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1. Introduction.

In a number of applications it is necessary to know the properties
of the product of random variables: this occurs in particular when the
random variables involved have dimensions of a ratio, like tolerance
expressed in percentages of desired value, amplification ratios etc. The
special situation of the product of a number of independent identically
distributed random variables discussed in this paper arises, for instance,
in the case when some devices designed to amplify a magnitude and
having identical characteristics are connected in series. If ; is the random
variable describing the amplification by the ¢-th device, the total ampli-
fication ¥y = z, 2, ... z,, is also a random variable and it is important to
know the distribution of this product. Examples of a number of engi-
neering applications involving products and quotients of random variables
can be found, for instance in Donahue [4].

It was shown by Springer and Thompson [10] how to obtain the
probability density function (p.d.f.) of products of » independent, iden-
tically distributed random variables by the application of the Mellin
transform; they have obtained, among others, formulae (in the form of
rapidly convergent infinite series) for the p.d.f. of the product of » in-
dependent normal variates and independent Cauchy variates and treated
also a special case of beta variates [see below formula (7)]. Their method
is a generalization to n factors of a method presented by Epstein [5]
for n = 2. Following Epstein many authors applied the Mellin transform
to the study of distribution of products and quotients of random variables;
a detailed bibliography can be found in Springer and Thompson [9];
cf. also Kotlarski [6] and Zolotarev [11].

The Mellin transform of a function f(x) where = > 0 is defined as

Mf(@)|s] = [ o*f(o)ds.
0
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Under certain regularity conditions (c¢f. Courant-Hilbert [3], pp. 103-105)
this transform considered as a function of a complex variable s admits
an inversion integral

¢+100

1
M f@) == [« Mf@)lslds, o>o0,

c—100

where the path of integration is a line parallel to the imaginary axis and
to the right of the origin.

An immediate consequence of the definition of the Mellin transform
is the following multiplicative property: If & and y are independent
random variables with the p.d.fs f(z) and g(y) respectively and if h(z)
is the p.d.f. of 2z = xy then

(2) M{h(z)1s] = M[f(x)]s]-M[g(y)ls].

Thus to find the p.d.f. of ¥y = x,2, ... ©, where the 2;’s are independent
identically distributed random variables with p.d.f. f(x) it is sufficient
to find the Mellin transform of f(z), to take its n-th power and to find
the inverse with the aid of formula (1).

The following property of the Mellin transform will be needed in
Section 3: If f(«x) is the p.d.f. of the random variable # which has a finite
second moment and if

F(o)= [fydt, F(a)= [ f()dt =1—F(a),

then the Mellin transform of #(x) is equal to

(3) M[F(x)|s] = fwﬁf”(x)ws‘ldw = s’ F (@) +s7" [ 2°f(2)dw

= s 'M[f(x)|s-+1].

It has been shown [7] by the author of this paper that the results
obtained by Springer and Thompson in [10] for normal random variables
can be presented in a somewhat simpler form and that a general formula
for any number of factors can be given (still rather unwieldy in the case
of large values of n). It has also been shown that by a direct application
of the Mellin transform similar infinite series expansions can be derived
for the corresponding probability distribution functions; this is useful
since the straightforward integration of the relevant infinite series re-
presenting the p.d.fs is not always easy. Finally, attention has been drawn
“to the fact (implicit in the Springer-Thompson treatment) that it is suffi-
cient to evaluate the formulae for the p.d.f. of the product of independent
exponentially distributed random variables and from such tables the
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p.d.fs for products of gamma, normal and Weibull random variables
can be quickly evaluated by simple transformations.

The practical usefulness of the results described above is limited by
the fact that all the corresponding distributions have infinite ranges
while the physical devices to which our mathematical models are to be
applied often have finite characteristics. Thus the problem arises to
what extent the methods applied in the above-quoted papers can be
modified to obtain similar results for random variables having finite
ranges and the first family of random variables which suggests itself and
seems to be tractable in this way is the family of beta distributions with
parameters p, q, i.e. the random variables having the p.d.f.

' (1—2)B(p,q) for 0<z<1,

4 T, =
(4) B(z;p,q) 0 for x<0,2>1,

where p, ¢ > 1 and B(p, q) is the Euler Integral of the First Kind
1
B(p,q) = [ 2" '(1—2)"'da.
0

Notice that p and ¢ are assumed to be not less than 1; for p or ¢ less than 1
the p.d.f. would exhibit an infinite jump at £ = 0 or at x = 1 and the
inversion formula (1) would not be applicable. This is not a serious limi-
tation since those U and J-shaped distributions are of negligible practical
importance.

Springer and Thompson [10] gave an explicit formula for the p.d.f.
of the product of » independent beta variables of a special class viz.
with parameters p = a+1, q = 1 defined by the p.d.f.

(6) B(w; a+1,1) = (a+1)a",

which they called “monomial” distributions; the rectangular distribution
is a member of this class for a = 0. For this class of beta distributions
the application of the Mellin transform gives an immediate answer: The
Mellin transform of (5) is equal to (a+1)(s+4a)”' and the Mellin tran-
. 8form of the p.d.f. of the product of n independent variables of that kind
is equal to (a+1)"(s+a)”". But the inverse Mellin transform of
(8+a)™™ can be found in the tables (see e.g. Baterman Manuscript [2],
formula 7.1. (16)) so that

(6)  Bu(m;at1,1) = (a+1)"a"(—logz)" '/(n—1)! for O0<ax <1,

for z>=1

There is a wide-spread belief among working statisticians that the
problem of distribution of products of independent random variables



is not of a very great interest since “one can always find the distribution
of y = logx, apply the theorems on the addition of independent random
variables y; = loga;; and then revert to the product of the z’s”. It happens
so that in the above particular case this procedure works and the appli-
cation of the Mellin transform (although very attractive) is not needed.
Indeed the distribution of ¥ = —logx is given by the exponential distri-
bution with parameter 1 = a+41 so that its p.d.f. is given by f(y)
= (a+1)exp[—vy(a+1)]. But it is well known that the sum of n inde-
pendent random variables of this kind is a gamma variate with the shape
parameter » and the scale parameter a+1 so that the p.d.f. of the sum
of logarithms is

faly) = (a+1)"y""exp[—y(a+1)])/(n—1)!

Putting = exp(—y) we obtain (6). However this seems to be an excep-
tionally simple situation and in more general cases the passage through
the distribution of the sum of logarithms does not make the problem any
easier.

2. Probability density function of the product of beta variables.

2.1. Simplification of the problem. The Mellin transform of (4) is
equal to
1

M[B(x;p,q)ls] = [ 2+ *(1—a)"'dw/B(p,g)

0

r I(p+s—1
= B(p+s—1,q)/B(p,q = (I?(Z)Q) "f(p(i:j.s_)n '

Denoting by p.(x; p, q) the p.d.f. of the product of » such independent
random variables we have, in view of (2),

(1) M[Bu(z;p,9) |81 = [I(p+/I(p)I"[I'(p+s—1)/I(p+q+s—1)T"
and (1) yields
Pu(@; D, Q)

C+OO

I ECER Sy )
—[ I'(p) 2m f {o” M (p+s—1 /F (p+q+s—1)}ds, ¢>0.

On substitution ¢ = s+ p—1 this becomes
c+ioco

[ wiromreroya, o>o,

I’(p—kq)]" !

(8) ﬂn(w;p,q)=[ T') o
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the path of integration being still a line parallel to the imaginary axis
and to the right of the origin since p > 1. But the above formula can
be rewritten as

_ [ Te+e T pii"(g+1) R,
ol , 9) = [F(p)F(q+1)] v ——z—m—fw @ O o+ g)a
which, in view of (8) with p = 1, gives
P n
(9) Bu(®5 0, q) = [I’(p()z}?—q?:l)] mp~lﬁn(a7§ 1, q).

This shows that it is sufficient to evaluate the p.d.f. of the product of n
random variables of a family of one-parameter beta variables having
p =1 and arbitrary ¢ > 1; for p > 1 the relevant p.d.fs are obtained
by the above simple transformation.

In the subsequent two subsections we shall discuss the derivation
of f.(x; 1, q) separately for the cases of integer and non-integer q.

2.2. The case of an integer q. From (7) we have
M(Ba(w;1,g)1s] = T"(g+1)I"(s)/ (g +s5).
But, with an integer g,

I'(g+s) = (qg+s—1)(g+s—2)- ... -sI'(s),
so that

—

q—
M{Bu(@; 1, g)ls] = I™(g+1) [ [(s+ %)™
k=0
and the inverse formula yields
¢+1io0

00 faloily0) =) g [ {“*ﬂ<s+k "has, o>0.

c—

The integrand in (10) has ¢ poles of the n-th order for s = —j(j = 0,1,
., ¢—1) and the integral can be easily evaluated by contour integration

yielding

F”q—i—lz (x;m,j) for O0<z <1,

Pal@;1,9) =
0 for x>1,

where

[~
[

oo B
(n—1)! ds"? |z (3+J) (s+%)"}

0

11)  R(x;n,j) =

8=—f

is the residue of the integrand of (10) at the n-th order pole s = —j.

-
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Let us write n(’)ak for ” axfa; (i.e. for the product in which the

q-1

j-th factor has been omltted) and similarly Z")ak for Zak— ; (L.e. for

the sum in which the j-th term has been omltted) Denotmg by G;(s)
the function in the brackets in (11) we have
a-1
(12) Gi(s) = o= [ ["(s+1)™"
k=1
Before treating the case of arbitrary integer ¢ let us discuss two
simple cases of ¢ =1 and ¢ = 2. For ¢ =1 we have to consider only
one pole and its residue. Here (12) reduces to G,(s) = #~° and (11) gives

1 —s n—1 _ n—1
R(z;n,0) = iﬁﬁm (—logx)™ “ls—o = m(—10g$)
so that, in view of (9), we obtain
—p——:bp’l(—log:zz:)”“1 for 0<a<1,
futas 9, 1) = | D)
0 . for z=>1,

which agrees with (6) when p = «+1. For » = 2 we have to consider
two residues for j = 0 and j = 1 at the poles s = 0 and s = —1. For-
mula (12) yields

Go(s) = &~ (s+1)"",  Gy(s) = a5,

while formula (11) gives

1 a-t
R(z;n, 0) = (n 1)1 ds i (s +1)” }[s 09
1 A o
R(z;n,1) = (n—l)!_ 2T {7°s ™" o1+

Applying the Leibniz formula for the (n—1)-th derivative of the product
we find

(13)  Palx;1,2)

n—-1 n
n on—k—2\ (—1) i j
_ |2 k2=0( nn_l )——k!——(—l()gév)k[w-f—(—l)k“] for 0<a <1,
0 for z>1.

Thus in the cases of ¢ = 1 and ¢ = 2 an explicit formula for 8,(z; 1, q)
has been given. For higher values of ¢ the application of the Leibniz
rule would lead to formulae which would be more and more complicated
and it is suggested to take advantage of the fact that the logarithmic
derivatives of (12) can be easily obtained; once they are found the problem



is solved since it is known how to obtain the n-th derivative of a function
from its logarithmic derivatives. Indeed, if

d . d
A(s) = —=[ogG(®)], A% =—c4(s) (r=1,2,...),
then
dﬂ 1 n-—1
= 0(8) = G(5) Zu[A(9), 4V(s), ..., AT V(9)],
where
Z,[A, A, .. AT
n!
— _ (P -Dkir 4=k 1 4D 7o
Z(nll)kl(nzl)"2...(nr!)k'kl!k2!...k,! [4 4 Ie..[4 5

here the sum is extended to all the partitions of number n such that
n = nky+nkst... 0k, A denotes A(s) and A” the r-th derivative
of A(s) with respect to s. The polynomials Z, are known as polyno-
mials of E. T. Bell (cf. e. g. [8], chapter 2, section 8). Clearly

Z,=A, Z,=A*+A0 Z,= A*+3440 A0,
and further formulae can be derived recursively by applying

Zn+1 - AZn"“ZQ)
(Cf. for example [7].)
In our case G;(s) is given by (12) and

a-1
log@G;(s) = —slogm—nzmlog(s—i—k).
k=0
The logarithmic derivative of (12) is

q-1
A;(8) = —logm——nzm(s—{— k)~!
k=0

and
g-—1 .
AP(s) = (=1 art YV (540D (r=1,2,...).
k=0
Since, according to (11), these derivatives are to be taken for 8 = —j
we have ~
X o) n—n
G(—i) = [[7 (k=i
k=0
a-1
(14)  A(—j) = —logz—n X' (k—j)7,
k=0

q--1

AP (—j) = (=1t 3O %—jy Y (r=1,2,..)

k=0 »
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and the final formula for the p.d.f. of the product is
(15) ) S
j ! —T Nn— 2)
Bul@s 1, @) = iy Ty 0, @ [ [ (i), AP o 49701,
! 2

where the arguments of the Z,_,-function are given by (14).
In the case of a rectangular distribution p =¢ =1

Gy(8) = x7%, logG,(s) = —slogz, A.(s) = —logw,

all the derivatives of A,(s) with respect to s vanishing. Hence

1 _
Zn—l ZAQ'_I and ﬁn(ﬁ;l,l) =m(—logw)" !
which agrees with (6). In the case of n = 2 it is easy to verify for low
values of n that formulae (13) and (15) give the same results. For higher
values of n it is preferable to use formula (13).

2.3. The case when ¢ is not an integer. From (7)

M{Ba(x;1, q)|8] = I (g+1)I™(s)[I™ (¢ +5)
and
c+1oo

F 7
(16) Bu(x;1,q) = I™(q+1) 21@ f[ (S))] x~°ds, ¢>0.

I'(s+q

Here the integrand has an infinity of poles of the n-th order at s = — %
(j =0,1,...) and the integral in (16) can be evaluated by contour in-
tegration yielding

F”q—i—lZ (w;m,j) for O<z<1
A7) falws1,q) = ’ ’

0 for «>1,
where
o 1 @, T }
E(z;n,j) = —D)! a5 7 {w Tt ) (s+74) s

is the residue of the integrand of (16) at the n-th order pole at s = —j.

REMARK. When establishing the validity of the first line of (17)
we integrate along a contour composed of the segment of integration
path of (16) between ¢c— 44 and ¢+ ¢A, of two horizontal segments joining
(in the s-plane) the pair of points ¢+74 and —A + 44 and the pair ¢c—i4
and —A—<¢A4 and finally of a vertical segment joining points —A—1i4
and —A47A. It is important to choose a sequence of values 4 tending
to infinity so that the vertical segment on the left side of imaginary axis
should avoid the successive poles of the integrand of (16); this can be
done, for instance, by putting A =m+3% (m =1,2,...). For more
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detailed account of all the contour integrations applied in this paper
see the author’s report [7a].

Clearly

|
-

L I(s+j-+1) d
B T T Bor B A

and for j = 0 the above identity is still valid if we agree to interpret
-1

(8+ k)~

Il:

an “empty” product [[ as unity. Hence
k=0
(18)

1 4!
(n—1)! ds"*
Denoting by @;(s) the function in the brackets in (18)

-1

Gy(s) = &~ T (s+j+1) I "(g+8) [ [ (s+ %)
k=0

R(; n, ) — o e+ 34014 0) [T 510
k=0

8=—7

we have
j—1

logGi(s) = —slogx+nlogl'(s+j+1)—nlogl'(¢+8)—n Zlog(s+ k)
-1 =
(interpreting again an “empty’ sum Z as zero to retain the validity of
the above for j = 0). k=
The successive logarithmic derivatives of G;(s) are
-1
Aj(s) = —logo+nyp(s+j+1)—np(g+s)—n > (s+k)7",

k=0
j=1

AP (s) = ny(s+j+1)—nyP(g+8)+n 2(s+ k)%

j—1

AD(5) = nyp (s+j-+1)—np(g+8)+ (=1 7! Y (54 K%)=+,
k=0

where p(-) denotes the Euler Psi-function the logarithmic derivative
of I'(-) and () its successive derivatives.

Consequently
J—-1 i in
L - L (=)
Gi(—j) = k—j) "I (q—§) = —m
(=) = | [ =iy i =) = g 0
)
(19)  4y(—j) = —loga-tnp()—np(g—j)+n ¥
k=1
k=1

AP (—j) = np? (1) — g (q— j) + ! Z g+,
k=1



-

and, by the argument which has been applied in the derivation of for-
mula (15) we find

(20)

in
ﬂ ( 7q) ( q_{_ )Z "‘I’n) ]) Zn.—l[Aj,A}, .”’A(n_z)]’

where the values to be put into Z,_,-function are given by (19).

The infinite series (20) is absolutely convergent for 0 << # << 1. Indeed,
the coefficient I™(¢+1)(j\)""I"" "(¢—j) is equal to the n-th power of
Q=q(q—1)...(¢g—H)! g =0,1,...). For j=0,1,...,[q] there are
[¢]+1 positive values of Q;; let @ be their maximum. For j > [¢]+1,
lg—3llj = (J—q)|j < | so that |Q;| < @. Further, the values to be put
into the Z,_,-function are given by (19) and since ¢ is not an integer
the series expansions of ”(y) valid fory # 0, —1, —2, ... can be applied
to evaluate 3 (¢—j) (see e.g. [1] formula (6.4.10)). Thus

(=) <t D lg—i+ kT <rtfig—[g) "+
k=0

+ gl 4+1—g1 V42 Y k~(r+1>} _
k=1

This is bounded from above by a constant independent of j and the same
applies to the remaining terms of A{? (see e.g. [1], formula (6.4.2)). The
terms of A4; are not bounded but, by a similar argument, it can be shown
that they are of order of O(logj) for any fixed « > 0 (see e.g. [1] formula
(6.3.2) and the recurrence formula (6.3.6)). Since the values (19) enter
into formula (20) as the n-th powers at the most, the series (20) is domi-

nated by Y o' (logj)" multiplied by a constant and this shows that it
j=1

is convergent for positive x smaller than 1.

3. Probability distribution function of the product of beta variables.

3.1. General remarks. Let the probability distribution function
corresponding to the p.d.f. (4) be

Bu(z;p,9) = [ B(t;p,)dt = B (p, @) [ (1) at.
0 N 0
In view of (3) and (7) we have

M[1—B,(2;p,q) 8] =s ' [T(p+ /@) [L(p+s)T'(p+q+9)]"
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and the inversion formula (1) yields

(21) B.(z;p, q)

c+ioo
= [ p+q)] f (o~ s '™ (p+8)|I™(p+q+s)ds, ¢>0.
2n oo

It is not possible to simplify the problem by reducing the discussion to
the one-parameter family of probability distribution functions in the
way similar to that carried out in Section 2.1 for the p.d.fs. We have
to investigate the two-parameter family of probability distribution fune-
tions and we shall again discuss separately the cases of integer and non-
integer q.

3.2. The case of integer ¢. Since for integer ¢
I'p+q+s)=@+e+s—1)(p+q+s—2)...-(p+8)I'(p+s),
(21) becomes

(22)  1—B,(x;p,q)

g1

it T [ oo

c—1too k=0

The integrand has one single pole at s = 0 and ¢ poles of the n-th order
at s = —j—p (j = 0,1, ..., ¢—1). The integral in (22) can be evaluated
again by contour integration as in the case if integral in formula (10)
and since the residue at s = 0 multiplied by I'™(p+¢q)/I™(p) is equal
to 1 we have

B.(z;p,q) = I"(p) j=0
1 for z>1,

where R*(z; n,j) is the residue of the integral appearing in (22) at the
n-th order pole at s = —j—p (j =0,1,...,¢—1):

(23)

q—-1

8 — . n —n ]
fotsstito” [ [ o+s+07]

[y
k=0

1 a-!
(n—1)! ds"*

R*($; n,j) =

Retaining the notation introduced in formula (12) we can write the
function Gj(s) in the brackets of (23) as

q-1
(24) G () =27 [[Mp+s+h)™
k=0



In the case of ¢ = 1 we have only one residue for j = 0. From (24)
Gy(8) = 7% ! and

R*(z;n, 0)
_ '(n—ll)! an (") & (—logay (=1 —r =115, __,
so that
(25) Bu(a; p, 1 pr—(——logm)

To verify (25)we differentiate it with respect to « and obtain (6).

In the case of ¢ = 2 we have to consider two residues for j = 0 and
j = 1. Thus
(n—1)! ds" 1 {77 (p+5+1) " Heeny

and a similar expression can be written for the residue at s = —p—1.
Applying the Leibniz formula for the (n—1)-th derivative of the product
and evaluating these derivatives for s = —p and s = — p—1 respectively
we find, after simple algebra,

(26)  Bu(2;p,2) )

= (- 1>”p”p+1>2'(2" _)ZL-J;ﬂx
k

R*(w§ n, 0) =

xa® [p~ (=1 e (p+1) T

By differentiating (26) with respect to z we verify that its derivative is
equal to (13) as it should be.

Again, as in Section 2.2 for higher values of »n the application of
the Leibniz rule would lead to complicated expressions and we shall
again evaluate the logarithmic derivative of (24). Here

g1
(27) logG; (s) = —slogez—logs—n Z(’)log(p+s-{— k).
k=0

Evaluating the derivative A(s) of (27) with respect to s and higher deri-
vatives A"(s) and bearing in mind that they have to be taken for s =
—j—p we obtain

q—
G (—j—p) = #*P(j+p) H
(28) Aj(—j—p) = —loga+(j+p)" —n 2"’k —i7

AFO(—j—p) = P14+ p) "+ L) (— 1)(”“”20’(k—j)“"+1),
k=0
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and the final formula for the probability distribution function of the
product is given by

1 I'(p+q) ] i m
29 By(x;p,q) =
@) B0 =5 ZP-H

X(k—j)~" n_ILAi,Aj,..W.A;W—”],

where the arguments of Z, ,-function are given by (28).
ExampLE. If ¢ = 1 then, according to (29),

n—1

» ) 1\ 1 2 (n—2)!
w( @y p,1) =———2"7Z, ,||—1 — )y =5y 5y eeey ——|.
B (z;p,1) (n—1)! 1[( og-+ p)’ pz’p“ ’ p

This formula is, for high values of n, more complicated than (25)
but it can be verified that for n = 2, 3 ete. it is equivalent to (25).

3.3. The case when ¢ is not an integer. Since ¢ is not an integer the
integral (21) cannot be written in a simpler form as in the case of (22).
The integrand of (21) has a single pole at s = 0 and an infinity of poles
of n-th order at s = —p—j(j = 0,1,...). The integral in (21) can be
again evaluated by contour integration by a method similar to that
applied in the evaluation of the integral of (16). Since the residue at
$ = 0 multiplied by I™(p+¢)/I™(p) is equal to 1 we have

p+q] %
. R*(z; n, for O0<z<1
Bu(;p,q) = [ I'(p) Z 7 ,
1 for @x 217
where
* . 1 atf g1 I"(p+s) }}
Blesmd) =51 ds"—‘{ CARREU e

is the residue of the integrand of (21) at the n-th order pole at s =
—p—j (j =0,1,...). Clearly
I'(st+p+j+1)

Pot+a)ptsti) = e st i— 2t

i—1

rs+p+j+1) [[(o+s+B)7,

k=0
—1

where again an “empty” product [] should be interpreted as unity.
k=0



1 a!

* . y —_— _— ——
(30)  B(o5m,0) = 5 g1 X

$=—p-j-

7—1
—8 _—1 n . _ —n n
x{w § ™ (s p+j+1) u (p+s+k) T (p+q+s)}

Denoting by G;(s) the function in the brackets in (30) we have
(31) log@G;(s) = —slogz—logs+nlogl(s+p+j+1)—

j—1

—nlogl'(p+q+8)—n Z log(p+s+k).
k=0

Evaluating the successive derivatives of (31) and bearing in mind that
they have to be taken at s = —p—j we find

G (—p—j) = — 2" (p+i)~ (=1 (i) " (¢—4),

7
(32) A (—p—j) = —logz+(p+i) " +np(l)—np(g—j)+n D'k,
. k=1

AT (—p—j) = (=1 rlp+§)H) + b
j

+my? (1) — ngf (g—j) +mrt D ECH,

=
and finally
. _[Fe+oT 1 3
(33) B.(z; p, q) _[ I'(p) ] (n—1)! 7,;0' X
@ (—1y7 1

Zn_1[47, 470, ..., 47079,

X e :
p+j (W I'(g—))
where the arguments of Z, ,-function are given by (32).

The convergence of the infinite series (33) follows from a similar
argument as that applied in the case of the infinite series (20).

4. Distribution of products of independent random variables having
the same beta distribution with different scale parameters.

The generalization of the above results to the case important in
practical applications when y = x,;... , and the i-th factor has the
p.d.f. a;f(a;x:; p, q) is immediate. The p.d.f. g,(y) of such a product is
equal to

(34) @n(Y) = aray ... 0 fu(ayaz ... an¥y; P, q),
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and consequently the probability distribution funection G,(y) is equal
to

G.(y) = B(u a5 ... 0,95 D, q).
Indeed, since

Mf(ax)|s] = a‘sM[f(w) ls],
we have

Mgu(y)] = [ayaz ... ] H{M[B(x;p,q)[s]}"

= [ayay ... au] " M [Bu(y; P, q)1s]

= a10dy ... M [Bulaias ... w¥; P, q)ls]

= M[ajay... axfn(ajay ... any)ls],

which completes the proof of (34) in view of the uniqueness property
of the Mellin transform (cf. [3], p. 104, Th. 2).
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