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1. Introduction. We deal with the cost transportation problem
{(Problem C), the time transportation problem (Problem T) and the lexi-
cographic transportation problem (Problem L). All these three problems
have the system of constraints

n
E Ty =a;,, 1=1,...,m,

(1.1) m )
Za;ii:bj’ J=1,...,m,
t=1
%; =0, i=1,....,m;j=1,...,m,
where a,,...,a, and by, ..., b, are positive numbers satisfying
1) ? %m 19 Yy Yn p

.".M:

Se-

Problem C, which is a classical transportation problem, can be stated
as follows: .

ProBLEM C. Minimize

subject to (1.1).
Problem T can be stated as follows:
ProBLEM T. Minimize

(1.3) 1(X) = maxi;sgnw,
(,9)e®

subject to (1.1), where T' = (t;) is assumed to be a non-negative matrix,
and @ ={1,...,m} x{1,...,n}.
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Suppose that there are given non-empty disjoint sets @,, ..., g
such that

Cw

(1.4) - o, = b

k=0

For any matrix X = () satisfying (1.1) we introduce a vector

(1.5) y(X) =(?/0(X)7“-7?/K(X))7

where

(1.6) (X)) = D @y k=0,..,K.
(%,5)e®Py,

We state Problem L as follows:

ProBLEM L. Minimize y(X) subject to (1.1).

Obviously, y(X) is lexicographically minimized.

In Section 3 we show that we can construct such a matrix ¢ = (¢;)
that Problem L and the associated Problem C are equivalent.

In Section 4 we construect Problem L such that an optimal solution
to Problem L is also an optimal solution to Problem T. This way (via
Problem L) Problem T can be solved by solving the associated Problem C.

An outline of the method reducing Problem T to Problem C was
given in [4]. The proofs were given in [5]. However, Problem L was not
posed and the proofs were more complicated than the proofs which are
given in this paper.

The method as proposed in [4] and [5] might yield a matrix C whose
some elements were 0 or 1 while others were of great magnitude. This
disadvantage can be easily avoided by finding “good” bounds for a mini-
mum value of (1.3). The simple method of finding a “good” lower bound
is given in Section 5. This was first proposed in [5]. The value of (1.3)
for an initial feasible solution is taken as an upper bound. The method
for finding a relatively good initial solution is given in Section 6. The
matrix C is constructed after these bounds have been found.

The method is illustrated by a numerical example in Section 7.

Before we proceed to the description of the method we briefly recall
the history of Problem T.

The time transportation problem was posed and solved by Barsov
(see [1], p. 90-101) in 1959. The method was based on the simplex method.

Other methods equivalent to Barsov’s method in the sense that they
produce the same sequence of basic solutions provided we start with
the same initial solution were published by Zukhovitski and Avdeyeva.
(see [11], p. 204-216) in 1964, by Szwarc [9] (see also [8]) in 1966 and by
Hammer [6] in 1969.
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In all these methods having a basic feasible solution X (see Sec-
tion 2 for necessary definitions) with ¢(Xgz) = ¢,; one has to consider
a set, say G, of (u,v) satisfying

(a’) tuv< tkl’

(b) (u,v)¢B,

(¢) Bu (u, ) contains a cycle set, say I', such that (u«, v) and (&, 1)
belong to different half-cycle subsets of I

If G is non-empty, then by choosing (p, ¢) such that

t,q = mint,,
(u,v)eG
@ new basic solution, in which ,, is a basic variable, is constructed.

However, the technique of finding (p, q) is different in all these
methods.

An original method based on the labelling method of finding a maxi-
mal flow (see [2]) was proposed by Garfinkel and Rao [3] in 1971.

Two methods were given in Nesterov [7] (see p. 72-80) in 1962.
‘One of them is based on Kantorovitch’s linear programming method.
‘The other one, due to I. V. Romanovski, reduces Problem T to a sequence
-of Problems C. In Romanovski’s method for a given basic solution X
with t{(Xp) = t,; a new basic solution is found by solving Problem C with
the matrix ¢ = (¢;) defined as follows:

0 if t; <ty
Cyy = 1 if t‘i] = tkl’
+oo if t”' > tkl'

One can notice from Sections 3 and 4 of this paper that - oco in this
formula can be replaced by k-1, where & denotes the number of elements

2. Notation, definitions and properties of Problem C. We need the
following known definitions and properties based on [10].

First, we define some subsets of & = {1,...,m} x{1,...,n}. The
set B; = {i} x{1,...,n} is the i-th row set, ; = {1, ..., m} X {j} is the
J-th column set, and

R, for k =1,...,m,

L, =
* Coen Tor k=m4+1,...,m+n

is the k-th line set.

A non-empty subset I" of @ is a cycle set if the intersection of I" and
any line set is either empty or consists of two elements. A set consisting
of exactly half elements of I" and such that its intersection with any line
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set consists of at most one element is a half-cycle subset of I'. Any cycle
set can be divided into exactly two half-cycle subsets which are disjoint.

A subset B of @ is a basic set if it consists of m 4+ n —1 elements and
contains no cycle set. .

A matrix X = () satisfying (1.1) is a feasible solution. A feasible
solution minimizing (1.2) is an optimal solution. A feasible solution Xz =
= (z5) satistying #5 = 0 for (i,j)¢B, where B is a basic set, is called
a basic solution.

Cost matrices ¢ = (¢;) and C' = (¢;) are said to be equivalent if

’

¢;; = cy+u;+v; for (i,5)eD,

where u,, ..., U, and vy, ..., v, are arbitrary constants. A matrix Oz = (¢5)
equivalent to € = (¢;) and satisfying ¢f = 0 for (i,j)eB, where B is
a basic set, is called a zero matriz.

To any basic set B there exists exactly one zero matrix C; and at
most one basic solution X (to each basic set B there exists exactly one
matrix X satisfying equations of (1.1), but it does not have to be non-
-negative).

If B is a basic set and (p, q) ¢B, then BU(p, q) contains exactly one
cycle set, say I'. Moreover, I' contains (p, q). Let I, I, be half-cycle

subsets of I" defined in such a way that (p, q)ely. Then

(2.1) Coy = 2 Cij — Z Cij-
(%,5)ely (&,9)ely
Assume, in addition, that Xz = () is a basic solution. If (r, s)
is an element of I', satisfying

zL, = min aF,

e (%,9)ely
then B, = BU(p, ¢)—(r,s) is a basic set, and Xp = (27! is a basic
solution. It can be found by the formula

wp ol for (i,§)elt,

(2.2) wht = wg —wl for (3,])el,

b for (i,§)e®—1TI.
Remark 1. Since I # & and x>0, then Xp # Xy if and only
: B
if x> 0.
It follows from (2.1) and (2.2) that

m n m n

By __ \! B B B

(2.3) E | E C;j Tt = E D€t Cpg s -
i=1j=1 i=1j=1
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An optimal solution to Problem C can be found by the transporta-
tion algorithm. Starting with an arbitrary basic solution we construct
a sequence of basic solutions by repeating the same step transforming
(if necessary) one basic solution, say Xp, into another one, say Xg .
This step can be described as follows:

1. If Cz = 0, then X5 is an optimal solution. Otherwise proceed to 2.
2. Choose (p, ¢) such that ¢5, < 0.

3. Find I', I}, I', and (r, s) specified above.

4. Construct Xp, where B, = BU(p, q)—(r,s).

By use of some perturbation technique, if necessary, an optimal
solution can be found in finitely many steps.

3. Reducing Problem L to Problem C. Let &, for ¥ =0, ..., K denote.
the number of elements of @, and consider the sequence wg, Wy, ..., Wy
defined as follows:

0 for k = K,
1 for k = K-1,
(hk+1+1)wk+1 fOI' k=K—2,...,O.

(3.1) w,, =

LEMMA 1. We have

K
wy— D hw, =1 for k=K—1,E—2,...,0.
I=k+1

Proof. We prove the lemma by induction.
For k¥ = K —1 we have, by (3.1),

wK__l_thK = 1—'h0'0 =5 1.
Assume
K

w, — 2 hw, =1,

I=p+1
where p is any integer number satisfying K —1 > p > 1. Then
K K
—th’wz = (h, +1)w, — h,w, — Z hw, = w,— 2 hw, =1
l=p l=p+1 l=p+1

which completes the proof.
Let us define an (m X n)-matrix ¢ = (¢;) by

(3.2) c; =w, for (i,j)edP, and k =0,..., K.

In what follows it will be understood that the matrix C of Problem C:
is defined by (3.2).
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Let Iy, I', be the two half-cycle subsets of some cycle set I" and let

91 = (9100 -+ s hig)s 92 = (g20y -+ §2K)
where ¢;. denotes the number of elements of I3 &,. Write
(3.3) o) = Doy o) = D e

(id)ely (i,5)ely
ProrosiTioN 1. We have
91—9: = 0<c(l}) —o(ly) =0,
g1— 92 & 0<c(I') —c(l}) > 0,
91—9: 30<=c(I)—e(ly) < 0.

Proof. By (3.2) and the definition of ¢, and g, we have

K
o(I)—e(Ty) = ) (9ue— Gor) W-
k=0

Then, clearly, g,—g¢, = 0 implies ¢(I})—¢(I) = 0. ’

Assume g, —g, & 0. Let g,,—g,, be the first non-vanishing compo-
nent of g, —g,. Consequently, g,,—¢,, > 1 and, since I'; and I'; have the
same number of elements, we have, by (1.4), p < K. Obviously, 0 < g, < h;,
for 1 =1,2 and ¥ =0,..., K. Hence

K K K
<(ly)—e(ly) = Z(glk_gﬂc)wk = (1p — J2p) Wp+ 2 J1: Wy, — 2 Gor Wy«
k=0 k=p+1 k=p+1

Since gy, —¢2p =1, 015 = 0, o1, < by, and 'wk 0, we get

c(Ih) —e(ly) = w,— 2 by .

k=p+1
Now, by Lemma 1, ¢(I';) — ¢(I;) > 1 > 0 which means that g, —g, & 0
implies ¢(I;) —¢(I,) > 0. This, by the symmetry, yields also
g1—9: 30=>c(Ih)—e(ly) <0
‘which completes the proof.

LeMMA 2. Let Xp be a basic solution obtained from Xp by the trans-
portation algorithm. Assume Xp # Xp. Then

{3.4) Zm’ Zm*c,, ah < 2 Zc,jm,,,

i=1 j=1 i=1 j=
(3.5) ¥y(Xp) 39(Xp).

Proof. By Remark 1, a2 > 0. Then (3.4) follows from c¢5 <0
and (2.3).
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From the definitions of g, and g,, (2.2) and the definition of y(X)
we get

(3.6) Y(Xp) = y(Xp)+ (91— o) 275

By (2.1), (3.3) and Proposition 1, ¢35 < 0 implies g;—g¢, 3 0 and,
since #Z > 0, we have (g, —g,)#2 3 0. This and (3.6) imply (3.3). The
proof is completed.

LeMMA 3. If a basic solution Xg is not optimal to Problem C, then it
48 not optimal to Problem L.

Proof. Construct a sequence Xp , Xp , ..., Xp by use of the trans-
portation algorithm where X5 is an optimal solution to Problem C.
Obviously, X5 # Xp . Let Xp be the first element of that sequence
which is dlfferent from X By Utlhzmg Lemma 2 we get

y(Xp) =y(Xp) =... =y(Xp,_) & y(Xp)
which completes the proof.

LeMMA 4. If a basic solution Xp is not optimal to Problem L. then
it i8 not optimal to Problem C.

Proof. By the assumption there exists a feasible solution X = (7;)
such that y(X) —y(Xp) 30. Let y,(X)—9,(X5) be the first non-van-
ishing component of y(X )—y(X B, ). Hence

(3.7)  y(X)—yp(Xp) =0 for k =0,...,0—-1, (X)—y(Xp)<0,

and since for any feasible solution X = (2;), we have

Swm =3 5 sy = 3a - Sa.

k=0 (i,j)e®;, (2,5)P

Then (3.7) implies I < K.
Take

Dy = U Dy
=1+1
K

?/;+1(X) = 2 Ty = 2 Z Zijy

(6,d)e®] | k=1+1 (i,))ePy

Y (X) = ((X), 41(X), ..., %(X), Y1 (X))

By the definition of Problem L, sets @,, @, ..., Px are not empty
and, since ! < K, the sets @,, &, ..., D, D;,, are not empty. Moreover,
K

1
UG+ Py = U 9 = 2.
k=0 k=0

Hence, the problem, say Problem L’, of minimizing y'(X) subject
0 (1.1) has the form of Problem L.

4 — Zastosow., Matem. 15.2
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Introducing
0 for k =141,
w, =11 for k =1,
, V(hyyy FL)wyy, for k =1—1,...,0,
wy, for (¢,j)e®d, and k =0,1,...,1,

Wy, =0 for (i,5)ed;,,

J, —
(’i]' =

we can pose the problem, say Problem €', of minimizing

> Z iy

=1 j=
subject to (1.1). Obviously, w;, > 0 for k¥ = 0,1, ...,1. This, the defini-
tion of ¢' = (¢;) and (3.7) imply

4 l

m

‘. ’ BO
E ij 1] = E E ’wka,,;j< E wkm E
1j=1 =

k=0 (i.)e®y, k=0 (3,5)e®;,

o B0
"'.’I "]

&Ms

which means that Xp is not an optimal solution to Problem C'.

Construct a sequence Xg , Xg , ..., X5 by use of the transportation
algorithm where X is an optimal solution to Problem C'. Obviously,
Xp, # Xp,. Let v'be the number such that

(3.8) XBO == XBI = eee = 'XBU_II# XB’D.

Let (p,q),I,I,,I', and (v, s) denote elements or sets found at
pomt\ 2 and 3 of the step tr anbformmg X B, 1nt0 X B, . Obviously, ,s” '>0
and ¢ M” =1 < 0, where Cp,_, = (cf Y denotes 4 zero matrix equivalent to C’
constructed f01 the basic set B, ,. From cpq”'l < 0 and formulae (2.1),
(3.3) rewritten for ¢’ we get ¢'(I3)—¢'(I,)<<0. By Proposition 1,
g1 —¢, 30, where

-

91 = (G105 ++ -1 Ju1s 91,l+1) = (glo’ ceey Juy Z 91k)1

k=l+1

g; = (G205 -+ G g;,l-i-l) = (.‘/107 ceey Gopy Z glk)‘

E=T+1
Since

K
gi—g; 30 and Zgu gor) = 0,

there exists a ¢ (where 0 < ¢t <) such that
J.— 9 =0 for £ =0,...,t—1, ¢g,—9,<0.
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This implies ¢, —g¢, 3 0. and, 23 Proposition 1, e¢(I4)—c(l,) < 0.
Applying (3.3) and (2.1) we get ¢,.'< 0, where C; = (cfj’” Y is a
Zero ma,trn equlvalent to C con.xtlucted for the Dbasic set B,_,. From

B” <o, a; !> 0 and (2.3) rewritten for X B, and X B,_, We obtain

‘m

3 Soyelr< 3 Slaya

t=1 i=1 j=
This and X B, = Xp, , (see (3.8)) means that X B, 18 not an optimal
solution to Problem C.

COROLL ARY 1. A basic solution is optimal to Problem L ’Lf and only
if it is optimal to Problem C.

Proof. The corollary follows immediately from Lemmas 3 and 4.
COROLLARY 2. Problem L has a basic optimal solution.

Proof. The corollary follows from Corollary 1 and the fact that
Problem C has a basic optimal solution.

THEOREM 1. A feasible solution is optimal to Problem L if and only
if it is optimal to Problem C.

Proof. It is known that any feasible solution X can be written as

l
X = D nXp,
k=1

where Xp , ..., Xp are basic solutions,
I
D=1, >0 fork=1,..,1

Clearly, X is an optimal solution to Problem L if and only if Xg , ...
..., Xp, are optimal to Problem L. This, by Corollary 1, is equivalent
to the statement that Xp,..., Xp are optimal to Problem C which,
in turn, is equivalent to the statement that X is optimal to Problem C,

THEOREM 2. Let Xp, Xp, ..., X5 be a sequence of basic solutions
obtained by the use of the tramsportation algorithm. Then the sequence
Y(Xo), ¥(Xp), ..., y(Xp ) is lexvicographically non-increasing.

This theorem is an immediate consequence of Lemma 2.

4. Reducing Problem T into Problem C. In the next sections we deal
with Problem T. In this section we construct Problem L such that any
optimal solution to Problem L is an optimal solution to Problem T. Thus,
by Theorem 1, Problem T can be solved by solving the corresponding
classical transportation problem, i.e. Problem C.

Let t5,t,, ..., tx be a sequence having the following properties:
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(b) for any ¢, of that sequence, there exists (i, j)e® such that t; = t,,

(e) for any (7, j)«®D there exists #;, such that ¢, = 1.

Write
(4.1) ¢k ={(i’j) |t‘ij =tK—k} fOI‘ k =0,1’..-,K.

In what follows it will be understood that sets @,, ..., @ of Problem L
are defined by (4.1) (clearly, @,, ..., @ are non-empty disjoint sets satis-
fying (1.4)).

~ LEMMA 5. Given two feasible solutions X' = (®;) ‘and X" =(w).
If y(X') is not lewicographically greater than y(X''), then t(X') < t(X").

Proof. Let (p, q)e® and K —re{0,..., K} satisfy

t(X’) = maxt; sgnzy = t,, = tg_,.
(d)e®

This, ty<t, < ... < tg and (4.1) imply

’

wu=0 fOI‘ k=0’1,.-.,1'—1,
(4.2) %
2 ﬂ?ﬁ > 0.
(i,7)eP)

Suppose #(X") < ¢(X') =ig_,. Then

(4.3) 2 wy =0 fork=0,1,...,7.
(. 1)edy,

From (4.2) and (4.3), utilizing (1.5) and (1.6), we get y(X') & y(X"')
which is contradictory to the assumption. This contradiction proves the
lemma.

Lemma 5 enables us to state the following theorems:

THEOREM 3. An optimal solution to Problem L is optimal to Problem T.

THEOREM 4. An optimal solution to Problem C is optimal to Problem T.

-

THEOREM 5. Let Xp, Xp,..., Xp, be a sequence of basic solutions
obtained by use of the transportation algorithm. Then t(X By) = t(Xp) = ...
... =21(Xp ).

Theorem 3 follows from Lemma 5, Theorem 4 — from Theorems 1
and 3, and Theorem 5 — from Lemma 5 and Theorem 2.

According to Theorem 4, Problem T can be solved by solving Prob-
lem C which is a classical transportation problem. As can be easily seen
the matrix ¢ = (¢;) can be constructed by letting

¢; =w, for (¢,j)eD, and k =0,..., K,

L
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where
'Dk={(1;7j)|ti) =tk} fOI‘ z‘::O,-..’K’

0 for k =0,
w, =31 for k =1,
(s +1)wy_, for bk =2,...,K,

and h; denotes the number of elements of D,,.

It should be stressed that Problems C and T are not equivalent.
Although Problems C and L are equivalent, Problems L and T are not,
since ¥(X'’) # y(X'') and t(X’) = t(X"’) very often. Hence a set of optimal
solutions to Problems C is contained in the set of optimal solutions to
Problem T, but these two sets are not necessarily equal.

At this stage it should be pointed out that some elements of the ma-
trix C might be of great magnitude unless some devices are applied. If, for
instance, all elements of the matrix T are different, which is the worst
possible case, then the set of elements of C is equal to {0, 1, 2, 4, ..., 2™"2},
This is an obvious disadvantage of the method. However, it can be avoid-
ed by finding lower and upper bounds for the minimum value of ¢(X)
in the way proposed in the next two sections.

Now we describe a general idea of use of these bounds.

Let t* be a minimum value of (1.3) in Problem T and let t, t* be
numbers such that ¢’ <t* <t'’. Write

(4.4) t; = max(t’,ty), t; = min(t,, " +eé),
) t3 = min[max (¥, t;), t"' +£],
where ¢ is an arbitrary positive number.
Let t/(X) for I =1,2,3 denote a function obtained from
{(X) = maxi;sgnay
(¢,4)e®
by replacing t,; by t};. By Problem T' we understand the problem of mini-
mizing #(X) subject to (1.1).
PROPOSITION 2. A feasible solution is optimal to Problem T if and
only if it is optimal to Problems T!, T? and T°.
Proof. Let X be any feasible solution. It follows from ¢* > ¢’ that
t(X)>1t". Suppose (p,q) satisfies #,, = ¢(X)>1t. This implies z,,> 0
and @; = 0 whenever t; > t,,. Since t,, > t’, by the definition of t}; we get

t,, = max(t', tog) =1, and ty =max(¥,t;) =t;

whenever t; > t,,. Hence we have ., = t,,, @;, > Oua,nd-mij = 0 whenever
t}; > t,,. This means that #(X) = t,, = t(X). Thus (X) = ¢(X), holds
for any feasible solution X, and Problems T and T' are equivalent.
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Since t* < t”’, Problem T is equivalent to the problem of minimizing
t(X) subject to (1.1) and t(X) <t"’. Let X be any feasible solution satis-
fying {(X) <t and let t,, = t(X) for some (p, g)eP. Then z; = 0 when-
ever t; > t,,. In particular, x;; = 0 whenever t; > " (since 1"’ > #(X) = t,,).

Let (4, j) be any element of &. If t,; > ", then #; = 0 and #;sgnx,;
= tsgnwz,; = 0. Ift; < ¢, thent}; = t;and, obviously, t,sgna,; = t;sgnw,;.
Hence t(X) = 12(X) which proves the equivalency of Problems T and T*.

Finally, since Problems T and T' are equivalent, t; can be replaced
by ti; = max(t',t;) and we get tj; = min(t};, t+¢). As we have proved,
for any feasible solution X we have #!(X) = #(X) and, consequently,
¢ <* < ¢, where ¢'* denotes the minimum value of #(X). Applying
the second part of the proof, we can prove the equivalency of Problems T
and T3 -

The proof is completed.

Clearly, bounds ¢’ and t"’ can be always found in such a way that
there exist two elements of T which are equal to ¢’ and ¢, respec’_civély.
Utilizing the equivalency of Problems T and T® we can construct the
matrix C as follows: :

PROCEDURE 1.

1. Define the sequence %, %, ..., t; satisfying

(a) ¥ =t <ti<... <t =1";

(b) for each (7, j)e® satisfying ¢’ < t; <t" there exists tye{ly, :.., &}
:such that #;, = 1;; ,

(c) for each't.e{ty, ..., t;} there exists (¢,j)e® such that t; =¢,.

2. Take

Eo = {(@7.7) [ tij < to}7
Ek={(i7j)ltij:tk}. fO_I‘ Z‘;=17"'7l’
By = {(4,5) 1ty >t}

3. Define the sequence w,, 1, ..., w;,, taking

wo =0, w, =1, w,=(h_,+1)w, ,for k=2,...,1+1,
‘where h,, ..., h; denote the numbers of elements of Z,, ..., E;, respec-
tively. ‘

4. Construct the matrix ¢ = (¢;) taking

¢; =w, for (i,j)eE, and k =0,1,...,1+1.

(¥
5. A lower bound for minimum time. Now we give the meth od of
-obtaining a lower bound ¢ for the minimum value ¢* of ¢{(X) in Problem T.
This method was first proposed in [5].
Consider the following problem:
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ProBrLEM RT. Minimize

t(X) = maxt;sgnaz;
(2,0)e®
subject to

Ty

; =a;, fori=1,...,m,

N

1
-

(5.1)

J

0<w; <b; for (¢,5)e®.
Let t® denote the minimum value of ¢{(X) in Problem RT.
LEMMA 6. 1B <t
Proof. The lemma is obvious, since any matrix X satisfying con-
straints (1.1) of Problem T satisfies constraints (5.1) of Problem RT.
Since

maxit;sgne,; = max (max t;sgnay),

(2,7)e® i=1,...,m $=1,...,n

Problem RT decomposes into m independent Problems R,T (where i =
=1, ..., m) of the following form:
ProBLEM R,T. Minimize
t(X) = max t;sgnw;
i=L..,n

subject to
n
Moy =a, 0<wy<b forj=1,..,n.
iz

Let tF denote the minimum value of #(X) in Problem R,T. The fol-
lowing lemma is obvious.

LeEMMA 7. t® = max (&, tF, ..., t5).
An optimal solution XF to Problem R,T and an optimal solution X%
can be found in a very elementary way (see Procedure 2).

In an analogous way Problem OT and Problems C,T for j =1,...,n
can be posed and solved; without going into details we pose Problem CT.

ProBLEM CT. Minimize #(X) subject to

m
Za:,-,- =b forj=1,...,n,
i=1

o0<a;<a; for (¢,))ed.
A lower bound t' for t* can be found by the following procedure:
PROCEDURE 2.

1. Construct an optimal solution X¥ = («f) to Problem RT in the
following way:
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(a) for any ¢+ =1,...,m find a permutation {j,,js,...,j,} of the
set {1,...,n} such that #; <t; <...<ty;
(b) take

@}, = max [0, min (ai—gl b,y b,-k)] for k =1,...,n,

where it is understood that b; = 0.

2. Construct an optimal solution X¢ = (#5) to Problem CT using
a procedure analogous to Step 1.

3. Take t' = max[t(X%), t(X°)].

This procedure is justified by the following proposition:

PrROPOSITION 3. The minimum value t* of t(X) in Problem T satis-
fies the inmequality t* >t = max[t(X%), t(X°)].

Proof. If i = 0, the proposition is obvious, since 7> 0, X > 0 and,
consequently, {(X) > 0 for any feasible solution X.

Assume ' > 0. Without loss of generality we can also assume ¢’ = t(X%).
By rearranging rows and columns of 7, if necessary, we get ¢t = t(XF)
= t,,5gnay, and ¢, <t,<...<t,. Since ¢’ > 0, we have 2 >0 and
v o=t,.

Sgppose, to the contrary, that there exists a feasible solution X = (z;)
such that ¢(X)<t,,. This and &, <, <...<?t, imply #; =0 for j =
=P, ..., n. Since, obviously, #;<b; for j =1,...,p—1, we have

p-1 -1
Zy; < b;
i=1 j=1
and, consequently,
n p—-1
(5.2) DERPR

i
On the other hand, %, > 0 and ¢, <?#;, < ... <1, yield (see Step 1

of Procedure 2)
-1
0;1 ’—Z bj. > 0.
j=1
This and (5.2) imply
n
DEy<a
i=1
which is contradictory to (1.1). This contradiction proves Proposition 3.

6. Method of constructing an initial basic solution. Clearly, any
method of constructing an initial basic solution to Problem C can be



Transportation problem 205

used to obtain an initial solution to Problem T. This very often requires,
however, that the corresponding matrix ¢ has been constructed before..
Even if the matrix T' = (t};) defined by (4.4) is used instead of the origi-
nal matrix T = (t;), it may cause a great magnitude of some elements of
the matrix C. Therefore, it is recommended that an initial solution has
been found before the matrix ¢ was constructed. According to Proposi-
tion 4 and Procedure 1, the value #(X,) of the function ¢(X) for the ini-
tial solution X, can be used as an upper bound for the minimum value #*
of t(X) to construct the matrix C.

We begin with an- obvious proposition.

PROPOSITION 4. The minimum value t* of t(X) in Problem T satisfies
the inequality t* <t = t(X,), where X, = x3; is any feasible solution.

The procedure of constructing a “good” initial solution can be out-
lined as follows: \

PROCEDURE 3.

1. Replace the matrix T by the matrix I" = (¢;) defined by (4.4).
To simplify the writing we omit the index 1 in #};.

2. For any ¢« =1,...,m find a permutation {j,, jsy...,j,} of the
set {1,...,n} such that ¢; <...<t; , and for any j=1,...,n find
a permutation {i,, i, ..., i,} of the set {1, ..., m} such that ¢, ;<t,;< ...
<o <y It m > m, proceed to 3; if m < m, proceed to 4; and if m = n,
proceed to 5.

3. Take p = m. For each ¢ =1,...,m and k¥ =n+1,...,p take
i, = by, Proceed to 6.

4. Take p =n. For each j =1,...,n and k¥ =m+1,...,p take
=t ;. Proceed to 6. |

5. Take p = m = n.

t

s
6. For each ¢ = 1, ..., m form the vector 7; = (751, ...y ¥5p42) taking
Ta =1y, for k =1,...,P, 7541 = 85 T;p, =1. For each j=1,...,%
form the vector ¢; = (¢ ..., ¢;py2) taking oy =i, for k=1,...,p,
Cipr1 = bjy Cppyo =m+].
7. Define vectors ly,...,1,., by

. s for k =1,...,m,
kT C¢-m fork=m+1,...,m+n.

8. Select the lexicographically greatest vector from the set l;,..., 1, .
Suppose it is 1,, where u < m (the procedure in the case u > m is analo-
gous).

9. If ry <rmy, for k=2,...,n, take v =j, and proceed to 11,
otherwise, i.e. if r,; =7, =... =1, <7y, <.. <1y, Wheie 2< l
< n, proceed to 10.
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10. Select the lexicographically greatest vector [,., from the set
{nsiys tmrdgs =+ o9 bmagp = {€5,5 -5 ¢1,} -

11. Take #!, = min(a,,b,). If a,>b,, exclude the »-th column;
if a, < b, exclude the u-th row. In the case a,, = b, exclude the v-th column
if 1,,,, & I, and the u-th row if [, 31,.,. Replace a, by a,—b, if the
v-th column is excluded and b, by b,— a, otherwise. Return to 2 with
the new problem.

It is worthwhile to make some remarks.

Remark 2. Since the last component I, ., of I, is equal to %, the
vector which is to be selected at Steps 8 and 10 is unique.

Remark 3. In the case a, = b, both the «-th row and the v-th columr
can be excluded. However, by following the procedure of Step 11 we
obtain a basic set even in the case of degeneracy.

Remark 4. The vectors [, of the new transportation problem obtain:
-ed in Step 11 do not have to be formed from the very beginning as if
is suggested in Steps 2-7. An obvious procedure of obtaining these vec.
tors from the initial vectors I, ..., l, ., Will be clear from the numerica
example considered in Section 7.

The following procedure describes a suggested method of reducing
Problem T into Problem C:

PROCEDURE 4.

1. Using Procedure 2 construct the matrices X® and XC. Tak
t' = max[t(XF), t(X9].

2. Using Procedure 3 construct an initial feasible solution X,. Tal«
T = t(X,).

3. Using Procedure 1 construct the matrix € = (¢;).

4. Taking X, = (%) as an initial basic solution, solve Problem C

7. Numerical example. We illustrate the method by the followin;
Problem T taken from [8]:
1 2 3 4 5
1| 6[21|19(12| 7|8
2| 9[13|10(14{15|5
(ta) = 3 1 74/T1|12] 9| 12| 4
4 [12|16| 8|20/19|5
2 6 4 7 3

Remark 5. Numbers 4, j, a; and b; are on the left, above, on th
right and below the matrix, respectively.

In order to construct X® = (a#f) we are to consider Problem R’
or Problems R,T, R,T, R,T and R,T.

(7.1) T -
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Problem R,T can be illustrated as follows:
1 2 3 4

1] 6 |21 |19 |12 |
2 6 4 (

W =a| ¢t
[v.e]

According to Step 3 of Procedure 2 we obtain the inequalities
1y < by < t1y < t13< t3,. Hence % — min(8, 2) = 2 and we obtain

2 3 4 5
1] 21| 19| 12| 7 |6
6 4 7 3

‘Now #E = min(6,3) =3 and we get

2 3 4
1] 21| 19| 12 |3
- 6 4 7

Then 2 = min(3, 7) = 3 and we have

2 3
1] 21] 190
6 4

Finally, & = 28 = 0.
Problem R,T can be illustrated by the following tableau:

1 2 3 4 5
2| 9| 13| 10| 14| 15 |5

6 4 7 3

Remark 6. Observe that the numbers b; remain unchanged.
In the same way as in Problem R,T we can find 2f = 2, af = 3,
R _ B _ R _
Loy = Ty = Tys = 0.
By the same procedure we find elements of the third and the fourth
row of XF. The whole matrix X® = (#f) and a matrix (f; sgnzf) are
the following:

2 00 3 3 6 0 0 12 7
2 _ a2 03 00 m_ |90 10 00
=@ =10 0 0 4 of @@ =|¢ o 0 9 o

10400 12 0 8 00
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Clearly,

t(XF) = maxt;sgnay = t,5gnaf, = t,sgnaf = 12.

%)

In a similar way, the following X¢ = («%) can be found:

XC = (2%) =

v

S oo W
=T N
- o QO
S O W
(= = =RV

Thus, t(X°) = t,,sgnas, = 13 and ¢’ = max [t(zF), {(2#°)] = max (12, 13.
= 13 is a lower bound for the minimum value t* of #(X) in Problem T)

Replacing the matrix 7 by the matrix T = (t};) given by tj; =
= max(13, ;) we obtain Problem T' equivalent to Problem T. Problem T*
is illustrated by the following tableau:

123 45

o gly = - 2222
(7.2) T" =) = 5194/13(13{13(13| 4

4|13/16{13|20{19|5
2 6 4 7 3

In order to obtain an initial feasible solution X° = (z¥;) we use Pro-
cedure 3.

Steps 2-7 are illustrated for i = 1 andj = 1. The index 1 in #};is omitted.

According to Step 1 for 7+ = 1 we get the sequence

{tu, tM’ t157 tl3’ tlz} = {137 137 13’ 197 21}7
and for j =1 — the sequence
{tirs Ba1s Bars tay = {13, 13, 13, 14} .

The latter sequence is in Step 3 supplemented to {13, 13, 13, 14, 14}.
In Step 6 we form

r, = (13,13, 13,19,21,8,1), where 1y =a;, =8,7, =1,
and

¢, = (13,13,13,14,14,2,5), where ¢, =b, =2, ¢, =m+1 = 5.
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In Step 7 we take I, = r, and I; = ¢,. In this way we can obtain
the following vectors 1,,1,,...,1,:
I, =r =(13,13,13,19,21,8,1), I, = r, = (13,13,13,14,15,5,2),
l, =r,=(13,13,13,13,14,4,3), I, = r, = (13,13,16,19,20, 5, 4),
(1.3) {1, = ¢, = (13,13,13,14,14,2,5), I, = ¢, = (13,13,16, 21,21, 6, 6),
l, = ¢ = (13,13,13,19,19,4,7), [, = ¢, = (13,13, 14, 20, 20, 7, 8),
l, = ¢s = (13,13,15,19,19, 3, 9).

The vector l, = ¢, is the lexicographically greatest and some ele-
ments of the second column of X, = (23) are defined. Since the smallest
element of the second column of matrix (7.2) is not unique or, in other
WOrds, €y5 = €Cy3 << Cg4 < Cgy, Where Cyy =ty = 13, Cp3 = ty3 = 13, €yq = t5,
= 16, ¢y = 15, = 21, we have to perform Step 10. We have to consider
ry, =1, and rg = l3. Since I, & l;, we have (u, v) = (2,2) and the value
o3, = min(a,, b,) = min(5, 6) is found.

After excluding the second row and replacing b, = 6 by b, —a, = 6 —
—b =1 we obtain the new problem which is illustrated by

123 45
1/13/21]19(13|13|8
14/13|13(13| 13| 4
4|13|16|13|20/195

214 73

o

(7.4)

Obviously, the vectors !, =r,, I = 3, , = r, Temain unchanged.
One can obtain new vectorsly = ¢;,1, = ¢, l; = ¢3,1l3 = ¢, 1, = ¢; without
defining them from the very beginning. For instance, in order to obtain
the new Iy = ¢, it is enough to exclude 13 which is the element of the
first column of matrix (7.2) lying in the excluded second row and repeat
¢;; = 14 once again. In this way the new vectors 5, l,, lg, [, can be found.
The same has to be done with the new I, = ¢, but, in addition, ¢,; = 6
should be replaced by 1.

The new vectors 1,,1,,1,,...,1, are the following:
L =nr =(13,13,13,19, 21, 8,1), Iy =r; =(13,13,13,13, 14, 4, 3),
l, =r, = (13,13,16,19,20,5,4), I = cl = (13, 13, 14, 14, 14, 2, 5),
lg =¢, =113, 16,21, 21,21,1,6), I, =c¢; =(13,13,19,19,19, 4, 7),
ly = ¢, = (13, 13, 20, 20, 20, 7, 8), ly =c¢; = (13,13,19,19,19, 3, 9).

Again, the vector I, = ¢, is selected, and since {3, = 13 is the unique
smallest element of the second column of matrix (7.4), we have
x% = min(4, 1) = 1.
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After excluding the second ecolumn we obtain the new problem and
the following vectors:

I, = =(13,13,13,19,8,1), Iy =r, = (13,13,13, 14, 3, 3),
l, =r, = (13,13, 19, 20, 5, 4), I, = ¢, = (13, 13, 14, 14, 2, 5),
I, = ¢; = (13,13,19,19,4,7), 1, = ¢, — (13, 13, 20, 20, 7, 8),

I, = ¢, = (13,13, 19,19, 3, 9).

Following Procedure 3 we find successively ), = 7, 20, = 4, 23, = 1.
At this stage we obtain the problem

1 5
1] 13 | 13
3| 14 | 13
1 3

with the following vectors:
L, =7 =(18,13,1,1), I, =r, = (13,14, 3,3),
ly =c¢ =(13,14,1,5), 1, =¢ =(13,13,3,9).
Now %3, = min(a,, b;) = min(3,3) = 3. We exclude the third row

since 73 & ¢,. Finally, we get 4%, =1 and a3, = 0.
In this way we have obtained the following initial basic solution:

0 41
0 0
® 0 @ 0 0

Elements (¢, j) corresponding to circled x; form a basic set. The
value of #(X) for X, is t(X,) = t(X,) = 13. Since it is equal to the lower
bound for the minimum value ¢* of {(X) in Problem T, X, is an optimal
solution to Problem T.

Clearly, in this case the matrix ¢ = (¢;) can be constructed by taking
¢; = 0if t; < 13 and by taking ¢; = 1 if ¢; > 13. However, the matrix ¢
need not have to be constructed.

Since due to X, with #(X,) = ¢’ Procedure 1 can be hardly illustrated,
we take the following solution X = (%;) obtained by the minimum row
method as an initial solution (the basic set is shown by circling the corre-
sponding ;):

® (%,(% ® O
- 0 : 0 0
A=G)=19 o 0o @ of

0 ® 0 ® 0
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We take ¢ = t(X) = 16 as an upper bound for the minimum value #*
of t(X).

Having ¢' = 13, ¢ = 16 and matrix (7.1), we define the sequence
{tos 8y, t5, 83} = {13, 14,15, 16} in Step 1 of Procedure 1.

Thus
E, = {(i,§) | t; <13} = {(1,1), (1, 4), (1, 5), (2, 1),(2,2),(2,3),(3,2),(3,3)y

(3, 4), (3,5), (4,1), (4, 3)},
E, = {(7/7.7) l t; = 14} = {(27 4), (3, 1)}’ E, = {(z,j) ltij = 15} = {(27 5)}7‘
By =A{(i,5) 1 1; = 16} = {(4, 2)},
E4 = {("’7]) ‘ tij > 16} = {(17 2), (17 3), (4, 4), (4, 5)} .

Since by = 2, h, =1, h; = 1 are the numbers of elements of E,, E,, E‘;,,
respectively, we have

Wy, =0, w; =1, w,=(M+w, =3, w;=(hy+1)w, =86,

'uJ4 = (h3+1)W3 = 12.

Thus by assigning c¢; = w; for (¢,j)<E, we obtain Problem C as
follows:

Any optimal solution to that problem is also optimal to Problem T.

8. Some remarks. The proposed method seems to have an obvious
advantage, since the procedure of improving a solution (this procedure-
is always the most troublesome) can be handled by use of the classical
transportation algorithm. Before using this algorithm one has to find
the lower bound #', the upper bound #'* and the matrix ¢ which can be:
done by use of Procedures 2, 3 and 1, respectively. Although setting up
computer programs for these procedures does not seem to be difficult,
one can easily handle them manually even in “large” problems. If bounds "
and t'’ are found by Procedures 2 and 3, then (even in “large” problems)
elements of C are not of great magnitude.

Clearly, one can find other bounds by use of simpler techniques.-
For instance, one can take

t’ = max(maxmint;, maxmini;)
? 7 7 1
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(in our example it yields ¢’ = {;, = 11) as a lower bound. Also an initial
solution yielding an upper bound does not have to be constructed by
Procedure 3.

One can stress that the method reduces Problem T, in which func-
tion (1.3) is not continuous, to a classical transportation problem.

Hammer [6] seeks a solution which lexicographically minimizes
the vector

2(X) = (HX), D @y)-
tii=4X)
Such a solution can be found by taking

0 = max{t; | t;<t'},

‘where ¢’ is any lower bound for the minimum value of {(X), and by de-
fining the sequence %, 1t,, ..., #; satisfying conditions 1 (b) and 1 (¢) of
Procedure 1 and

=t <t,<..<t, =1t".

One can easily observe that 0 is also a lower bound for the minimum
value of #(X). Now an optimal solution to Problem C lexicographically
minimizes (see Step 2 of Procedure 1 for definitions of E,, E,,..., E; ,)

Zij 2 Lijy oees Zwija Z“’m

GHEy  (69)Ey GIE,  (9)E,
since 6 < min¢(X) and, consequently,

1+1
k=1(i,7)eE},

therefore an optimal solution to Problem C minimizes also z(X).
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MINIMALIZACJA LEKSYKOGRAFICZNA I MINIMALIZACJA CZASU
W ZAGADNIENIU TRANSPORTOWYM

STRESZCZENIE

W pracy omawia si¢ zagadnienie transportowe z kryterium czasu. Zagadnienie
to jest potraktowane jako szczegélny przypadek innego zagadnienia transportowego,
w ktérym pewien wektor jest leksykograficznie minimalizowany. Oba te zagadnienia
sprowadzone s3 do klasycznego zagadnienia transportowego.
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