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FURTHER APPLICATIONS OF THE T*-TEST
TO TIME-SERIES ANALYSIS

1. Introduction. A test of the hypothesis that a discrete-parameter
process is purely stochastic, i.e. has a zero expectation all the time, and
that it is linear is described in [10], the alternative hypothesis being that
the process is composed of a purely stochastic linear part and of a deter-
minate periodic trend with an unspecified frequency and a zero temporal
mean. The power of this test — which we shall call the T*-test — tends
to 1 as the sample size tends to infinity.

Section 3 of the present paper extends the class of alternative hypoth-
eses for which the power of the T*-test is asymptotically 1. These re-
sults are then used in Section 4 to describe a T*-method of polynomial
trend estimation in the case where the degree of the polynomial is not
assumed to be known. It is shown (Theorem 4.12) that the proposed
estimator is asymptotically distributed as the least-square estimator in
the case of a known degree of the polynomial.

Methods of polynomial trend estimation published till now assume
that the degree of the polynomial is known. In contrast with these methods,
the procedure presently outlined not only dispenses with assumptions
on the degree of the polynomial, but also includes a test for the presence,
after its removal, of a determinate component of a wide class. Obviously,
trend elimination is an essential prerequisite of spectral analysis.

2. The description of the T*-test. For the convenience of the reader
we shall repeat now the definition of the T*-test given in [10].
It will be assumed that the investigated stochastic process {z} is
\

given by
2 = T+ Y,
where {z,} is linear, i.e.

o= D hge (=0, %1, £2,..)

g=—0o0
o0 oo}

with h, real for all k, b, = 0 whenever k <0, }|k| < oo, 3 kh} < oo,
k=0 k=1

{¢} being a sequence of independent equally distributed variables with
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zero means and finite moments up to the order 2M (M > 1), while {y;}
is a real function defined on ¢ =0, +1,...

The above assumptions about {x,} will be denoted H,,, — as in [10].

Let 2,, ..., 2y be a sample of size N, on the basis of which we want
to test the hypothesis H,: {2;} = {z;} against the alternative hypothesis
that {z,} = {&,+ ¥} (v, # 0).

For each N we chose two integers x4 and » in the following way:
if there is precisely one pair of integers (p, g) such that N = p - ¢q and
N5 < p <N, we put v = p, u = q; if there is more than one such
pair, we choose one with the smallest p; if there is none, we reduce the
sample size as little as possible to find (p, ¢) satisfying the above condi-
tions. So g, » — oo with N — oo; in the sequel by N we denote the size
of a sample after the reduction mentioned above, that is we shall assume

N = w.
We use the following notation introduced in [10]:
1 N-—-|s|
A P 2 e (8l =0,1,..., F),
N-1

1
Corp == D dim (@ =0,1,...,u—1)

u—1
14 .
Try = ——= D) (Chpp— O,

p—14=
1/2 28* kG*z
- T-2%0]

e

Similar symbols without asterisks will denote the same expressions
formed with {z,} instead of {z,}. .

According to Proposition 7.1 in [10], if R, is the r-th cumulant of
& (t =1,2,...), the distribution of T(R, R;?) tends to be normal with
a zero mean and a unit variance as g, » - co. On the other hand,

1/2 _ —2

ﬂ) E=RRT) s

Ty,v(k) = Tp,v(m4 m;Z)_ (—2— U
B,

while plim (7 y is a constant and, by Proposition 3.2 in [10], plim U,, is
N—oo 18,900

also a positive constant. Consequently

l +o0o for k< R,RN2,

2.1 limT, (k) =
&4 P = Lo tor k> 5

18,900
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and, therefore, if {, is defined by @({,) = a, where ®(-) is the standardized
normal probability distribution function, we have

0 for k¥ < R,N2,
(2.2) lim P(T,,(k) <l) =]a for k = R,%R;?,
e 1 for k>RR;2.

A test in which the critical set is defined by T ,(k) <, (—2<k
< R, R;?) is called a T*-test (or, more precisely, a T:,, (k)-test with para-
meters u,v and k). If there is no prior information about the value of
R, R, %, one can always choose k = —2, since —2 is an absolute lower
bound for R, R; 2. According to (2.2), the level of significance of the
T*-test is asymptotically equal to a or 0 for k¥ =R, R;2 or —2<Fk
< R, R %, respectively.

It was shown ([10], Proposition 8.5) that if {,} belongs to a set of
periodic functions with a zero temporal mean (more precisely, to a set
of functions satisfying the condition H' defined in [10] on p. 389) and
if {»,} satisfies ﬁs, the power of the T*-test tends to 1 with N — oo.

In Section 3 we shall define a more general set MM of functions {y;}
for which the value of the asymptotic power of T*-test is also 1.

3. The set of alternative hypotheses of the T*-test. Let M be a set
of all real functions {y,} defined for all integral values of ¢ and satisfying
the following condition: there exists a positive constant @ such that

N-1

k 2
(3.1) iy 2yt ) (1-4) Gy =@,
N-oo N ’
k=1-N
where
N-—|k|
Ly = max = g
N 1<t<let|’ Qr,~ N1k t; YeYerin

¥ |y <L (t =0, +1,...), the factor Ly* in (3.1) may be omitted.
We can take, as an example, functions {y,} satisfying H', which are bound-
ed; it follows from (8.2) in [10] that these functions belong to M.

Class 9t does not contain the sequence identically equal to zero,
sinee in this case the left-hand side of (3.1) is not defined.

Lemma 3.1. All polynomials belong to IN.

Proof. Let y,, () = ay+ ... +a,t™, with a,, # 0, be any polynomial.
For m =0, Q in (3.1) is equal to 2/3. Clearly, for m > 0 there exists
an integer N, with the property that N > N, entails '

Max Y, (8)| = (@ N"+... +ay|.
I<i<N ‘



36 E. Pleszczynska

Computing the left-hand side of (3 1) we can, therefore, replace
Ly* by a,*N~*", Then, multiplied by aj, this becomes a quartic form

m

2 W o,0,1,80p 0 Or B
»,9,r,8=0
with
N-1 Nk N—|ki
Woare =N 31 3T @+ (k)2 D) o (ut [K)).

k=1-N i=1 u=1

But

N—|k| N—|k| NPtatl

0< X Pu+IkN< ) (t+|k1>f’+4<2ﬂ’+a —Ta1 o,

t=1

whence
Np+q+r+s—4m—1

o<W <
pane \ng[ (p+g+1)(r+s+1)
2_N?-Hl+f+3—4‘m
<
(p+g+1)(r+s+1)
Thus W, ,,,—> 0 unless p = ¢ =r = ¢ = m. In other words, putting

+ 0 (Np+4+r+3—4m—2)]

+ O (Np+q+r+8—4m—l) .

@y = ... = G,_, = 0 does not alter @, and
N-1 N-—[k .
Q = lim N—™~? " (b4 &)™
g 2 \g )
4m+2 ™ (N k)m+j+1 2
. T —4m—3 m e
- I+ ,;[Z( ) “mFiTD) ]}
1 . ,
= Hm2N—*"" (”.b)(m) . . Pm—i—i N — fp)2miti+e
N-»00 i; (m+-z,—|-1)(m+_7+1),g; ( )
1
= lim 2 N—4m-3 m)( )
N-soo ( (m-l—H-l)(m—H-}-l)
2m-i+i+2 N-1

% 2 (2m+@+]+2)( _1)iHi- INIZ JAm+2—1

k=1
» 22( )( )(m+z+1)1(m+9+1)

1,j=0

2m+i+75+2
1

2mtitit) s
x Q) ( 1 )‘ D a1

=0
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The last sum is nothing else but

n

N7 4y 1
where # = 2m+i+j+2 and k =2m+1—i—j; it is easily proved bj
induction that for any natural k> 1 and n >0
321250~ e
& l k41 E(k41)-...-(k+mn)’
It follows that

L\ [m\(m (@m+i+j+2)! .
¢- 22_(@)(3) (m+i+1)(m+j41)(@m—i—j+1)-...-(4m+3) ’

hence @ > 0, which completes the proof of Lemma 3.1.
THEOREM 3.2. Under Hy for any {y,} ¢ M the power of the T*-test tends
to 1 with N — oo.
Proof. We show that under Hy for any {y,}e M
phm T,v(k) = — 00,

B
1, ¥—>00

go that by the definition of the critical set in the T*-test the power of
this test is asymptotically 1.
Put
285 + KO3y
= ——U*——

B,y

Dy , Fy=DNT'Ly'Sy, Gy =NTL3'C},

Hy = N7'I3'U,,,
80 that Dy = (2Fy+kGy)/Hy and T, (k) = (4/2)"*(1—Dy).
We shall show that
plimFy = 3Q >0, plimGy =plimHy =0
N—>oo N—oo N-00

and, consequently, plim Dy = oo and a fortiori

N—oo

plim T% (k) = — oo.

B, ¥y—>00
As in [10], we put
N-—|k| N—1k|

1 2:
kN N — lkl < tyt-l"lkl’ kN N— Ikl yth'lkl’

Ry = B(22,,4),
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(32) V,[i(0), 0881 = D higyg'-- by (8=2,8,...),

g=—00

(3.3) Vo0 = ReR2RE+2 2 R2.
We use Proposition 2.1 of [10], which states that under Hn2 u (M =1)
for every r (1 <7< 2M) and for every set of integers (1), ..., %(r)

(3.4) E(wyyy - ... " @yy)
= YRV, (10, i) o R Vi (6 a) s s 5 (8)),

where the sum is extended over all different groupings of the set I = {i(1),
.y (7)), 1.e. over all sets of disjoint subsets of I whose union is I, two
groupings being regarded as distinct if, for some m and n(m,n =1, ..., 7),
2(m) and i(n) belong to the same subset in one grouping, and to two
different ones in another. Here {l,, ..., 1) denotes any permutation of
the numbers <1, ...,7) corresponding to a given grouping, i.e. such that
the sets <4(ly), ..., ¢(L,)>, . ovy Cll_ppia)s «eey ¢(l,)> form this particular
grouping. In view of the symmetry of the V’s with respect to their argu-
ments, any two permutations corresponding to the same grouping would
yield the same term, so that, for any grouping, the choice of the permu-
tation representing it does not matter, and, therefore, the sum is well
defined. The variables (1), ..., ¢(r) must be regarded as distinct although
in the end any values, not necessarily distinct ones, can be substituted
for them. It should be noted that in the right-hand side of (3.4) we can
confine ourselves to groupings in which each set is composed of more than
one element, gince R; = 0.
We shall also need the following formula immediately obtained
from (3.2):

N Ny
@5 | M. Y V,(j(l),...,j(l))] min (N, ..., Ny) 2 Il
iO=1 i@)=1 k=—oo
Turning to the sequence {E(Fy)}, we have ([10], p. 401):
AL,
©6) S =Syt > (1= (uat B Cun+ \
k=1—
LG Il:cl Ik
+§ (1———) (Ap,n+ B n)+ 2 (1‘——) Or, Qv+
k=1-N k=1—-N
| 1N [, Ik
+ Z (1—7) (Aix+ B Qv+ 5 (1——) Ohv-

k=1-N k=1—-N



Applications of the T*-test 39

Since for {y,} ¢ M the limit of the last term divided by NL}, is equal
to 1Q >0, it suffices to show that the expectations of the remaining
terms divided by NLj} vanish in the limit.

We have

;im B(Sy/NLy) =0,

because ([2], p. 1569)
lim ESy = R:.
lm B8y = ) B

q=-—c0
Furthermore,
N-1
1 LAY
NLY E(Ek;‘ (1—-'17) -Ak,NGk,N)
) N—-1 N—fk
<GFCLRIR D D [Vls—t, 0, b))
k=1—-N 38,t=1

N-1 N-jkl-1

<SNZLRRI Y D |76, 0, k)|
k=1-N j=1—-N-I|kj

<z ml (Y m) = 0wz,

k=0

and we obtain a similar result replacing A, y by B, y; it follows that
the expectation of the second term in (3.6) divided by NL} tends to zero.
The same is also true for the third term, because

N-1 N—-1 N-|k]

k|\? 1
N“ILE4E(% Z (1—_[1-\7_') Alzc.N)<—2—N_3L§2 2 2 | Rl

k=1-N k=1—N g,t=1
< N 'Lz 2 IR, = O(N"'Lz?)
g=—00

and the result is the same when A4} y is replaced by B}y or A xBy y.
Since for the fourth term we have

N-1

(3] - B

k=1_N

N-'LY

<NLit ) IR = 0N Ly
g==—00

and since the fifth term has a zero expectation, it follows that

lim BFy = }Q > 0.

N->oo
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Now we show that var Fy = O(N'Ly’). We will examine variances
of every term of (3.6) divided by NLj, starting with the fifth term. Put

N—t "
=N 2 Yit 1kl (1——) Qr,n-
k=N
Then |y,| < L} for 0 <t< N and
N-1

k
va,_‘r(_N"lL;" Z (1— l—Nl) -Ak,NQk,N)

k=1-N
N N
2
= N—zLﬁsE( E }’gmt) = N—zLRIB E; VeVs Bt
t=1

8,i=1

<N D IR| = 0N Ly);
g=—o

a similar result is obtained when A4, y is replaced by: B, 5 and it follows
by the Schwarz inequality that the covariance of the terms in 4, y and
B, v is at most of the order N~'Ly? so that the variance of the fifth term
divided by NLj is O(N'Lz?.

From [8] we know that var Sy = O(N~!) and hence the variance
of the first term of F, is O(N>Ly%). Now we shall investigate the third
term. We have

o w(t 3 (-

N—-1 N-lk| N-Ill

1
=ZN 4 2 Z 2?/s+|k!yt+lklyu+lll?/w+lll[E(mswtw“mw)_

k,l=1—N s,t=1 u,w=1

— B (w,a,) E(2,2,)]-
The expression in square brackets is equal to '
Ry Vs, 8, u, w)+R3(V,(s, u) Vo (T, w)+ Va(s, w) Va(t, u));
therefore, the left-hand side of (3.7) is not greater than

INLY, Z [19a) (= 1) ( 3 1hgl)* + 298 — (k1) | D) 1R,))'] = 0(ZH)-
k,l=1— a=0 g=00
A similar result is obtained when A} y is replaced by B: y and?
therefore, by applying the Schwarz inequality to the term in A4; yB; »
we infer that the variance of the third term of (4.6) divided by NLj is
O(N2Ly%.
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Reasoning in the same way as in [10], p. 404, we can show that the
variance of the second term divided by NLj is also O(N 2 Ly*). Similarly,
we can apply the argument of [10], p. 405 (with L3, taken as an upper
bound of Q, y for all ¥ and N, |k| < N), to show that the variance of the
fourth term divided by NL} is O(N~2Ly*). The variance of the last term
of (3.6) is zero; hence, compared with the variance of the fifth term divided
by NLj, the variances of the other similarly divided terms are asympto-
tically negligible and varFy = O(N'Ly?). Consequently, in view of
lim EFy = 3@, we have

N—>o00

(3.8) pliim Fy = Q.

N—>»00

Now we shall show that plim Gy = 0; as is well known, it is suffi-

N—-oo

cient to show that lLi.m. Gy = 0. We can write

N—>oo

Gy = N7 'Ly*(Con+244 v+ Qo n).

But
NLyECsy = O(NLy"), NLyQiy< N2,
N
NZLPBALy = N°Ly Y 4999, B(2,0,0,3,)
8,t, u,w=1
N
< .N_6L374 2 {|m4”V4(3, U, w)|+Ry |V, (8, u) V. (2, w)| +
8,t,u,w=1

+R2 | Va(s, w) V, (2, u)|+R3 | Va(s, ) Vo(u, w)|}
< VL (N3 ) l)'+ 3363 3 IR)) = 0L,
k=0 =—00

Applying the Schwarz inequality several times, we find EQ%, = O(N~2%);
consequently,
(3.9) Lim. Gy = 0.

N—>oo

In order to prove that plim Hy = 0, it suffices to show that EH,

N—>o00
and var H tend to zero with u,» - oo. But according to formulas in the
proof of Lemma 5.2 in [10] we can write

(8.10) Hy =N'Ly'%., = N‘ILX,“# [%:,,,—v((]:, n—ECy v+

p—1 p=1
+2 3 Qs ua 427 3 (O = O N0~ o)

p=0
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-where

: 4
-1 2
QO,’,p = 2, Yirprs

t=1

Ao,-,p = ”_12?/:+prwt+p- ®=0,1,..., p—1),

{=1

Y, =, + 420, 49D

n,

14
Uy = D) (Oupp— Bl

According to Lemma 3.1 in [10], E#,, = O(1); furthermore,

B, <~ szzm, d<IZv D) IR = 0(Zh),

8,i=1 g=—00

\BP,| < w7 ZLN 2 B2} o ]

t,u=1
<2u-12LN|snai 3 17,0, 0,01 = (T
g=—00

and, consequently, E%,, = O(LY}). Now

(3.11) Ev(C; y— EC, x)’
=vE (Co,N— 0)2 +4vE (Oo,N— 0) Ao,N+4"’-EA(21,N .

Since

N
E(Con—EBo)' = O(N7Y), Baly<IZN* Y |R_| =00 "L4),

8,i=1

it follows that |E(Cyx— R,) A, x| i8 O(N~'Ly); hence the left-hand side
of (3.11) is O(Ly ™). The third term in brackets in (3.10) is not random
and it is at most 4v» L}, while the mean of the fourth term is zero. Con-
sequently, EH, = O(u"'). Now we turn to var Hy. From Lemma 3.1
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in [10] we know that var#,, = O(g™'). On the other hand,

p—-1 v

var P, =N Y 3 Yl YuioVoie X

9,q=0 8’t’uuw=1

X [B (st pv Pt 1 v Pt gv Tprgr)— B (@0 By ) B (@orgr . |
=1 v

<HLy ) D IR TVis—ut@—g)r,t—ut(p—g)v,0,0—u)+

9,9=08,t,4,w=1

+2-Rs—u+(19—q)’ Rt"‘"""(p —ar I :

Now if s—u+(p—¢)v» =k and t—w-(p—q)» =1, this leaves us
with at most 2x joint choices of p and ¢, and when p and g are given, we
can choose each pair (¢, ) and (¢, w) in at most » ways. Thus a term
R, R, repeats itself at most 2u»® times. Similarly, if the arguments in V,
are given, we have at most 2u choices for the pair (p, ). Furthermore,
we have at most » choices for the pair (w, ») and this choice determines s
and ¢ Thus a V, with a given set of arguments repeats itself at most
2uv times. Thus

var 2 < I {12, -‘I%I(Z Pl 45 2 R)) = 0w 4.

An argument similar to that of p. 397 in [10] leads to wvar #®) =
= O(u~'LYy), so that the variances of %,,, #\, and %%, (and, con-
sequently, all covariances) are at most O(p—lL"' )3 henee var %,
= O(u~' Ly). It is known (see e.g. (20) in [11]) that B (C, y— R,)* = O(N—z),
while it has been noted that BAj y = O(N2L%,), so that by the Schwarz
inequality E(C; y— EC,n)* = E(Cox— Ry+24, 5)* = O(N2L%), and,
therefore, according to (3.11),

var [v(Oy n— ECox)*]1 = O(u2L%).

The variance of the third term in square brackets in (3.10) is zero.
The last term can be treated in the same way as a similar expression
in [10], p. 400: we cap. decompose it into two terms,

p—1

22 D) (0rpp—Bo) (Qupp—Qox)  and 4~2Ao,,,<e.,,.,,, Qo))
=0

where

Qo,v,p = "—12?/§+pv (p = 0, ceey p—1).

t=1
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The expectations of the squares of these terms will not be smaller
in absolute value if {&,} is replaced by {|h;|}, R, by |R,| and @, ,— Qo n|
by 2L3%, because we have, for instance, for the first term

s-1 2
E[zigo(0.,,”,,,—Ro>(Qo,,,p—Qo,N)]
2 ZIQo,,,—Qo w1 1@o0.,0— Qo1 1B (Cl,v,5— Bo) (Cip,q— Bo)l,
»,9=0

and E(C,, ,— Ro) (Cy, ,— Ro) is a sum of products of R, or R and V,(-)
or Vy(-) V,y(*). Denote by C,. ny Cony Ao,vps Ao,ny Bo and {x} the expres-
gions arising out of C,, ,, Co ) Aosps Adons Bo and {x;} respectively as
a result of these changes. The process {,} 1s still linear and, therefore,
var €, y = O(N~") and
- ot 2
E(ml+°-°N:+wN) — O(N—l);

it follows that the expectation of the square of the first term is bounded by
16 Ly u* B(uCy y— uR,)* = O(vu™' L),

and the expectation of the square of the second term is bounded by

u—1 2 p—-1 9 .
B(e e 3 4,.) <osstun(3) M)
p p=0 p=0 t=1

2+ ...4+25\? _
. ¥ N)=0(vy LY.

= 64L}V*E (

Consequently, the variance of the last term in brackets of (3.10)
is O(vu~'LY), and since the variances of other terms in (3.10) compared
with it are asymptotically negligible, we have var Hy = O (v *u2Ly*);
therefore plim H, = 0. In view of (3.8) and (3.9) it follows that phm Dy

N—o0

= + oo and Theorem 3.2 is a direct consequence of it. Now we sha.]l prove
a very intuitive property of the power function of the T™*-test in the case
of functions {y,} which, differ very slightly from zero: the power of the
test for finite samples differs very slightly from the level of significance.

Let {6,} be an increasing sequence of natural numbers and denote
by T, ,(k|{d,}) the function T, (k) with 2, replaced by z,+Y,/d,.

THEOREM 3.3. For any given N, k, {y,} and {é6,}, the sequence of the
distribution functions of T ,(k|{6,}) tends, with n — oo, to the distribution
Sunction of T, ,(k) at every comtinuity point of the latier.
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Proof. For each 1 <t N

U
lim-2& — o,
n—co n

so that by the extension to the multivariate case of the convergence theorem
given by Cramér ([3], 20.6) the sequence of the distribution functions
of (,+¥1/04,---s ®n+Yn/d,) tends to the distribution function of
(®y, ..., ®y). The function T,(k|{d,}) being a continuous function of
{2+ Y1/0p, .. On+Yn[0s}, Theorem 3.3 follows, then, from Theorem 2
in [6]. In a similar way it can be proved that by making the difference
between any given functions {y{"} and y{?} sufficiently small, the absolute
difference of the powers of T*-test for both functions can be made arbi-
trarily small.

It should be pointed out that in the case of an exponential trend
y, = a* (a # 0) the power of the T*-test is asymptotically equal to zero,
which can be easily checked. This restricts the applications of the test,
but nevertheless the area of such applications is ample in view of the
fact that polynomials and periodic functions belong to the class IN.

4. The T*-method of polynomial trend estimation in the case of an
unknown degree. We shall consider the case of 2, = x,+ y,,(t), where the
degree m of the polynomial y,(?) is finite but unknown. This form of {z;}
will be assumed throughout this section. It was shown in part 3 that
{Ym (D)} e M.

When m is assumed to be known, the least-square method is usually
recommended (see [3], p. 126). A definition of a particular least-square
estimator using orthogonal polynomials was given in [6], p. 143. Now
we shall repeat this definition with a few minor alternations dictated by
the slightly different nature of the problem tackled. Let {®,(t)}, ¢ =0,
..., m, be the sequence of the m+1 first Chebyshev polynomials ortho-

gonal on 1,2,..., N, that is

q
a-8 (gMH%(g+ ) (N —s—1)! ,

where 4® = u(u—1)-...  (u—8+1).
T
(4.2) by, = (') N(N*—1%)-...- (N*—¢%)
T (29)!(2¢+1)! ’
then
Y for ¢ # ¢,
. D (1D, =
(43) Z (%) b, for i =gq.

o~
]
-
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The polynomial y,,(¢) can be represented in the form

Ym(t) = D AB,(1),

g=0
where
(4.4) 4,= —-Zym(t)qb (®)
by t=1

and the least-square unbiased estimators zfq of 4, are
. \

L1
(4.5) Ay == Y 2®,() = A +a,,
where
1 N

(4.6) a, = —b—Zw,qb ().

t=1

Therefore

(4.7) Tm(®) = D AP, (1)

a=0

is a least-square estimator of ¥, () in the case of a known m."
Denote by {#(j)} the j-th residuum of the process {z;},
4 =z—y,t) (t=1,...,N;j=0,1,2,...),

where @f(t) is defined by (4.7) with m replaced by j, and let T%, (k) be
defined as T ,(k) with the original sample (z,, ..., 2y) replaced by a “re-
sidual” sample (N, ..., 2. To unify the notation it will be convenient
toput ¥_,(t) =0, T,‘,,,l)(k) T:,(k), and T%, (k) = 0 for 2z, = ... = 2y = 0.

We define as follows the random va.nable m, which is a function
of (24,...,2y) (and also of u, », £ and @, where a < 0,5):

. —1 it TGP (k) > &,
m = .
j if 7Y, (k) <¢, for i = —1,...,j—1 and TG, (k) >¢,.

The sequence {y; (%)}, t =1,..., N, is the proposed estimator of
{y ()} in the case of an unknown m. In other terms, we take as an esti-
mator of ¥, (f) a polynomial §,(t) of the least degree j for which the hypoth-
esis that the residual process {z{’} is purely stochastic is not rejected
by the T*-test; thus we can say that {z{™} is a good approximation of the
linear process {r;} in the sense of the 7T"*-test.

The presently described method will be called the T*-method of poly-
nomial trend estimation. The asymptotic distribution of ¥, (¢) is given in
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Theorem 4.12, while Theorem 4.13 formulates an important property
of max |§; (1) — ¥, ().

ISISN
Put )
(4.8) %) = Yu(®)—y;(®) (j= —1),
i
(4.9) yit) = — D a@,(t) (j=0),

q=0
(4.10) W;(t) = Aj 1@y (4o +45P5 (1) (—1<j<m).
It follows from the definition of ¥,(¢) that

5(1) — 75 (?) for j>m
it = W;@)+y;(8) for 0<j<m
and 6_,(f) = W_,(t) = Ym(?)-

Let Oy, ((,7), , U9, and 8 stand for the O}y, C;,,, Uk, and Sy
with (2, .. zN) replaced by the residual sample (20", ..., z{)), and put
N[k

I 1
APy =5 2 3,8 (t+ 1kl
N—Ik[
By = |k| Z By 07 (F)
N—|k]|
f)
\
AP, Z‘ Byiw 85 (84 9),

=1

Qf, =+ Y &(t+pm) (2 =0,...,5—1).
t=1
In subsequent considerations we shall use the following formula:
under H,,, for any s =1,2,... and any set of integers (i(1),...,4(2s)),
(4.11)
N Nag -
2 E(w@(l) S ees ﬁi(28))
i)=1  ie)=1
where I, is the number of possible groupings of the set (i, ..., %,),
R = max (Imf [y eees Imrkl)7 =22, rt... 1 =1,
(ry,-- ,fk)

and N,,..., N, is a permutation of N,,..., Ny, such that N, <N,
<-..< N,,. Formula (4.11) is a simple consequence of (3.2), (3.4) and

< LR D gl Ny Ny Mo,
k=0
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(3.5), because in view of (3.4) the left-hand side of (4.11) is bounded by
RE) multiplied by the absolute value of a sum extended to all groupings
with terms being products of factors of the same form as the left-hand
side of (3.5), so that (3.5) may be applied to them.

We shall also use the relation (see [6], p. 145)

(4.12) max |8, (8)] < M, (g+1)7,

1<I<r
‘where

(¢!)(g+4)!
max - —.
o<i<a (29)! (1) (g—J)!
LeEmMA 4.1. Under fls, forj=m

plim (U9, —U,,) = 0.

By, ¥—>00

Proof. By the definition of UY

B,y

vl p-l
PO =T, == D',
‘where p=0
(413) 8, =2(Cy,,—Co ) (240,104 ,— 24— Q)+
A, 0, 240N~ Q)

We investigate the order of magnitude of

M, =

1/2 (77D 2 _
B (U~ U, ==t ZE(S 8,)-

p,r=0
For convenience we shall introduce the notation which will be used
only in the course of this proof:
Cp =2 (Oo,v,p_ Co,N)7
B, =240} ,+0f) ,— 24—y,
Ap = 2A((){a):,p7 A = 2A(()7,)N! Qp = ng.),p, Q = Q(j) .
Consequently, ES,S, = EC,C,B,B,+ EC,B,B;+ EC,B,B},+ EB; B;.

»

First we evaluate the order of EA%, EQ;, EA* and EQ*. In view of (4.2),
(4.11) and (4.12)

BAY = B[y 3 a4, (4 p0)]'
t=1 .
i v N

=yt Z Z 2 E(@y +py:... @, +Pv @ ... ,) X

Qye..s03=0 ¥5,...,84=1 8y,...,84=1
y Py (81) - * Dy, (84) * Py (b1 -17) - .. - By, (tat+ D)
by * ... b ’

1 q,











































