above assumptions about {x,} will be denoted H,,, — as in [10].

Let 2,, ..., 2y be a sample of size N, on the basis of which we want
to test the hypothesis H,: {2;} = {z;} against the alternative hypothesis
that {z,} = {&,+ ¥} (v, # 0).

For each N we chose two integers x4 and » in the following way:
if there is precisely one pair of integers (p, g) such that N = p - ¢q and
N5 < p <N, we put v = p, u = q; if there is more than one such
pair, we choose one with the smallest p; if there is none, we reduce the
sample size as little as possible to find (p, ¢) satisfying the above condi-
tions. So g, » — oo with N — oo; in the sequel by N we denote the size
of a sample after the reduction mentioned above, that is we shall assume

N = w.
We use the following notation introduced in [10]:
1 N-—-|s|
A P 2 e (8l =0,1,..., F),
N-1

1
Corp == D dim (@ =0,1,...,u—1)

u—1
14 .
Try = ——= D) (Chpp— O,

p—14=
1/2 28* kG*z
- T-2%0]

e

Similar symbols without asterisks will denote the same expressions
formed with {z,} instead of {z,}. .

According to Proposition 7.1 in [10], if R, is the r-th cumulant of
& (t =1,2,...), the distribution of T(R, R;?) tends to be normal with
a zero mean and a unit variance as g, » - co. On the other hand,

1/2 _ —2

ﬂ) E=RRT) s

Ty,v(k) = Tp,v(m4 m;Z)_ (—2— U
B,

while plim (7 y is a constant and, by Proposition 3.2 in [10], plim U,, is
N—oo 18,900

also a positive constant. Consequently

l +o0o for k< R,RN2,

2.1 limT, (k) =
&4 P = Lo tor k> 5

18,900
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and, therefore, if {, is defined by @({,) = a, where ®(-) is the standardized
normal probability distribution function, we have

0 for k¥ < R,N2,
(2.2) lim P(T,,(k) <l) =]a for k = R,%R;?,
e 1 for k>RR;2.

A test in which the critical set is defined by T ,(k) <, (—2<k
< R, R;?) is called a T*-test (or, more precisely, a T:,, (k)-test with para-
meters u,v and k). If there is no prior information about the value of
R, R, %, one can always choose k = —2, since —2 is an absolute lower
bound for R, R; 2. According to (2.2), the level of significance of the
T*-test is asymptotically equal to a or 0 for k¥ =R, R;2 or —2<Fk
< R, R %, respectively.

It was shown ([10], Proposition 8.5) that if {,} belongs to a set of
periodic functions with a zero temporal mean (more precisely, to a set
of functions satisfying the condition H' defined in [10] on p. 389) and
if {»,} satisfies ﬁs, the power of the T*-test tends to 1 with N — oo.

In Section 3 we shall define a more general set MM of functions {y;}
for which the value of the asymptotic power of T*-test is also 1.

3. The set of alternative hypotheses of the T*-test. Let M be a set
of all real functions {y,} defined for all integral values of ¢ and satisfying
the following condition: there exists a positive constant @ such that

N-1

k 2
(3.1) iy 2yt ) (1-4) Gy =@,
N-oo N ’
k=1-N
where
N-—|k|
Ly = max = g
N 1<t<let|’ Qr,~ N1k t; YeYerin

¥ |y <L (t =0, +1,...), the factor Ly* in (3.1) may be omitted.
We can take, as an example, functions {y,} satisfying H', which are bound-
ed; it follows from (8.2) in [10] that these functions belong to M.

Class 9t does not contain the sequence identically equal to zero,
sinee in this case the left-hand side of (3.1) is not defined.

Lemma 3.1. All polynomials belong to IN.

Proof. Let y,, () = ay+ ... +a,t™, with a,, # 0, be any polynomial.
For m =0, Q in (3.1) is equal to 2/3. Clearly, for m > 0 there exists
an integer N, with the property that N > N, entails '

Max Y, (8)| = (@ N"+... +ay|.
I<i<N ‘
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Computing the left-hand side of (3 1) we can, therefore, replace
Ly* by a,*N~*", Then, multiplied by aj, this becomes a quartic form

m

2 W o,0,1,80p 0 Or B
»,9,r,8=0
with
N-1 Nk N—|ki
Woare =N 31 3T @+ (k)2 D) o (ut [K)).

k=1-N i=1 u=1

But

N—|k| N—|k| NPtatl

0< X Pu+IkN< ) (t+|k1>f’+4<2ﬂ’+a —Ta1 o,

t=1

whence
Np+q+r+s—4m—1

o<W <
pane \ng[ (p+g+1)(r+s+1)
2_N?-Hl+f+3—4‘m
<
(p+g+1)(r+s+1)
Thus W, ,,,—> 0 unless p = ¢ =r = ¢ = m. In other words, putting

+ 0 (Np+4+r+3—4m—2)]

+ O (Np+q+r+8—4m—l) .

@y = ... = G,_, = 0 does not alter @, and
N-1 N-—[k .
Q = lim N—™~? " (b4 &)™
g 2 \g )
4m+2 ™ (N k)m+j+1 2
. T —4m—3 m e
- I+ ,;[Z( ) “mFiTD) ]}
1 . ,
= Hm2N—*"" (”.b)(m) . . Pm—i—i N — fp)2miti+e
N-»00 i; (m+-z,—|-1)(m+_7+1),g; ( )
1
= lim 2 N—4m-3 m)( )
N-soo ( (m-l—H-l)(m—H-}-l)
2m-i+i+2 N-1

% 2 (2m+@+]+2)( _1)iHi- INIZ JAm+2—1

k=1
» 22( )( )(m+z+1)1(m+9+1)

1,j=0

2m+i+75+2
1

2mtitit) s
x Q) ( 1 )‘ D a1

=0
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The last sum is nothing else but

n

N7 4y 1
where # = 2m+i+j+2 and k =2m+1—i—j; it is easily proved bj
induction that for any natural k> 1 and n >0
321250~ e
& l k41 E(k41)-...-(k+mn)’
It follows that

L\ [m\(m (@m+i+j+2)! .
¢- 22_(@)(3) (m+i+1)(m+j41)(@m—i—j+1)-...-(4m+3) ’

hence @ > 0, which completes the proof of Lemma 3.1.
THEOREM 3.2. Under Hy for any {y,} ¢ M the power of the T*-test tends
to 1 with N — oo.
Proof. We show that under Hy for any {y,}e M
phm T,v(k) = — 00,

B
1, ¥—>00

go that by the definition of the critical set in the T*-test the power of
this test is asymptotically 1.
Put
285 + KO3y
= ——U*——

B,y

Dy , Fy=DNT'Ly'Sy, Gy =NTL3'C},

Hy = N7'I3'U,,,
80 that Dy = (2Fy+kGy)/Hy and T, (k) = (4/2)"*(1—Dy).
We shall show that
plimFy = 3Q >0, plimGy =plimHy =0
N—>oo N—oo N-00

and, consequently, plim Dy = oo and a fortiori

N—oo

plim T% (k) = — oo.

B, ¥y—>00
As in [10], we put
N-—|k| N—1k|

1 2:
kN N — lkl < tyt-l"lkl’ kN N— Ikl yth'lkl’

Ry = B(22,,4),
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(32) V,[i(0), 0881 = D higyg'-- by (8=2,8,...),

g=—00

(3.3) Vo0 = ReR2RE+2 2 R2.
We use Proposition 2.1 of [10], which states that under Hn2 u (M =1)
for every r (1 <7< 2M) and for every set of integers (1), ..., %(r)

(3.4) E(wyyy - ... " @yy)
= YRV, (10, i) o R Vi (6 a) s s 5 (8)),

where the sum is extended over all different groupings of the set I = {i(1),
.y (7)), 1.e. over all sets of disjoint subsets of I whose union is I, two
groupings being regarded as distinct if, for some m and n(m,n =1, ..., 7),
2(m) and i(n) belong to the same subset in one grouping, and to two
different ones in another. Here {l,, ..., 1) denotes any permutation of
the numbers <1, ...,7) corresponding to a given grouping, i.e. such that
the sets <4(ly), ..., ¢(L,)>, . ovy Cll_ppia)s «eey ¢(l,)> form this particular
grouping. In view of the symmetry of the V’s with respect to their argu-
ments, any two permutations corresponding to the same grouping would
yield the same term, so that, for any grouping, the choice of the permu-
tation representing it does not matter, and, therefore, the sum is well
defined. The variables (1), ..., ¢(r) must be regarded as distinct although
in the end any values, not necessarily distinct ones, can be substituted
for them. It should be noted that in the right-hand side of (3.4) we can
confine ourselves to groupings in which each set is composed of more than
one element, gince R; = 0.
We shall also need the following formula immediately obtained
from (3.2):

N Ny
@5 | M. Y V,(j(l),...,j(l))] min (N, ..., Ny) 2 Il
iO=1 i@)=1 k=—oo
Turning to the sequence {E(Fy)}, we have ([10], p. 401):
AL,
©6) S =Syt > (1= (uat B Cun+ \
k=1—
LG Il:cl Ik
+§ (1———) (Ap,n+ B n)+ 2 (1‘——) Or, Qv+
k=1-N k=1—-N
| 1N [, Ik
+ Z (1—7) (Aix+ B Qv+ 5 (1——) Ohv-

k=1-N k=1—-N
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Since for {y,} ¢ M the limit of the last term divided by NL}, is equal
to 1Q >0, it suffices to show that the expectations of the remaining
terms divided by NLj} vanish in the limit.

We have

;im B(Sy/NLy) =0,

because ([2], p. 1569)
lim ESy = R:.
lm B8y = ) B

q=-—c0
Furthermore,
N-1
1 LAY
NLY E(Ek;‘ (1—-'17) -Ak,NGk,N)
) N—-1 N—fk
<GFCLRIR D D [Vls—t, 0, b))
k=1—-N 38,t=1

N-1 N-jkl-1

<SNZLRRI Y D |76, 0, k)|
k=1-N j=1—-N-I|kj

<z ml (Y m) = 0wz,

k=0

and we obtain a similar result replacing A, y by B, y; it follows that
the expectation of the second term in (3.6) divided by NL} tends to zero.
The same is also true for the third term, because

N-1 N—-1 N-|k]

k|\? 1
N“ILE4E(% Z (1—_[1-\7_') Alzc.N)<—2—N_3L§2 2 2 | Rl

k=1-N k=1—N g,t=1
< N 'Lz 2 IR, = O(N"'Lz?)
g=—00

and the result is the same when A4} y is replaced by B}y or A xBy y.
Since for the fourth term we have

N-1

(3] - B

k=1_N

N-'LY

<NLit ) IR = 0N Ly
g==—00

and since the fifth term has a zero expectation, it follows that

lim BFy = }Q > 0.

N->oo
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Now we show that var Fy = O(N'Ly’). We will examine variances
of every term of (3.6) divided by NLj, starting with the fifth term. Put

N—t "
=N 2 Yit 1kl (1——) Qr,n-
k=N
Then |y,| < L} for 0 <t< N and
N-1

k
va,_‘r(_N"lL;" Z (1— l—Nl) -Ak,NQk,N)

k=1-N
N N
2
= N—zLﬁsE( E }’gmt) = N—zLRIB E; VeVs Bt
t=1

8,i=1

<N D IR| = 0N Ly);
g=—o

a similar result is obtained when A4, y is replaced by: B, 5 and it follows
by the Schwarz inequality that the covariance of the terms in 4, y and
B, v is at most of the order N~'Ly? so that the variance of the fifth term
divided by NLj is O(N'Lz?.

From [8] we know that var Sy = O(N~!) and hence the variance
of the first term of F, is O(N>Ly%). Now we shall investigate the third
term. We have

o w(t 3 (-

N—-1 N-lk| N-Ill

1
=ZN 4 2 Z 2?/s+|k!yt+lklyu+lll?/w+lll[E(mswtw“mw)_

k,l=1—N s,t=1 u,w=1

— B (w,a,) E(2,2,)]-
The expression in square brackets is equal to '
Ry Vs, 8, u, w)+R3(V,(s, u) Vo (T, w)+ Va(s, w) Va(t, u));
therefore, the left-hand side of (3.7) is not greater than

INLY, Z [19a) (= 1) ( 3 1hgl)* + 298 — (k1) | D) 1R,))'] = 0(ZH)-
k,l=1— a=0 g=00
A similar result is obtained when A} y is replaced by B: y and?
therefore, by applying the Schwarz inequality to the term in A4; yB; »
we infer that the variance of the third term of (4.6) divided by NLj is
O(N2Ly%.
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Reasoning in the same way as in [10], p. 404, we can show that the
variance of the second term divided by NLj is also O(N 2 Ly*). Similarly,
we can apply the argument of [10], p. 405 (with L3, taken as an upper
bound of Q, y for all ¥ and N, |k| < N), to show that the variance of the
fourth term divided by NL} is O(N~2Ly*). The variance of the last term
of (3.6) is zero; hence, compared with the variance of the fifth term divided
by NLj, the variances of the other similarly divided terms are asympto-
tically negligible and varFy = O(N'Ly?). Consequently, in view of
lim EFy = 3@, we have

N—>o00

(3.8) pliim Fy = Q.

N—>»00

Now we shall show that plim Gy = 0; as is well known, it is suffi-

N—-oo

cient to show that lLi.m. Gy = 0. We can write

N—>oo

Gy = N7 'Ly*(Con+244 v+ Qo n).

But
NLyECsy = O(NLy"), NLyQiy< N2,
N
NZLPBALy = N°Ly Y 4999, B(2,0,0,3,)
8,t, u,w=1
N
< .N_6L374 2 {|m4”V4(3, U, w)|+Ry |V, (8, u) V. (2, w)| +
8,t,u,w=1

+R2 | Va(s, w) V, (2, u)|+R3 | Va(s, ) Vo(u, w)|}
< VL (N3 ) l)'+ 3363 3 IR)) = 0L,
k=0 =—00

Applying the Schwarz inequality several times, we find EQ%, = O(N~2%);
consequently,
(3.9) Lim. Gy = 0.

N—>oo

In order to prove that plim Hy = 0, it suffices to show that EH,

N—>o00
and var H tend to zero with u,» - oo. But according to formulas in the
proof of Lemma 5.2 in [10] we can write

(8.10) Hy =N'Ly'%., = N‘ILX,“# [%:,,,—v((]:, n—ECy v+

p—1 p=1
+2 3 Qs ua 427 3 (O = O N0~ o)

p=0
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-where

: 4
-1 2
QO,’,p = 2, Yirprs

t=1

Ao,-,p = ”_12?/:+prwt+p- ®=0,1,..., p—1),

{=1

Y, =, + 420, 49D

n,

14
Uy = D) (Oupp— Bl

According to Lemma 3.1 in [10], E#,, = O(1); furthermore,

B, <~ szzm, d<IZv D) IR = 0(Zh),

8,i=1 g=—00

\BP,| < w7 ZLN 2 B2} o ]

t,u=1
<2u-12LN|snai 3 17,0, 0,01 = (T
g=—00

and, consequently, E%,, = O(LY}). Now

(3.11) Ev(C; y— EC, x)’
=vE (Co,N— 0)2 +4vE (Oo,N— 0) Ao,N+4"’-EA(21,N .

Since

N
E(Con—EBo)' = O(N7Y), Baly<IZN* Y |R_| =00 "L4),

8,i=1

it follows that |E(Cyx— R,) A, x| i8 O(N~'Ly); hence the left-hand side
of (3.11) is O(Ly ™). The third term in brackets in (3.10) is not random
and it is at most 4v» L}, while the mean of the fourth term is zero. Con-
sequently, EH, = O(u"'). Now we turn to var Hy. From Lemma 3.1
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in [10] we know that var#,, = O(g™'). On the other hand,

p—-1 v

var P, =N Y 3 Yl YuioVoie X

9,q=0 8’t’uuw=1

X [B (st pv Pt 1 v Pt gv Tprgr)— B (@0 By ) B (@orgr . |
=1 v

<HLy ) D IR TVis—ut@—g)r,t—ut(p—g)v,0,0—u)+

9,9=08,t,4,w=1

+2-Rs—u+(19—q)’ Rt"‘"""(p —ar I :

Now if s—u+(p—¢)v» =k and t—w-(p—q)» =1, this leaves us
with at most 2x joint choices of p and ¢, and when p and g are given, we
can choose each pair (¢, ) and (¢, w) in at most » ways. Thus a term
R, R, repeats itself at most 2u»® times. Similarly, if the arguments in V,
are given, we have at most 2u choices for the pair (p, ). Furthermore,
we have at most » choices for the pair (w, ») and this choice determines s
and ¢ Thus a V, with a given set of arguments repeats itself at most
2uv times. Thus

var 2 < I {12, -‘I%I(Z Pl 45 2 R)) = 0w 4.

An argument similar to that of p. 397 in [10] leads to wvar #®) =
= O(u~'LYy), so that the variances of %,,, #\, and %%, (and, con-
sequently, all covariances) are at most O(p—lL"' )3 henee var %,
= O(u~' Ly). It is known (see e.g. (20) in [11]) that B (C, y— R,)* = O(N—z),
while it has been noted that BAj y = O(N2L%,), so that by the Schwarz
inequality E(C; y— EC,n)* = E(Cox— Ry+24, 5)* = O(N2L%), and,
therefore, according to (3.11),

var [v(Oy n— ECox)*]1 = O(u2L%).

The variance of the third term in square brackets in (3.10) is zero.
The last term can be treated in the same way as a similar expression
in [10], p. 400: we cap. decompose it into two terms,

p—1

22 D) (0rpp—Bo) (Qupp—Qox)  and 4~2Ao,,,<e.,,.,,, Qo))
=0

where

Qo,v,p = "—12?/§+pv (p = 0, ceey p—1).

t=1
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The expectations of the squares of these terms will not be smaller
in absolute value if {&,} is replaced by {|h;|}, R, by |R,| and @, ,— Qo n|
by 2L3%, because we have, for instance, for the first term

s-1 2
E[zigo(0.,,”,,,—Ro>(Qo,,,p—Qo,N)]
2 ZIQo,,,—Qo w1 1@o0.,0— Qo1 1B (Cl,v,5— Bo) (Cip,q— Bo)l,
»,9=0

and E(C,, ,— Ro) (Cy, ,— Ro) is a sum of products of R, or R and V,(-)
or Vy(-) V,y(*). Denote by C,. ny Cony Ao,vps Ao,ny Bo and {x} the expres-
gions arising out of C,, ,, Co ) Aosps Adons Bo and {x;} respectively as
a result of these changes. The process {,} 1s still linear and, therefore,
var €, y = O(N~") and
- ot 2
E(ml+°-°N:+wN) — O(N—l);

it follows that the expectation of the square of the first term is bounded by
16 Ly u* B(uCy y— uR,)* = O(vu™' L),

and the expectation of the square of the second term is bounded by

u—1 2 p—-1 9 .
B(e e 3 4,.) <osstun(3) M)
p p=0 p=0 t=1

2+ ...4+25\? _
. ¥ N)=0(vy LY.

= 64L}V*E (

Consequently, the variance of the last term in brackets of (3.10)
is O(vu~'LY), and since the variances of other terms in (3.10) compared
with it are asymptotically negligible, we have var Hy = O (v *u2Ly*);
therefore plim H, = 0. In view of (3.8) and (3.9) it follows that phm Dy

N—o0

= + oo and Theorem 3.2 is a direct consequence of it. Now we sha.]l prove
a very intuitive property of the power function of the T™*-test in the case
of functions {y,} which, differ very slightly from zero: the power of the
test for finite samples differs very slightly from the level of significance.

Let {6,} be an increasing sequence of natural numbers and denote
by T, ,(k|{d,}) the function T, (k) with 2, replaced by z,+Y,/d,.

THEOREM 3.3. For any given N, k, {y,} and {é6,}, the sequence of the
distribution functions of T ,(k|{6,}) tends, with n — oo, to the distribution
Sunction of T, ,(k) at every comtinuity point of the latier.
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Proof. For each 1 <t N

U
lim-2& — o,
n—co n

so that by the extension to the multivariate case of the convergence theorem
given by Cramér ([3], 20.6) the sequence of the distribution functions
of (,+¥1/04,---s ®n+Yn/d,) tends to the distribution function of
(®y, ..., ®y). The function T,(k|{d,}) being a continuous function of
{2+ Y1/0p, .. On+Yn[0s}, Theorem 3.3 follows, then, from Theorem 2
in [6]. In a similar way it can be proved that by making the difference
between any given functions {y{"} and y{?} sufficiently small, the absolute
difference of the powers of T*-test for both functions can be made arbi-
trarily small.

It should be pointed out that in the case of an exponential trend
y, = a* (a # 0) the power of the T*-test is asymptotically equal to zero,
which can be easily checked. This restricts the applications of the test,
but nevertheless the area of such applications is ample in view of the
fact that polynomials and periodic functions belong to the class IN.

4. The T*-method of polynomial trend estimation in the case of an
unknown degree. We shall consider the case of 2, = x,+ y,,(t), where the
degree m of the polynomial y,(?) is finite but unknown. This form of {z;}
will be assumed throughout this section. It was shown in part 3 that
{Ym (D)} e M.

When m is assumed to be known, the least-square method is usually
recommended (see [3], p. 126). A definition of a particular least-square
estimator using orthogonal polynomials was given in [6], p. 143. Now
we shall repeat this definition with a few minor alternations dictated by
the slightly different nature of the problem tackled. Let {®,(t)}, ¢ =0,
..., m, be the sequence of the m+1 first Chebyshev polynomials ortho-

gonal on 1,2,..., N, that is

q
a-8 (gMH%(g+ ) (N —s—1)! ,

where 4® = u(u—1)-...  (u—8+1).
T
(4.2) by, = (') N(N*—1%)-...- (N*—¢%)
T (29)!(2¢+1)! ’
then
Y for ¢ # ¢,
. D (1D, =
(43) Z (%) b, for i =gq.

o~
]
-
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The polynomial y,,(¢) can be represented in the form

Ym(t) = D AB,(1),

g=0
where
(4.4) 4,= —-Zym(t)qb (®)
by t=1

and the least-square unbiased estimators zfq of 4, are
. \

L1
(4.5) Ay == Y 2®,() = A +a,,
where
1 N

(4.6) a, = —b—Zw,qb ().

t=1

Therefore

(4.7) Tm(®) = D AP, (1)

a=0

is a least-square estimator of ¥, () in the case of a known m."
Denote by {#(j)} the j-th residuum of the process {z;},
4 =z—y,t) (t=1,...,N;j=0,1,2,...),

where @f(t) is defined by (4.7) with m replaced by j, and let T%, (k) be
defined as T ,(k) with the original sample (z,, ..., 2y) replaced by a “re-
sidual” sample (N, ..., 2. To unify the notation it will be convenient
toput ¥_,(t) =0, T,‘,,,l)(k) T:,(k), and T%, (k) = 0 for 2z, = ... = 2y = 0.

We define as follows the random va.nable m, which is a function
of (24,...,2y) (and also of u, », £ and @, where a < 0,5):

. —1 it TGP (k) > &,
m = .
j if 7Y, (k) <¢, for i = —1,...,j—1 and TG, (k) >¢,.

The sequence {y; (%)}, t =1,..., N, is the proposed estimator of
{y ()} in the case of an unknown m. In other terms, we take as an esti-
mator of ¥, (f) a polynomial §,(t) of the least degree j for which the hypoth-
esis that the residual process {z{’} is purely stochastic is not rejected
by the T*-test; thus we can say that {z{™} is a good approximation of the
linear process {r;} in the sense of the 7T"*-test.

The presently described method will be called the T*-method of poly-
nomial trend estimation. The asymptotic distribution of ¥, (¢) is given in
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Theorem 4.12, while Theorem 4.13 formulates an important property
of max |§; (1) — ¥, ().

ISISN
Put )
(4.8) %) = Yu(®)—y;(®) (j= —1),
i
(4.9) yit) = — D a@,(t) (j=0),

q=0
(4.10) W;(t) = Aj 1@y (4o +45P5 (1) (—1<j<m).
It follows from the definition of ¥,(¢) that

5(1) — 75 (?) for j>m
it = W;@)+y;(8) for 0<j<m
and 6_,(f) = W_,(t) = Ym(?)-

Let Oy, ((,7), , U9, and 8 stand for the O}y, C;,,, Uk, and Sy
with (2, .. zN) replaced by the residual sample (20", ..., z{)), and put
N[k

I 1
APy =5 2 3,8 (t+ 1kl
N—Ik[
By = |k| Z By 07 (F)
N—|k]|
f)
\
AP, Z‘ Byiw 85 (84 9),

=1

Qf, =+ Y &(t+pm) (2 =0,...,5—1).
t=1
In subsequent considerations we shall use the following formula:
under H,,, for any s =1,2,... and any set of integers (i(1),...,4(2s)),
(4.11)
N Nag -
2 E(w@(l) S ees ﬁi(28))
i)=1  ie)=1
where I, is the number of possible groupings of the set (i, ..., %,),
R = max (Imf [y eees Imrkl)7 =22, rt... 1 =1,
(ry,-- ,fk)

and N,,..., N, is a permutation of N,,..., Ny, such that N, <N,
<-..< N,,. Formula (4.11) is a simple consequence of (3.2), (3.4) and

< LR D gl Ny Ny Mo,
k=0
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(3.5), because in view of (3.4) the left-hand side of (4.11) is bounded by
RE) multiplied by the absolute value of a sum extended to all groupings
with terms being products of factors of the same form as the left-hand
side of (3.5), so that (3.5) may be applied to them.

We shall also use the relation (see [6], p. 145)

(4.12) max |8, (8)] < M, (g+1)7,

1<I<r
‘where

(¢!)(g+4)!
max - —.
o<i<a (29)! (1) (g—J)!
LeEmMA 4.1. Under fls, forj=m

plim (U9, —U,,) = 0.

By, ¥—>00

Proof. By the definition of UY

B,y

vl p-l
PO =T, == D',
‘where p=0
(413) 8, =2(Cy,,—Co ) (240,104 ,— 24— Q)+
A, 0, 240N~ Q)

We investigate the order of magnitude of

M, =

1/2 (77D 2 _
B (U~ U, ==t ZE(S 8,)-

p,r=0
For convenience we shall introduce the notation which will be used
only in the course of this proof:
Cp =2 (Oo,v,p_ Co,N)7
B, =240} ,+0f) ,— 24—y,
Ap = 2A((){a):,p7 A = 2A(()7,)N! Qp = ng.),p, Q = Q(j) .
Consequently, ES,S, = EC,C,B,B,+ EC,B,B;+ EC,B,B},+ EB; B;.

»

First we evaluate the order of EA%, EQ;, EA* and EQ*. In view of (4.2),
(4.11) and (4.12)

BAY = B[y 3 a4, (4 p0)]'
t=1 .
i v N

=yt Z Z 2 E(@y +py:... @, +Pv @ ... ,) X

Qye..s03=0 ¥5,...,84=1 8y,...,84=1
y Py (81) - * Dy, (84) * Py (b1 -17) - .. - By, (tat+ D)
by * ... b ’

1 q,
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hence for 0 < p < p—1 BAj is O(»~*N~?). Similarly, we find that EQ},
EA* and EQ* are O(N~*), so that by the Holder inequality EB} is
O(»~*N~?); consequently, BB} B; is O(»~*N"?).

Tt is known [8] that B(C,,,— R,)* is 0(»=2) and B(C,y— Ro)* is
O(N-?%) so that EC, = O(»~*). Therefore, by the Schwarz inequality
repeatedly used E(C,C,B,B,) is O(»2N~') for 0 <p,r<pu—1, and
E(C,B,B) is O(»*N~%?). Hence ES,8, is O(»*N~'). It follows that
B0, —1U,,) is O(»™'), which completes the proof.

COROLLARY 4.2. Under Hg, for j >m

plim Uz(tf)v = ,0-
#,9—>00

The proof follows from Lemma 4.1 and Proposition 3.2 in [10].

It is often taken for granted that the coefficients of a polynomial
trend fitted to a linear process by the method of least squares are asympto-
tically normally distributed. However, since in further considerations
the knowledge of the form and parameters of this distribution is essential
and since a diligent search of the existing literature of the subject failed
to produce a ready answer, a detailed investigation of this matter was
called for, and its results are set out in the following.

LEMMA 4.3. Under Hypy(M > 1), the distribution of bl*a, tends, with
N — oo and with an arbitrary g, to be normal with a zero mean and & variance

eéqual to 3 Ry, the moments up to the order 2M tending to the respective
k=—00

moments of this distribution.
Proof. According to (4.7),

N
a; = b7 2 D, (t) .
=

Hence Fa, = 0.
Furthermore,

N
var(by/a,) = 7' D) ®,(t)0y(u)R,_,.

t,u=1

For a given t—u = k, the coefficient of R, can be represented as

N—|k|

bt D) Po(t)B,(t+ [K)).

t=1

But b;! = O(N-%*Y) and, for 1<t< N—|k| and for a fixed %,
&, (1) is at most O(N?) and D, (t+ |k|)—D,(?) is at most O(N??).

Zastosowania Matematyki XII, 1. 4
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Hence
N—|k| N—|k|

bt Y DB (t+ k) — bt Y Bi(t) = O(NTY),

t=1 t=1

while, clearly,

N
b1 D BB, (+ k) = O(N7Y).
t=N-|k|+1

Hence, in the limit, the coefficient of R, tends to

N
bt Y Bi(t) =1;
=1
therefore, by Lemma 18.1 in [8]

lim var(b}?a,) = Z R,,

N-—>o0o k=—00
the coefficients of R, being, clearly, collectively bounded. Furthermore,

the coefficient of «, in bla, is b;'’®,(t) = O(N~'?), and Lemma 4.3
follows from Lemma 2.2 in [10].

LeEMMA 4.4. Under ﬁm (M = 1), for any finite set of values of q, the
joint distribution of the various b},’ 2a, tends to be normal with zero correlation,
t.e. they are independent in the limit, and all the momenis up to the order
2M tend to the appropriate moments of this distribution.

Proof. For arbitrary ¢, and ¢, (¢; # ¢s),

* N

B (b2 a, by a,) = Vb, by, D' @, (1)@, (0) Ry,
tiu=1

As in the previous lemma, it can be seen that in the limit, for any

fixed %, the coefficient of R, can be replaced by

N
D) &, (1D, (1) by, by, = 0.

t=1

Taking into account Lemma 4.3, it follows that any linear combi-
nation of b;a,, ..., b;?a, tends to be normally distributed, since the
coefficients of the x’s still satisfy the condition of Lemma 2.2 in [10].
Lemma 4.4 follows, then, by Proposition 7.1 in [7].

LEMMA 4.5. Under Hy, for j > m

plim 4 (89 — 8y) = 0.

By y—>00
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Proof. According to (3.6), when j>m

N-1
w9 — ) =V ) (1= B (4B Cu+

k=1-N

N-1 N-1
+g Z’ (1——'76—') (ADy+ BP0+ Ve Y ( 'k') Cr.n @y +

1— —
k=1-N k=1-N o
N-1 N-1
' 00 4 Bor o o Y L
w3 (- ) e Eoen+ 2 3 (- Mo,
k=12—N N 2 k=12—'N

It suffices to prove that each of these five terms tends to 0 in the mean
a8 N — co. We begin with the last. We have

L !
(- ) et - o Y SOV NCENCEL

21,22=0

and, further,

(4.14) uE[(l—'—l’;') k’( ”)QS}V]

N—]kl N—|1|

=uN~ Y (Blag e 0) D) D) By (8P, (t 1K) Py (t) X

ay,--/2g=0 t1,ly=1 t3,t4=1

X¢q4(t2+ lkl)@qs(ts)qjq‘(ta"i' _|l|)¢q7(t4)¢qs(t4+ |l|)}

But the product of the @’s is O(N“*-*%) gnd since, for any ¢, .., g
there are at most N* such products, the multiple sum with respect to
t, s, 1y, 8, is O(N9+-T9%%%), On the other hand, by Lemma 4.3

E(g, oo Gg) = Ollbg * -+~ b)) 7] = O(N-(@uttegts)),

Taking into account the finite and constant range of the ¢’s, we find
that the left-hand side of (4.14) is O(uN—*). Hence

Ve N0 [ ®Y o0eT
(4.15) E[——2’i 2 (1—7) 2’1%] — O(uN"?).
k=1-N
Passing to the second term, it suffices to consider
N (I
e 3 () 4,
k=1-N

since the same arguments will apply to

N-1
Vi (1_ ﬂ) BOZ

N
k=1-N
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and the Schwarz inequality will take care of the covariance of these two
terms. Now by the definition of 4{)y and by (4.9)

N-—lkl

(1—m) APy = —N Zaq ) 0yt (k).
=0

In view of the finite and constant range of j, when dealing merely
with orders of magnitude, we can omit the summation with respect to j,
calling the simplified expression A4 (k,n,q). Then by (4.6), (4.11) and
(4.12)

(4.16) E[(l———)A(k N, )(1—%'—)41@ ,q)]
N-—{k] N-l
=ul=* 3 > Bk, 0, 3,0,)P, (04 k)8, (ta+ k) By (ts+ ()P (ts+ 1)

tl,‘zBI t3,t4='1
N N—|kl N-{l 4

—uit Y Y Y E(”w%w,)qs(ul)  + By (1) Py (t+ 1]) X

Uy, ty=1 ly,lo=1 t3,t4=1 i=1
X Dy (ta+ [K|) Py (ts+ [1]) - Py(ts+ ) = O(uN"*)
and, consequently, uniformly
) 490 ( |1|) ] _
—_— 7 A(f) — N4,
,uE’[(l ¥ Ay |1 ¥ O(uN~"%)

Taking the sum of O(N?) such terms, we find

'/_ N-1 Ll\2 2
o[5S o] -

k=1-N
and further
Ve (M 2
L (7) N 2l — —2
(4.17) E[ - 2 (1 N)(A v+ B )] O(uN™).
k=1-N
By (4.15) and (4.17), the Schwarz inequality yields
Ve %[\2 . .
wis) B[ 3 (1- T v paen] = oy,
k=1-N
But we know from the asymptotic distribution of S, that
N-1 l’cl 3
a[Ve 3 (12 da] = o0
k=1-N

hence by (4.17)
(4.19) E[V;

N-1 2

> (1- 2 e+ B O] = 0ur-

km=1—-N
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and by (4.15)

N-1

wz)  B[Ve Y (- avepa] = 0w,
k=1—-N
Now Lemma 4.5 is a direct consequence of (4.15) and (4.17)-(4.20).
LEMMA 4.6. Under Hy, for j >m
plim 4 (C{%—Cf &) = 0.

Uy ¥—>00
Proof. The argument is the same as in the previous proof, except
that the summation with respect to k is omitted and % is replaced by 0.
THEOREM 4.7. Under Hg, for any k and m = 0
plim [T, (k)—T,,(k)]1 =0  for j>m

Hy¥—>00

plim TO,(k) = — o0 for —1<j<m.

B, y—>00
Proof. According to Lemmas 4.1, 4.5 and 4.6, to Corollary 4.2 and

to a convergence theorem given by Cramer ([3], 20.6), we have under ﬁ,
for j>m >0 and for any %

plim [TJ), (k) — T, (k)]

b,7~>00 | )
12 ) _ogQU)__ kC(i)
— plim [(ﬁ) ur EON T,,,,(k)]

by, v—>00 2 U(")
plim { ‘/;[U — 28— koz N]
>0 Ve U9,
l/y[U(’) ”,9—2(5'5{)——SN)-k(Cgfﬁ—Gg,N)] —T,,(k)
V2 7Y, "
1/2U _ZSN—kCgN
- pun {(£) )
_ i {( T,,,,_(k)) VU, — Uffl’d} —0
B, y—>00 ]/[l Ug’)' ’

and the first part of the theorem is proved.

If j <m, then 2f) = z,+y;(¢1)+W;(t) and W,(¢) is a polynomial of
degree m. From the definition of y;(f) and W;(¢) it follows that the order
of magnitude of E(UY,)* is for j < m the same as that of E (U} ,)* because
the terms of the hlghest order are those with sums of products of W,’s
In the case of B(UY))* and of y,,’s in the case of E(U},)’. It follows from
the proof of Theorem 3.2 that lim EH} =0, where Hy = U} ,/NL4.

N—>oo
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Therefore the counterpart of Hy in TV (k) still tends to 0 in proba-
bility. In a similar way one can see that the counterparts of F, and Gy
tend in probability to @/2 and 0 respectively, and the second part of the
theorem follows at once.
COROLLARY 4.8. Under H,, for k< R,R;% and m >0
lim P(m = m) = 1.
N—->oo
It is an immediate consequence of Theorem 4.7, formulas (2.1) and
(2.2) and the definition of m. In a similar way we can show that for
k= m4m;2
lim P(m = m) = 1—a.
N—oo
LEMMA 4.9. Under ﬁa, for any j =0 and for any a (0 < a<1)
i
(4.21)  lm var {N”'"Zaq@q(t)}

N-oojt| N—a 7=0

% (—1)(g+8)!a")?
= ZR"ZWH){ ) a—9D }
8=0

k=—o0

Proof. According to Lemmas 4.3 and 4.4,

var{N”’Zj:a @ (t)} N 2 R,,Z [CAU) “”2 +o(l).

q=0 k=—o00
By (4.1) and (4.2)
N(o, ) _ _ (2¢+1)
b,  [N—g—1)'P

< 2( 1)***(q+8) ! (q+u) ! (N—s— 1) (N—u— 1)'( )"’(t—l)(“’.
(D (g—a)g—w)! (N —1)) - ... - (P —¢)
But, when N — oo and {/N — a, we have
(N—q—1)! ~NIN-@)  (4-1)® ~ N°a®
(N?—1%) . ... (N*—¢’) ~ N%,

and substituting these values in the previous formula, we find

]jrr: var {N 1/2 2 a q)q(t)}

N—o00, ——a =0

N
) j
_ —1)"**(g+8)!(g+w)!a"+"
—kg’ R"Z (2¢-+1) 2 (81 (u)? (g—s) (g—w)!

=

and Lemma 4.9 is proved.
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COROLLARY 4.10. Under ﬁgM (M >1), for any j >0 andany a (0 < &
< 1), when N — oo and t|N — a, the distribution of

)
N2 2 a, D, (1)
g=0

tends to be normal with a zero mean and a variance given by (4.21), the mo-
ments up to the order 2 M tending to the respective moments of the limiting
distribution.
The proof follows from Lemma 4.9 and Lemma 2.2 in [10].
Remark. There would be no difficulty in establishing the joint
asymptotic distribution of
i
D a2, (1)
q=0

for any finite number of values of ¢, say %, ..., %, with #,/N — a®. Also
the values of j could be varied.

LeEMMA 4.11. Under H~2, for (my j=0,

Lim. max'Zadi t)' = 0.

N-ooo IKSISN
Proof. Since
max |®,(#)| /6> >0 as N — oo,
I<ISN

it follows from Lemma 4.3 that Li.m. |a,P,(f)| = 0 uniformly in ¢ for any

N—-oo

Particular ¢, and since

ma,x|2a¢(t)| 21 a| max |0, (1),

I<IKN q=0

Lemma 4.11 follows at once.

THEOREM 4.12. Under ﬁzM (M =4), fork <RR;2andm =0,1,2, ...
the distribution of N [§;(t)—¥Yn(t)] tends with N — co and t/N —a
(0 < @< 1) to a normal distribution with a zero mean and a variance equal to

(—1)'(g+s)!a }
n Seosn] .
k:Z_w kZ( ¢+1) 204 D g—9)!
Proof. The statement with ¥, (t) replaced by 9, (f) is a direct con-

sequence of Lemma 4.9 and Corollary 4.10. On the other hand, in view
of Corollary 4.8, for any ¢ uniformly

plim {N'2 [y (t)— 4, ()]} = 0,

N—>oo

and the theorem follows at once.
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THEOREM 4.13. Under H,, (M > 4)
plim max |94 (t)— ¢ ()] = 0.

N—ooo I<ISN
Proof. The argument is similar to the preceding one, the statement
for ¥,,(f) being a consequence of Lemma 4.11.

5. Discussion of the proposed method and of related statistical meth-
ods. The problem of estimating a function is never an easy task and the
required properties of such estimators are not so generally established
and accepted as in classical estimation problems; it is still more difficult
to construct estimators satisfying these requirements. The polynomial
trend estimator proposed here is asymptotically a good estimator in the
maximum absolute error sense (Theorem 4.13) and is asymptotically
unbiased and consistent for each 1 < ¢<< N (Theorem 4.12); but it was
constructed according to another criterion concerning the residual process:
with a suitably chosen test, the probability of accepting the hypothesis
that the residual process is a purely stochastic process had to be big enough.
In the T*-method with & < R,R;? this probability is asymptotically equal
to 1.

In principle, any test may be used instead of the T™-test if only its
power has desirable properties; but till now no other tests are known
except for some tests which assume a great deal of prior information
about the linear process {z;}, which usually is not available in practice.

As far as we know, no other definition of a polynomial trend esti-
mator in case of an unknown degree has so far been published; models
usually discussed (see for instance [3] or [9]) are models with a determinate
component in form of a linear combination of some given functions, where
the number of terms is assumed to be known. A polynomial of a known
degree is a special case of such components.

The practical advice given by M. G. Kendall ([5], p. 357) in the case
of a polynomial of an unknown degree is to evaluate least-square esti-
mators of degree 0,1,2,... and to calculate on each stage the sum of
squared residuals; the procedure is to be stopped when sufficiently good
“fit” is obtained, that is — as it was suggested in previous editions of
[6] — when the difference between two subsequent sums does not dimin-
ish “gignificantly”. However, no rule is given to decide when the differ-
ence does not diminish significantly; hence the objection against this
procedure is that it is subjective. Big difficulties arise specially in cases
where there is no trend at all or where the trend is not in the form of a po-
lynomial; the above procedure may lead in such cases to non-sensical
decisions.

Although Hannan ([3], p. 126) investigates a model with a known
degree, he introduces a test of the hypothesis that the coefficient of the
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greatest power of # is equal to zero. This test provides an opportunity
to check to some extent the assumed model: in fact with this test it is
rather an upper bound of the true degree than this degree itself which
must be assumed to be known. Moreover, the existence of this test suggests.
an idea of a sequential procedure similar to one. proposed by us, that
is of estimating subsequent polynomials of degree 0,1, 2, ... and basing
the stopping rule on the results of this test applied on each stage to the
respective coefficient. However, for reasons given below this suggestion.
must be rejected.

In the first place, to justify the method described above one should
rather prove that if the degree of the polynomial is m, then the power
of this “coefficient test” for the coefficient @; is for j < m asymptotically
equal to 1. The corresponding proofs have been given in case of the T™-
-method; but it is doubtful whether the “coefficient test” satisfies this.
requirement. Secondly, there must exist a “start” test of the whole se-
quential procedure which will verify the hypothesis that there exists a trend.
at all; luckily this difficulty might be overcome by the use of the T™-test.
The next difficulty — admittedly a small one — concerns the level of
significance a, which will have to be constant, so that presumably asym-
Ptotically with a probability approximately equal to a we would overe-
stimate m. In the case of the T™"-method this difficulty is at least alle-
viated insomuch as for & < R,R;? the level of significance tends to zero.

But the main difficulty lies in the fact that the “coefficient test”
requires some prior knowledge about the process {z;}, in particular the
knowledge of the value of the spectral density function of {#,} at the zero
frequency. To fulfil this requirement, Hannan suggests that one should
find an estimator of the polynomial for the considered degree j, evaluate:
the residual sample {z{}, find the estimator of the required value of the.
Spectral density function and perform the test using the estimated value
instead of the true one. In view of the known difficulties connected with.
the estimation of the spectral density function of a linear process, it is
not easy to investigate the statistical consequences of such a multistage:
Procedure, especially for j < m.

6. Numerical illustrations. Table 1 summarises the result of some
numerical work done on artificial time-series in order to show how the
method described works with finite samples.

We have explored series 10 and 16 published in [4], which are realiza-
tions of autoregressive processes {z;} defined respectively by

wt+3_ 1-8wt+2 + 1.27{17,_'_1 - 0.3597; = &3

and

mt,_'_a— 1-2w1+2+ 0.61{1/'“_1 - 0.0507‘ = 8t+3’
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where {¢} is a sequence of independent normal standardized variables.
These two series, or only parts of them, were used to form samples (x,, ...
..., @y); for each 1 < ¢< N the value of a chosen polynomial v,, (t) (column 3
of Table 1) was added to , to form 2, and then the estimator ¥, (f) was
calculated repeatedly for ¥ = 0, —1 and —2, with a = 0.01.

Some examples with the same y,,(?) and the same N (N = u-»)
were worked out for both series.

For the convenience of the reader Table 1 contains values of m in
separate columns, although they can be found from ¥, (¢); after compar-
ing m with m, we can immediately see whether our procedure succeeded
or failed in this example. We mark successes with “-+” and failures with
“—7, Columns 9 and 12 headed “conclusion” contain these marks. Suc-
cesses take place of course if m = m, failures are if m < m or m > m. For
technical reasons we have continued our calculations only to the stage
j =m-+1, so that we had only verified that m >m-+1 and it is
registered in that form in Table 1 (see m in examples 3 and 11 for
series 16).

It should be pointed out that the distribution of m for finite N has
not been investigated, and we cannot predict the behaviour of 7 if m > m.
It is hoped that the matter will be fully investigated in due course. How-
ever, it is believed that inordinately large values of m should tend to be
less and less probable.

In the majority of examples in Table 1, the estimators for ¥ = 0,
—1 and —2 are identical (it should be noted that for both series 10 and 16
we have R,R;? = 0, because {¢} are normal); differences arose in exam-
ples 3,8 and 11 for series 16. In examples 3 and 11 the cases k = —2
or —1 are more favourable than the case k¥ = 0, because m > m for k = 0
and m = m for ¥ = —2 or —1, while, in example 8, m = m—1fork =0
and m =m—2 for k = —1 or —2.

Obviously, in practice we seldom have any information about R,R;?2 .
and therefore we must choose ¥ = —2. Our estimation procedure works
very well for ¥ = —2, as confirmed by majority of examples in Table 1.
Also, this choice of % diminishes the risk of m > m, as illustrated by exam-
ples 3 and 11. However, if the trend is rather faint as is the case in exam-
ple 8, the value —2 for ¥ may be less favourable than some value nearer
to RR; >

Several failures of the estimation method for k¥ near to RR;? in the
case of series 16 could be forecast because the consistent estimator k,, of
RN, 2, defined in [10], p. 387, has for this series a highly negative value:
ks 30 = —1.32, which causes T,,(R,R;*) to take also a negative value
beyond (,; this feature applies also to shorter parts of the series, as treated
in examples 3 and 11. On the contrary, series 10 does not belong to this
kind of sample and cases with 7 >m were not observed.
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TABLE 1. Estimators 43 (f)

Series 16

Series 10
(2) (3) (4)|(8)] (6)
(7) (8) (9) |(10) (11)
PN A, Conclu-| a
m| ym@® |ulv|F|® | Ga) oo | I (1)
0 2(10.100001t2+
2| 0.1¢2 25(20|—1 2|t —0.0016t
—2 2|] +0.397
| 0 2(10.010001t2
2] 0.01t2 25(20| —1 2(f —0.0016¢
—2 2|} +o0.408
01 2|10.009987t2 | + |>3 —
21 0.01t2 30{10(—1} 2|t +0.0140% + 210.00996 t2+
—2| 2 —1.556 + | 2 }+0.0087t—0.051
o] 2{10.009933t2 | <+
21 0.01t2 2010 —1] 2|} +0.0235t | +
—2| 2| —1.836 +
of 1 -
2| 0.001t2 20{10| —1] 1/}0.2108t+ -
-2 1|) —s.110 -
ol—1| 0 -
2| 0.0001t2 |20{10{—1|—1| 0 -
—2l—1| 0 -
ol 2(10.000101t2+
2| 0.0001t2 |25{20/—1 2(t —0.0016t+
Y 2} 40.407
0 1| 0.0039t—0.055
2| 0.00001t2 |25[20|—1 0
_9 0} 0.915
ol 1/)0.0389t 4
1| 0.04t+750 |25|20{ —1 1/ +750.364
—2 1
o 1 +
1| 0.04t4750 [20/10—1| 1]|}0.0500t+ +
—9| 1|) +748.620| +
of o + |>1 -
0 2 3010/ —1] o] 2.143 + 5
-2 o + 0} 2.163
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Examples in Table 1 were planned in order to show how the results
of estimation gradually become worse when N or the scale of y,, (f) dimin-
ishes. For instance, for series 10 and N = 200 the estimators are satis-
factory if y,,(t) = 0.01#%, but we havé m = 1 for 0.001#2 and m = —1 for
0.0001¢? (examples 4, 5 and 6).

Unfortunately, we cannot investigate theoretically the speed with
which {T¢), ()} tend to their limits without detailed assumptions about
{z;} and v, () which usually are not available. However, the examples
which have been worked out give us at least some rough idea of what can
be expected, and the results are rather optimistic: usually, for j < m,
T% (k) tends quickly to — oo for all k, so that the choice of &k = —2
seems quite sensible. More details concerning Examples 4 and 11 may
be of some interest; they are shown in Table 2.

TABLE 2. Values of T) (k)

2, (k)
Example| Series Ym (£) u v j

k=0 |k=—1 k= —2
-1 | =79 | —177 —17.5
0| —13.9 | —13.7 | —13.4
4 10 | 0.01t2 | 20 | 10 1| —117 | —114 | —111
2 ||—o02]j| 03] | 0.9]
3| —14 | —0.7 —0.1
—1 | —81.8 | —80.6 | —179.4
11 16 |2 - 30 | 10 0| —31 |[—L9]| [—0.6]
2| —32 | —19 —0.7

Values of m given in Table 1 are for examples 4 and 11 easily obtained
from Table 2 in view of (y, = —2.33.
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E. PLESZCZYNSKA (Warssawa)

DALSZE ZASTOSOWANIE TESTU T*
W ANALIZIE SZEREGOW CZASOWYCH

STRESZCZENIE

W pracy podano algorytm estymacji trendu wielomianowego nieznanego sto-
Pnia nalozonego na liniowy proces stochastyczny i zbadano asymptotyczne wlasnoéci
Proponowanego estymatora (twierdzenia 4.12 i 4.13). Metoda ta oparta jest na zasto-
sowaniu testu T* opisanego w [10]. Ponadto twierdzenie 3.2 uogélnia klase hipotez
alternatywnych, przy ktérych test 7* ma asymptotycznie moc réwna jednosci.



