ZASTOSOWANIA MATEMATYKI
APPLICATIONES MATHEMATICAE
XvVII1I, 2 (1984), p. 169-175

K. UsHa (Tamilnadu, India)

THE PH/M|c QUEUE WITH VARYING ENVIRONMENT

. We study the steady state queue length of the PH/M /¢ queue in
Which th arrival time distribution and the service rate change in accord-

:’}Ilmf’ With the change of state in a continuous-time irreducible Markov
ain,

1. Introduction. Consider an m-state irreducible continuous-time
Markov chain with infinitesimal generator ¢ which describes a randomly
V&rying environment for a queue of PH /M [c type. We specify that, whene
Ver the Markov chain is in the state i, the service rate of the server
S > 0, 1<i<m. We always assume that only one customer is in
tpe Process of joining the queue for service and that the customer arrival

me distribution when he starts to the queue in the environment ¢ %s
O phase type F(-). If the environment changes from ¢ to j during his
rival time to the queue, his new arrival time distribution is the sta-
tlonary version of F;(-). The random environment model under expo-
lentjg) assumptions was first considered by Eisen and Tainiter [1] th
Studieq the particular cases with m = 2. Yechiali and Naor [11], Yechi-a,h
10], ang Purdue [8] also treated exponential queueing models with
™ = 2 and with an arbitrary value of m. Neuts [5], [6] treated the M /M /1
nd ) /e queues with random environment, which included the above
Models g4 special cases. In this paper we consider such a m().del when the
arival time distribution is of phase type (PH) and we obtaap the steac‘l.y
State probability vector of the queue length in the matrix geometric
'm and in the modified matrix geometric form for the PH/M/1 and

PH|y /¢ queues, respectively.

Phase-type arrival. Consider a continuous-time Markov process
With state space {1, ..., N n;+1} for which the states 1,...,#, are
trangient and the state n;-1 is absorbing for 1 < ¢ < m. We a,ssu.melthaté
Starting at any transient state, absorption into the state n;+1 is almos
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certain. The infinitesimal generator P; of such a Markov process is of
the form

T, T°
_P' — ? 1
0 0

T ?

where T; is an (n; X n;)-matrix with (T;);; <0 and (T,);,>0 for j #F&
such that T;! exists. The vector T? is non-negative and satisfies the
equation 7,e+T; = 0, where e = (1 1 1 ... 1)’. Let (a;, 0) denote the
vector of initial probabilities. For the above-defined Markov process,
the probability distribution F;(-) of the time till the absorption in the
state n;+1 is given by

F,(z) =1—a; exp(T;x)e, x>=0.

The pair (a;, T;) is called a representation of F,(-). PH distributions were
introduced and studied by Neuts in [2]-[4]. One may refer to [7 ] for
the properties of PH distributions.

For any vector ¢ and any number ¢ we introduce the matrices

A(c) = diag(cyy €5y ..., ¢;) and  A(c) = diag(e,c,...,c).
Let T? be the (nm;X #,)-matrix with elements (T79); = (T7);. Consider
Q; = Ti+TgA(ai)°

In [2] it is shown that without loss of generality one may assume that
the representation (a;, T';) of F;(-) is chosen so that the matrix @, is irre-
ducible. The matrix ), is the infinitesimal generator of the PH renewal
process studied by Neuts [3].

Let =; be the invariant probability vector of @, for 1 i< m. It
is clear from [4] that the stationary version of the PH renewal process
is obtained by starting the Markov process @, with initial probability
vector n; and the stationary version of F;(-) has the representation (x;, T;),
1<i<m.

In what follows we treat the steady state queue length of the PH /M /1
queue with random environment, its special cases, and the PH/M/c
queue.

2. Steady state queue length of the PH /M |1 queue. Let @ be the
invariant probability vector of @ which is the solution of the equation
aQ =0, ae =1. Let u = (4, gy ---y ty,). The queueing model of in-
terest can be studied by a continuous-time Markov chain on the state
space

{(ky2,7): k=21, 1<i<m, 1<j< ng.
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The chain is in the state (k, ¢, j) when k customers are present, the
@-process is in the state 4, and the arrival phase is j.

To describe the infinitesimal generator of the above Markov process
. _

;’f the queueing system we mneed (N xN)-matrices (N = ' n,) of the
orm io1
[ My M, M,,,
A e L
!J[ ml JI m2 'z'[mnz

Where M; is an (n; X n;)-matrix for 1 <4, j < m. Let

1

) A, = 10,1,

gilsre My = A(u;) for 1 <i<m and M, are zero matrices for ¢ # j.
(2)

A, = | Myll,
;vhere J{H =T,4+4(Q,,) —A(u;) and M, is an (n, X n;)-matrix with all
OWSs defined g5 n;Q,; for i # j. Let

3
3) Ay = 1,0,
Where M, = T A(a,) for 1 < i< m and M, are zero matrices for ¢ # j.

) The infinitesimal generator of the queueing system can now be
Wl‘ltten as

Ay+A, A, 0 0
A, A, 4, 0
Q* =0 4, A, A4,
10 0 A, A,

T . .
alllls Matrix O* is of the form studied by Neuts [5]. Define 4 = 4¢+4, +A4,
& (1 x N)-vector

I = (a7, aymy, ..., Uy o) +

It can be seen that A is the irreducible and infinitesimal generator of
& continuous-time Markov chain with IT as its invariant probability
vector. Therefore, IIA — 0 and Ife — 1. Denote by @ the vector of
Stfady state probabilities associated with @* so that ®Q* = 0 and xe = 1.
We Partition @ as

x = (Xyy X1, T2y i)y
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where x; (¢ > 0) are (1 X N)-vectors. We examine below the existence of
a solution of the form @, = x,R’ for ¢ > 1, where R has a spectral radius
strictly less than one. To get such a solution we must have
xo(4o+A4,)+ 2 R4, =0,
woRi(Az +RA1 +.R2Ao) == 0, 'i > 0.
From (4) it is clear that we need the matrix R which is the unique
solution of the equation

(5) A,+RA,+R*4, =0

(4)

in the set of non-negative matrices of order N having a spectral radius
less than one. Observe that, by [9], 4, is non-singular since A4,e <0
and A7’ is non-positive with strictly negative diagonal elements. Repeating
the arguments of Neuts [6] we find that such a matrix R exists with
spectral radius less than one if ITA e > ITA,e. Simplifying we get

m m
(6) Zai.ui => Za,—,u,,’;—l,
i1 i=1

where u; = (m,T%)~! is the mean of F,(-) (see [2] and [3]).
We shall now find a,. The vector &, must be chosen so that it
satisfies

0 Zwie =x,(I-R)'e =1
1=0
and (4). From (4) and (5) we obtain

o(do+ 43 +RA) + Y w0 B (B4 +RA, +4,)
r=0
== wo(I —R)_I(JA.O +A1 +A2) == wo(I '—_R)—IA == 0.

The uniqueness of the vector IT and (6), (7) imply that x, = II(I —R).
This proves the following

THEOREM 1. If (6) holds, then the quewe is stable. The invariant
probability vector of Q* is given by x = (a,, X,, Xy, ...), X, = (I —R)RF
for k= 0. The matrix R is the unique Ssolution of equation (5) in the
set of mon-negative matrices of order N, which have a spectral radius less
than one.

Special cases. The above model is based on the analysis given
by Neuts [56] for the M/M/1 queue.

(i) H,/M/1 queuwe. Consider the hyperexponential distribution with
representation (@, T), where @ = n~'e, T = diag(—2),and 2 = (11, ..., 4,)-
Let F,(-) be represented by (a,:T) for 1 <7< m. Assume that there
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I8 no change in the arrival phase of the customer, who is in the process
of joining the queue, due to a change in the environment. In this model,
n; = n for 1<¢<<m, where
n
7= (247 A A,
i=1
The matrices M; (i #j) of A, become AQ,;. Using the analysis given
above one can Prove that the steady state probability vector has the
stated matrix geometric form. In spite of the change in A4,, the invariant
Probability vector 7 of A takes the form
(8)

nI=adn = (ayn,a,m,...,a,n),

where @ denoteg the Kronecker multiplication. The steady state require-
ment copn be seen as

id - 1.
gai‘ui >N (];: )s]’l) g%di-

(1) Discrete PR, Gonsider an (n-+1)-state Markov chain with transi-

t' g
ion Probability matrix S given by
K K°
S = 0 1 ‘

The square Matrix K is of order n and K} >0 for 1< i< n. Note that
!I —H)™ exists. This guarantees that the eventual absorption from any
of 2l state into the state n -1 is certain. Let the initial probabilities
Of the Markoy chain be (a,0), @, >0 for 1 <i<n This discrete PH_
d]StribUtion has the representation (e, K) (see [2]). Let the stochastic
(X R be of the form K — K +K4(a), where Ky — K! have m as
Lt variant, Probability vector. Assume that F,(-) for 1 <.z' < m have
inPi;hrepresenta."cions (@, (—I+K)2,), where ;> 0. If ’-ohereols a _clg?jlgg‘f
tio ® e0vironment from i to j, we assume that the arrival time dis ;1. u
thgl Changes from the i-th to the j-th type but.; the arrlvam.l starts thIﬁ
thi “3e arrival phase just before the change in the environment.

.S case i may be noted that x, = = for 1 <4 < m. The matrices My,
L7 1<y, j<m, in A, become A4(Q;). In spite of this change the
#bove analysis can be used to obtain the invariant probability vector of
the dueue length in the matrix geometric form. The vector IT of A 1‘1318
the same form given by (8) and it is seen to be IT = a®, and the corre-

SPonding steady state requirement (6) is

m m -1
(; a;) (kg{’ ) <1,

Where % is the mean of the underlying discrete PH distribution.
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3. Steady state queue length of the PH /M [c queue. The PH /M |c

queue with randomly varying environment defines a- Markov process
with the infinitesimal generator P* given by

P =

where Ao = Aiz =4, = A, Aio = i4,, Aoo» = A,+4,, Ail =A4,-

—(t—1)4, for 1<i<e—1, Ay =cA,, A,=A,—(c—1)4,, and A,,

A,, A, are given by (1)-(3). Using [6] one can prove the following
THEOREM 2. If

m m
*—1
czail‘i >Z“u“i )
i=1 i=1

then the queue is stable. The steady state vector
T = (L) Xy eeny Lo_gy Loy e2)

is given by x, = x,_,R¥=°*! for k > ¢. The matriz R, is the unique solution
of the equation
'R¢2:AO+R0A1+A2 == 0
in the set of mon-negative matrices of spectral radius less than one.
The matrix P** given. by

A gy
4,4
P** —

ooooooooooooooooooooooooooo

~

A'c—l,O Ac—l,l +'R(:A0

is an irreducible semistable matrix of order ¢N. The vector (&, €y ...y L,_;)
is its left eigenvector corresponding to the eigenvalue zero. It is normalized
so that

x.e+...+x, ,et+x,_(I—R,)'e =1.
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