ZASTOSOWANIA MATEMATYKI
APPLICATIONES MATHEMATICAE
XII, 4 (1972)

KRYSTYNA JERZYKIEWICZ (Wroclaw)

1. Introduction ¢ o . 0 0 h e e e e 414
1.1, Summary v b v v e e e e e e e e e 414
1.2. A Concise Review of Methods of Semantic Analysis
‘ Used in Compilers 414
1.3. Table of Symbols « . . v v o 0. 417
1.4. A Short Description of the ODRA 1204 Digital Com-
puter oL 000 oo e e s e e e e 417
1.5. Informations about the Source Program and their
Storage at the Start of the Semantic Analysis . . . 418
2. Generation of the Objeet Program 421
2.1. Introductory Remarks 421
2.2. An Outline of the Compiling Algorithm , 422
2.3. Expressions and Assignment Statements c e ... 426
2.4. Procedure Call and Formal Parameters 430
2.5. Addresses Calculation 434
2.6. For Statements 437
2.7. Subscripted Variables and the Array Declaration . . . 438
2.8. Procedure Declaration 439
2.9. Switch Declaration co.. 441
3. Tables e 442
Table I. Values of the Parameter CN when. it is a Part of
a Syllable 442
Table II. Values and Interpretation of the Parameter IN
of a Syllable 442
Table III. Machine RepreSentatlon of Operators . . . 443

SEMANTIC ANALYSIS OF AN ALGOL TEXT

TABLE OF CONTENTS

Table IV. Quantities Occurring in the Identifier Descnptlons 446
Table V. The Operand Values during the Analysis 448

Acknowledgments *00 00000 448
Appendix. The Procedure which Performs the third Pass of the
ODRA-ALGOL Compiler 449

References . . v o v v v v v v v e e e e e e e e e e e e 496

\

414 K. Jerzykiewicz '

1. INTRODUCTION

1.1. Summary. The paper contains a description of a method of
semantic analysis of a syntactically correct ALGOL text and an algorithm
which realizes the method under assumption that during processing
the algorithm there are available in the machine storage all the infor-
mations concerning the identifiers and constants appearing in the text
being analysed. The algorithm has been applied as the third pass of the
ODRA-ALGOL compiler, a hardware representation of ALGOL 60 for
the ODRA 1204 digital computer. The grammar of the ODRA-ALGOL
language and the two first passes of the compiler had been described
by Szczepkowicz [13]. The input text for the algorithm is identical with
the output text of the second pass of the compiler. The algorithm pro-
duces an object program in the ODRA 1204 machine code.

The algorithm is a modification of the known methods of compiling
the ALGOL 60 programs in the case of a single-address, one-accumulator
digital computer. The generation of the object instruotions is performed
during a single left-to-right scanning of the source text. The algorithm
is controlled by means of a procedure that compares the operator pre-
cedences, which are equal to the machine representations of the operators.
The algorithm does not contain recursive subroutines and uses a single
stack.

The dependence of the algorithm upon the ODRA 1204 computer
arises solely from the actual implementation of syntax elements in the
above-mentioned hardware representation. The implementation was
worked out in collaboration with the author of the first two passes of
the compiler and will be given in a separate publication. In the present
paper only the meaning of operational codes of the instructions gene-
rated by the compiler is explained. The contents of subroutines forming
a constant part of object programs is not explained. In order to obtain
an object program for a different implementation of syntax elements
it is sufficient to change values of the variables which correspond to the
operational codes, and — if the realization requires it — to omit or add
the generation of some instructions.

1.2. A Concise Review of Methods of Sem antic Analysis Used in Com-
pilers. The semantic analysis of a program written in a certain language
18 a part of the compiler of the language. Therefore, every complete des-
cription of a compilér contains a description of the method of semantic
analysis used. The method depends to a large extend upon the language
being the object of the analysis, and also upon the organization of the
whole compiler, as well as upon the form of the input and output texts.
There are, however, elemernts -common to all languages or, at last, to
large groups of languages. As examples of such elements one can give

Semantic analysis of ALGOL ' 415

the arithmetic and Boolean expressions which appear in ALGOL 60,
FORTRAN "ete. It is therefore possible to speak of compiling the arith-
metic and Boolean expressions without reference to the language in
which these expressions appear. In the literature one can find a number
of papers dealing with methods of compiling the expressions, which
does not mean, however, that the methods are so numerous. In fact,
there are three basic methods, viz.,

a. Compiling expressions into Reverse Polish notation [3].
b. Recursive compiling of expressions [6].
c. Compiling from a syntax tree [1], [7].

The last of the above-listed methods was never, as far as we know,
applied in a compiler. The method requires the generation of a syntax
tree during performing the syntactical analysis of a program. Theore-
tical remarks concerning the semantic analysis of arithmetic expressions
stored in the computer memory in the form of a syntax tree were given
by Ingerman [7]. He suggested to generate the syntax tree when per-
forming the syntactical analysis. In order to store the syntax tree as
a sequence, a table containing informations about the elements of the
sequence would be formed. The informations are needed to make it possi-
ble to reproduce all branches of the syntax tree. However, such a form
of the input text, on which the semantic analysis is to be performed,
is inconvenient because during the analysis the text is not scanned, but
the elements are taken in the order depending on the table of informations.
Therefore, the whole input text must be stored until the semantic ana-
lysis- is completed.

Several modifications of the method of compiling expressions into
Reverse Polish notation and also a generalization of the method for
the case of compiling a complete ALGOL 60 program are described in
the literature. Dijkstra [3] was first to describe such a generalization.
He gives examples how the interpretation of some symbols (e. g., the
colon and parentheses) depends upon the context in which the symbbls
appear (e. g., a colon separating subscripts, bound pairs, actual parameters,
or for list elements) and provides methods distinguishing the meaning
of symbols in a text, he introduces the table of operator precedence.
The generations of object program instructions is performed during
a single, left-to-right scanning of the text, in such a way that instruetions
corresponding to the elements of the source program other that operators
are generated immediately after reading in the element, but instructions
corresponding to operators are generated while unstacking an operator.
At run-time of the program, a stack of accumulators is used, in which
values or addresses of arguments are stored, and the operations are per-
formed on the topmost elements of the stack. |

416 K. Jerzykiewicz

An ALGOL 60 compiler based on the same principles is also des-
cribed in reference [12]. As the result of compiling a program a set of
symbols is formed, which corresponds to the program written out in
the generalized Reverse Polish notation. The>compiler is a single-pass
one, so that during compiling a source program into Reverse Polish
notation the syntax of the program is also checked. The execution of
the object program consists in interpreting the successive symbols of
the text and, at the same time, checking whether operations are per-
formable.

Another modification of the Dijkstra method has been applied in
the ALGOL 60 compiler to the GIER digital computer [9]. In the case
of this compiler, an object program is obtained as a set of the machine
code instructions. The generation of the object instructions take place
during two (of several) passes of the compiler. The first of them compiles
a syntactically correct text of a program into the Reverse Polish notation
in such a way that the output text still contains some additional infor-
mations, e. g., operator if has two representations in the Reverse Polish
notation, depending upon whether the operator appears within an ex-
pression or not. The second of them generates the object instructions
and performs an optimisation. The optimisation consists in substituting
for the expressions that are all formed of arithmetic constants, another
arithmetic constants, which have the value of the corresponding expres-
sions. Computing a value of an prressioh actually from left to right
is performed only in the case where in the expression there appears a non-
-standard procedure call or a formal parameter called by name.

The recursive method of compiling expressions has been applied
in the two-pass ELLIOTT-ALGOL compiler [6]. The first pass of this
compiler consists of a set of recursive procedures that generate an object
program as a sequence of ingtructions in the machine code. In its second
pass the compiler completes the addresses of jump instructions.

From the point of view of the user the most important features
of a compiler are the compiling-time and the execution-time of the pro-
gram. It follows from experience that a compiler designed as a set of
recursive subroutines compiles a program very slowly. A compiler working
according to the principle of comparing operator precedences can be
much faster and is able to generate efficient object programs. For these
reasons in the third pass of ODRA-ALGOL compiler a method was emp-
loyed which is a modification of the method given by Dijkstra. A suitable
choice of the machine representation of operators made it possible to
avoid the table of precedences; the introduction of certain auxiliary
operators (Table IIT) removed the ambiguity of some operators appear-
ing in the source programs. An insignificant departure from the rule
of computing the values of expressions from left to right (see 2.3) gave

/s

Semantic analysis of ALGOL 417

as a result a more compact object programs. The third pass of ODRA-
-ALGOL compiler produces a sequence of instructions in the ODRA 1204
machine code, equivalent to the source program.

1.3. Table of Symbols.
Symbol Meaning of the symbol

AccC Accumulator contents at the run-time of the program.
ALOC Address of the computer location.

LOC(A) Contents of the location whose address is equal to A.

SP Topmost element of the working stack of the compiler.
‘operator’ Subroutine corresponding to the operator.

Rj Anonymous variables of the object program.

RI Address of the reservation indicator.

'1.4. A Short Description of the ODRA 1204 Digital Computer. A detailed
description of the ODRA 1204 digital computer and its machine code
can be found elsewhere [4]. In what follows we shall give — in order
to facilitate the understanding of the principles along which third pass
of the compiler is working and of the algorithm — some essential features
of the computer.

The ODRA 1204 digital computer is a single-address parallel machine.
The standard machine configuration for which the ODRA-ALGOL
compiler was written consists of the central processing unit (16384 24-bit
locations) and the peripherals: the paper tape reader, paper tape punch,
and the control typewriter. The ODRA-ALGOL compiler works under
the control of a single-program operating system.

The registers of the computer, which will be referred to later on,
are the following: a 24-bit acecumulator, a 24-bit auxiliary register, and
a 16-bit sequence control register. Every location can contain a machine
instruction or a fixed-point number. A floating-point number occupies
two successive locations. During the execution of operations on the
floating-point numbers the accumulator and the auxiliary register work
as a single, double-length register.

The locations with the addresses equal to 1, 2, and 3 differ from
the others for they can be used as modification registers of the address
part of an instruction. If an instruction is modified by the register =
(n =1, 2,3), then to address part of the instruction there is added the
contents of the register n.

A machine instruction consists of the parts

| | B| OR | 4R |

where AR (14 bits) denotes the address part, OR (7 bits) is the operational
code, B (2 bits) denotes modification by the corresponding register (if

418 K. Jerzykiewicz

B = 0, then the instruction is not modified), P (1 bit) is still another
kind of modifying the AR part: if P = 0, then the instruction is exe-
rcuted with its address part equal to LOC(AR), after first modifying
AR with the register indicated by B, otherwise (P = 0) there is no such
modification.

1.5. Informations about the Source Program and their Storage at
the Start of the Semantic Analysis. The semantic analysis of the program
is performed only when the program is syntactically correct, i.e., after
the second pass of the compiler had been completed. In the machine
storage there are then stored these informations about the program
which form the output text produced by the second pass. The method
of obtaining the informations and their form have been described by
Szczepkowicz [13]; the below given summary of the problem is intended
to assist the reader in understanding the method of semantic analysis
given in the present paper. ’

The machine store can be divided into the following blocks, contai-
ning the informations about the source program and the working space
for the third pass of the compiler:

L0: Fixed part, common to all source programs (subroutines of the
standard functions and of the storage administration).

L1: Simple variables, space for the array addresses and the reservation
indicators (see 2.5).

L2: Strings appearing in the program.
L3: Arithmetic constants appearing in the program.
L4: Space for the object program (the output text).

L5: Text of the program at the completion of the second pass of the
compiler (the input text).

L6: Working stack of the third pass of the compiler.

L7: Description of the standard identifiers and the identifiers declared
in the program. ’

L&: The compiler.

During the semantic analysis the space of the three following blocks
is changed:

L4 — The space of this block is increasing because of adding at its end
the successive gbject instructions.

L5 — Text of the program is only once scanned from left to right, so
that during the analysis successive elements of the text (starting
with the elements which appear at the beginning of the block)
are removed from the block and, therefore, the space of the block
is decreasing.

Semantic analysis of ALGOL 419

L6 — The working stack is used in such a way that elements which are
to be stacked are added to the end of the block L6, and the uns-
tacking an element causes removing the last element from the
block. Therefore the space of the block can increase or decrease,
depending upon the program; at the start of the analysis block
L6 is empty.

The text of the program (block L5) is a sequence of syllables. Every
syllable is equal to IN x4+ CN (where 0 << CN <3, 0<IN <1023,
see Table I and II) and is stored in 12 bits of machine location — each
location of the block L5 contains two successive syllables of the program.
The syllables for which there is CN # 0 will henceforth be referred to
as operands. Operands are divided into the following categories: a string,
an arithmetic or Boolean constant, and an identifier. The category to
which an operand belongs is recognized on the basis of the corresponding
value of CN, and the value of IN is equal to the address or linear function
of the address of the operand (or of its description) in the corresponding
block (see Table II). The Boolean constants are an exception: they are
stored in block LO.

The syllables for which CN = 0 are henceforth referred to as opera-
tors. The numerical representation of all operators (the value of IN)
is listed in Table III. One can distinguish the following three categories
of operators:

a. Operators appearing in the source programs (e. g., begih if +).

b. Operators introduced during the syntactical analysis instead
of the other operators or instead of the standard procedure identifiers
(operators numbered 2,7,10,17,35,41,50,51,...,84,128). To this
group should also be added operator number 20 (comma) which appears
instead of colon in the array declarations.

¢. Auxiliary operators introduced during the semantic analysis
(operators numbered 6,12, 14,16, 18).

In a sequence of syllables can also appear operators with the numerical
representation equal to zero. They correspond to dummy statements and
are ignored by the third pass of the compiler.

The input text of the program does not contain the simple variable
descriptions, the formal parameter lists, the value parts, the specification
parts, and the declarators defining types of arrays and procedures. These
informations are removed from the source program by the first pass
of the compiler, and stored separately as the identifier descriptions that
form block L7. To every identifier declared in the program there is assigned
its description. The description occupies four machine locations for a non-
-standard procedure and two locations for all other identifiers. Quantities
appearing in the identifier descriptions are listed in Table IV.

6 — Zastosowania Matematyki 12.4

420 K. Jerzykiewicz

If the compiler is compiling the following program:

begin
integer n;
integer procedure S(¢);
value i;
integer 7;
S: =if i < 0 then 1 else i xS8(i—1);
read (m);
print (‘n =", n,‘S(n) =", 8(n)
end

then at the start of the execution of the third pass the blocks L1, L2, L3,
L5, L7 will be containing the following informations (the labels are given
here in order to make readable the sequence of syllables which forms
the input text for the third pass of the compiler):

Block L1
an: space for the wvariable n
space for reservation indicators

Block L2
sl: ‘n ="
s2: ‘8(n) ="
Block L3
cl: 0
c2: 1
Block L5
Number of CN IN Number of CN IN
syllable syllable
1 0 41 2 0 49
3 1 a2 4 0 19
15) 1 a2 6 0 21
7 0 42 8 1 a3
9 0 31 10 2 cl
11 0 3 12 2 c2
13 0 15 14 1 a3
15 0 37 16 1 d2
17 0 43 18 1 d3
19 0 33 . 20 2 c2
21 0 4 22 0 19
23 0 40 24 0 51
25 0 43 26 1 al
27 0 17 28 0 1
29 0 19 30 0 40

Semantic analysis of ALGOL 421

31 0 57 32 0 43
33 3 sl 34 0 4
35 0 19 36 0 55
37 0 43 38 1 dl
39 0 4 40 0 19
41 0 57 42 0 43
43 3 82 44 0 4
45 0 19 46 0 55
4T 0 43 48 1 d2
49 0 43 50 1 dl
51 0 4 52 0 4
53 0 1 54 0 2
55 0 128

This sequence of syllables is equivalent to the following transformed
program:
beginb
procedure S;
S: =if i <0 then 1 else ¢ xS (1 —1);
begin readinteger (n} end;
begin printstring (‘n =’); printreal (n);
printstring (‘S(n) =’); printreal (S(n))
end
endb endprogram
Block L7
dI: description of identifier » with the following quantities defined:
Type = 0, Addr = an, IL = 0, Decl = 8
d2: description of identifier S
Type =0, NFP =1, FPLP =d3, Addr =0, IL =1,
MaxA = 6,
MaxR =1, AInt = 0, Decl = 10
d3: description of identifier
Type =1, FPN =1, VP =1, Addr =4, IL =1, Decl =8
d4: descriptions of the standard identifiers

2. GENERATION OF THE OBJECT PROGRAM

2.1. Introductory Remarks. The main objective of the third pass of
the ODRA-ALGOL compiler consists in generating a sequence of machine
code instructions equivalent to the syntactically correct ALGOL text
(the form of text has been defined in 1.5). This is achieved during a single,
left-to-right scanning of the text, with no back-up and no look-ahead.

422 K. Jerzykiewicz

During compiling it is assumed that there are available all the informations
about the identifiers appearing in the text. Henceforth, for the sake of
clarity, in the program texts (input and output texts of the programs)
we shall use symbolic notation, rather than the machine representation.

During the generation of instructions there is used a single working
stack on which we define the following operations:

1. Stacking, i.e., storing a single element on the top of the stack,
which causes the increase of the stack space by one element.

2. Unstacking, i.e., removing the topmost element from the stack
with the decrease of the stack space by one element.

In the stack there are stored fragments of the compiled text (e.g.,
still not compiled fragments of expressions) and parameters (e.g., the num-
ber of the compiled subscript of a subscripted variable, the address of
an instruction, the address part of which is to be completed).

2.2. An Outline of the Compiling Algorithm. Let us divide the input
text into pairs {operand, operator); the first element of the pair can be
empty. The number of pairs formed is equal to the number of operators
in the text. If the sequence of syllables after a successive step of analysis
has the form s, s;,,,..., s,, then the successive pair {operand, operator)
is equal to:

{81y 8111 if s; 1s an operand (in the input text two operands cannot
appear in the immediate succession),

{empty, s;» 1if s is an operator.

In the pair defined in this way the operand is placed in front of the
operator, and the operator follows the operand.

A similar division into pairs had been introduced by Randell and
Russell [12], since however the output text in the translator described
there is expressed in the generalized Reverse Polish notation, the operand
of the pair is the successive element of the output text and is not futrher
analysed.

Let us denote any two successive pairs {operand, operator) by
(PO, Op>, (0O, NO), respectively; the pair <(PO, Op)> was formed
prior to the pair (€O, NO) (in the sequence of syllables operator Op
appears in front of operand CO, and operand CO appears after opera-
tor Op).

If a fragment of the analysed text has the form

a+(b xc),

then the successive pairs (in order in which they are formed) are as fol-
lows: ‘

a+) Lempty (5 <bx) <e)).

are
Cl1.

C2.

C3.

Semantic analysis of ALGOL 423

Let us denote by CI, 02, and C3 the classes into which operators
divided in the following way:

Operators with their machine representation equal to 39,40, ..., 49
(see Table IIT).The operators commence: a go to statement, the
compound statement, block, if clause, an expression in parantheses,
the subscript list, switch declaration, for statement, labelled state-
ment, the array declaration, the procedure declaration.

Operators with their machine representation equal to 1,2,...,20.
The operators end some syntax elements of the program, viz., those
the compilation of which requires the generation of additional object
instructions or performing additional operations in the compiler
(e. g., completing a jump instruction, reproducing the parameters
stored in the stack).

Other operators. Compiling each of the operators causes the generation
of instructions which correspond to the operation defined by the
given operator (i.e., there is no generation of additional instructions).

During the process of compiling a program there is analysed the

pair (PO, Op> or there are analysed the two successive pairs (PO, Op)
and <CO, NO).

The third pass of the compiler can be divided into three essential

parts, according to the above-mentioned classification of operators, viz.,

¢l: Set of subroutines which assign values to parameters (and generate
instructions, if necessary), if operator Op belongs to class C1. The sub-
routines perform also stacking the pair {operand, operator), where the
operand is generally a parameter, and the operator is defined in the
following way:

Subroutine The operator at the top of the stack on exit from the

subroutine

‘go to’ as before entering (operator go to is skipped)

‘begin’ end

‘beginb’ endb

‘if? then

‘C)

‘T ’

‘switch’ endswitch

‘for’ for-assign

¢ as before entering (the subroutine fixes only the address
of the label appearing in front of the colon)

‘array’ , (the subroutine reads and stores in the stack the array list

up to the operator [which commences the bound pair list)

‘procedure’ endprocedure

424

K. Jerzykiewicz

c2: Set of subroutines executed in the case where operators Op and NO
belong to class C2. In the subroutines the instructions are generated,
the parameters stored in the stack are unstacked, and sometime new
parameters are stacked. In the sequel we give the operators which are
on the top of the stack on the exit from a given subroutine. The subrou-
tines are chosen according to operator Op.

‘Subroutine
‘end’

;endb’
‘then’

'Y) b
‘endswitch’

‘for-assign’
‘step’

‘antil’
‘end-for-list-element’
‘endfor’

‘while’
‘endprocedure’

‘else’

‘endparameter’

¢
)

Topmost operator in the stack

if NO is end then no change, otherwise end

if NO is endb then no change, otherwise endb
else

SP is transferred to (PO, Op) and the number
of elements in the stack is decreased by one
if NO is comma then no change, otherwise as
before execution of ‘switch’

step

SP depends on NO in the following maner:
NO SP
step until
end-for-list-element step
while while
do endfor
end-for-list-element

step

as before execution of ‘for’
step

as before execution of ‘procedure’

if NO is else then endelse, otherwise no change
(see 2.4 — compiling the procedure statement)
if NO is a comma then no change, if NO ends
a subsecript list then as after executing ‘)’, other-
wise (end of a segment of arrays) the subroutine
reads in the next pair <{operand, operator) and
if the read in operator is a comma then a jump
into the body of subroutine ‘array’ is executed,
otherwise SP is such as before the execution of
‘array’

In the set there are no subroutines corresponding to operators] do};
because the situation that operator Op is equal to one of these operators
and operator NO belongs to class (2 cannot arise. The above-listed sub-
routines (with the exception of ‘for-assign’) generate also the instructions
of loading the machine accumulator with the operand CO, if the operand
is not emptly and parameter Res (see 2.3) is equal to zero.

Semantic analysis of ALGOL 425

¢3: The part that compiles expressions and the assignment statements
(the generation of instructions which correspond to operators of class C3)
and is controlled by a procedure comparing precedences of operators
Op and NO according to their machine representation (the procedure
Compare which takes on Boolean values — see Appendix). This part
is discussed in detail in paragraph 2.3.

The main features of the scheme of compiling the programs which
do mnot contain procedure identifiers and the formal parameters called
by name (handling of such cases will be discussed in paragraph 2.4) can
now be presented in the following manner:

E1: read (PO, Op);
comment By reading a pair it is understood here to form the successive
pair from the input text with, at the same time, shortening the
input sequence of syllables;
if Op > 39 A Op < 49 then go to ¢I [0p-38];
comment Operator Op belongs to class CI1. The value of the switch
designator in the go to statement is the label of the respective sub-
routine from part ¢I. Return from the subroutine takes place to the
label E1;
if Op < 20 then
begin
C0: = PO; NO: = Op; go to E3
end Op < 20;
E2: read (CO, NO);
if Compare then
begin
comment Dots denote statements which generate the object instruc-
tions corresponding to the operator Op;
E3: Unstack (PO, Op);
comment Assigning the top of the stack to the pair (PO, Op)> with
decreasing the stack at the same time;
end Compare;
if Op <20 A NO < 20 then go to c2[0p];
comment Operators Op and NO belong to class C2. The go to sta-
tement chooses, according to the switch designator, the respective
subroutine of the part ¢2. After executing subroutines ¢)’ or ¢,” there
is a jump to the statement labelled with E2, otherwise to the sta-
tement labelled with K1, ' ‘

Stack (PO, Op);

426 K. Jerzykiewicz

comment Increase of the stack and stacking the pair (PO, Op>;
PO: =CO; Op: = NO;
go to L2,
We give the topmost element, pairs (PO, Op), (€O, NO)», and
the subroutine executed during compiling the following statement:
begin
E: if BEI then z: = AEI;

go to E1l
. end

topmost element (PO, Op> {00, NO> subroutine

of the stack

undefined empty begin undefined ‘begin’

empty end B : undefined ¢

empty end empty if undefined 4f”

par. then BE1 then undefined

empty end par. then BE1 then ‘then’

par. else x P = undefined

par. else x P = AE1 the generation of in-
structions correspon-
ding to the assignment
statement

empty end par. else AE1 ‘else’

empty end empty go to undefined ‘go to’

empty end E1 end undefined

undefined empty end E1 end ‘end’

When this analysis is performed, the following sequence of instruc-
tions is generated:

take Boolean BEI;
jump if false to LI;
take arithmetic AE1;
store in x;

L1: jump to FI;

2.3. Expressions and Assignment Statements. In the present paragraph
we shall not consider the case where the operand is the procedure iden-
tifier or the formal parameter called by name (this case is discussed in
2.4).

In what follows we shall not distinguish the operator : = from the
other operators occurring in expressions, so that the assignment statement
will be treated as a particular case of an expression. The described
method is a method of generating instructions for a single-accumulator
machine. By accumulator contents (AccC) we shall understand here the

Semantic analysis of ALGOL 427

accumulator contents during execution of the generated sequence of
instructions. Let us introduce some further symbols:

Rj — The anonymous variable introduced by the third pass of the
compiler in order to store a given AeccC (if the accumulator is needed
for some other purpose) or to store an address (e. g., the address of a sub-
scripted variable). The method of assigning addresses to the variables
1s presented in 2.5.

Res — Parameter different from zero if AceC is defined, i.e., if in
the accumulator there is value of one of the operands of compiled expres-
sion, otherwise Res = 0. The value of Res is zero before commencing
the compiling, it changes to a non zero after the instruction of taking
to the accumulator an operand value is generated, and is zeroed after
the instruction of storing AeceC in Rj is generated and in subroutines
of the part ¢2 (with the exception of °)’).

LDA(A) — The generation of the instruction of taking to the accu-
mulator the value of operand A (if A4 is a label, then instead of the instruc-
tion of taking, there is generated a jump instruction) with assigning
a value to the parameter Res at the same time.

GSI — The generation of the instruction of storing AccC in the sue-
cessive Rj with, at the same time, zeroing Res and assigning to operand
PO the operand which denotes the anonymous variable (see Table V).

Codel[n] — The operational code of the instruction that corres-
ponds to operator n, if AccC is the operand occurring in front of ope-
rator n.

Code2[n] — The operational code of the instruction that corres-
ponds to the operator n, when AccC is the operand occurring after the
operator n (e. g., the implementation of unary operators).

Compile (OR, AR) — The generation of the instruction with its
operational code is equal to OR and its address part equal to AR (the
way of computing an operand value depends upon the category of the
operand — see procedure Addrl in the Appendix).

Using the above-introduced symbols, one can write the scheme of
compiling the program given in the previous paragraph in the following
form:

E1: read (PO, Op);
if Op > 39 A\ Op < 49 then go to cI[Op —38];
if Op < 20 then
begin
CO: = P0O; NO: = Op; go to K3
end Op < 20;
E2: read (CO, NO);

428 K. Jerzykiewicz

if Compare then

begin
if Res = 0 then
begin
if Op =21V Op =26V Op = 35 then
begin

LDA (CO); go to EX3
end Op =21V Op =26V Op =35
else LDA (PO)
end Res = 0;
Compile (Codel[Op], CO);
E3: Unstack (PO, Op);
if Compare then
begin
EX3: Compile (Code2[Op], PO); go to E3
end Compare
end Compare;
if Op <20 A NO < 20 then go to ¢2[0p];
if Res # 0 then GSI;
Stack (PO, OP);
PO: =00; Op: = NO;
go to E2;

And now, as an example, consider compiling the statement
x: = a-+bx(if a >b then a else a xb+a/b);

according to the given scheme, it runs as follows:

topmost element (PO, Op> €O, NO> Res (after performing
of the stack the analysis)
undefined x = undefined 0

undefined x = a + 0

T = a —+ b X 0

a + b X empty (0

b X emptly (undefined 0

empty) empty if undefined 0

par. then a > undefined 0

par. then a > b then 1

empty) par. then b then 0O

par. else a else undefined 0

empty) par. else a else 0

par. endelse a X undefined 0

par. endelse a X b + 1

par. endelse b + a / 0

Semantic analysis of ALGOL 429

R1 + a / b) 1
par. endelse R1 + b) 1
empty) par. endelse b) 1
b . X emply) b) 1
a + b X emply ; 1
T D= a + empty ; 1
undefined x P = empty ; 1

During compiling, the following instructions will be generated:

take a;
compute value of relation AccC > b;
jump if false to LI;
take a;
jump to LZ;
L1: take a;
multiply by b;
store in RI;
take a;
divide by b;
add RI1;
L2: multiply by b;
add a;
store in x;
It should be pointed out that compiling an expression does not form
a separate part of the process of semantic analysis of an ALGOL text
(e. g., if clause is compiled in the same manner for the conditional state-
ment, as well as for the arithmetic, Boolean, and designational expressions).
An essential role is played here by the procedure Compare, which has
the value true only when the operator Op precedence is not smaller than
the operator NO precedence (values of the procedure Compare are given
in the Appendix), i.e., when the instructions that implement operator
Op are to be generated. After generating these instructions the length
of the compiled program (stored partly in the stack and partly in the
form of a sequence of syllables) is decreased by one pair (the running
pair (PO, Op)>). The machine representation of operators (see Table III)
is chosen in such a way that the precedence of operators does not decrease
with the number assigned to them. Because of that, no separate table
of the operator precedences during compiling a text is necessary.
When generating the object instructions for expressions the compiler
violates in some instances the rule of computing the expression values
from left to right (see the above-mentioned example). The violation
serves to decrease the length of the object program and to decrease the
number of introduced anonymous variables. The desired order of computing

430 K. Jerzykiewicz

the expression values can always be achieved by introducing additional
parentheses. So that the two expressions given below, which differ only
from each other for the additional parentheses (and it could be thought
that the parentheses change nothing), are compiled in a quite different
way, Viz.
atbxe

take b;

multiply by c;

add a;

(a)+b xe
take a;
store in RI1;
take b;
multiply by c¢;
add RI;

Treating the expressions in such a way is in accordance with the
semantics of expressions as given in the Revised Report on ALGOL 60
[11]. The differences between these two expressions are negligible when
generating instructions from the Reverse Polish notation and when
compiling a program into the Reverse Polish notation. In such situations
the authors of different compilers use diverse methods. E. g., Randell
and Russell {12] propose to compute the values of operands strictly from
left to right, and Naur [10] suggests to compute the operand values
from left to right only when during the computing an expression value
there can take place a change of the operand value that occurred earlier.

During compiling Boolean expressions there is performed no opti-
misation which could have been designed in such cases where the value
of an expression, e. g., a logical sum, is known already after computing
the first component value. The method and examples of such optimi-
sation of compiling the Boolean expressions have been given by Bottenbruch
and Grau [2]. The performing such an optimisation by an ALGOL com-
piler can be regarded as aimless for the following two reasons:

1. The same effect as optimisation by the compiler can always be
obtained by a suitable conditional expression inserted in the program.

2. It is impossible to define statistically the effects of computing
the optimised expression if there appear in it a procedure identifier or
the formal parameter called by name.

2.4. Procedure Call and Formal Parameters. In the decsribed here
method of the semantic analysis no difference is made between compiling
the function designator and the procedure statement, so henceforth
we shall discuss only compiling the procedure call, which contains both

Semantic analysis of ALGOL 431

cases. By a formal parameter call we shall understand computing the ad-
dress of the actual parameter that corresponds to the formal parameter.

The compiling an n-parameter procedure call (» > 0) runs according
to the following scheme:

fix ALOC which begins the dynamical reservation in the procedure

body and store address BCP,

jump to the first object instruction of the procedure declaration;
BCP: jump to EP;

jump to API;

jump to APZ;

jump to APn;
AP1I: subroutine of the actual parameter number 1;
APZ2: subroutine of the actual parameter number 2;
APn: subroutine of the actual parameter number n;

EP: next object instruction;

where EP denotes the label in front of the instruction to which there
is transferred after executing the procedure body (for type-procedures,
AccC is equal to the address of the procedure value). From the j-th actual
parameter subroutine the return is made to the respective object instruc-
tion of the procedure declaration with AeccC equal to this parameter
address. The exceptions are subroutines of parameters with specification
label and switch, from which there is no return to object instructions
of the procedure declaration.

The implementation of procedure calls in ODRA-ALGOL compiler
is similar to the implementation described by Ingerman [8]. An exception
is the part of an object program corresponding to the actual parameter
being a switch identifier. In the implementation described by Ingerman
from subroutine of such an actual parameter the return is made to the
object instructions corresponding to the procedure declaration.

The formal parameter call and procedure call consist of several
instructions, after executing of which AccC is changed. Therefore, if
during the generation of instructions it turns out after reading in the
successive pair {operand, operatory, that the operand is a procedure
identifier or a formal parameter different from the switch identifier,
then regardless to operators Op and NO there are the following operations
related with the operand (after performing the operations the transfer
is made to the further analysis in such a manner, as if the operand has
been neither a formal parameter, nor procedure identifier):

1. If Res # 0, then in the successive Rj the AceC is stored.

2. If the operand is the formal parameter, then there are generated
the relevant call instructions, and depending upon the value of parameter

432 K. Jerzykiewicz

Left (see Table IV) there are generated the following instruections: if
Left + 0 (in the procedure body there occurs the assignment of a value
to the parameter), the storing AccC in the successive Rj as the operand
address, otherwise that of assignment to AceC the value of LOC(AccC)
and to the parameter Res there is assigned a value different from zero.

3. If the operand is a procedure identifier and the operator appearing
after it is : =, then there are generated the instructions of assignment
to the successive Rj the address of the location intended for the procedure
value, and to the operand there is assigned a parameter denoting the
anonymous variable which contains the address (see Table V), and the
transfer is made to perform further analysis.

4. If the operand is a procedure identifier without parameters,
then there are generated instructions to eall the procedure:

fix ALOC from which the dynamical reservation begins in the
procedure body and store address BCP;
jump to the first object instruction of the procedure declaration;
BCP: next object instruction;

and for the procedure with type there are generated the instructions
of taking to the accumulator the value of LOC(AccC) and the parameter
Res is suitably defined.

5. If the operand is the identifier of the procedure with parameters
(the operator that makes pair with the operand is the opening parenthese),
then there are generated the instructions to call the procedure as for
a procedure without parameters and additionally » +1 jump instructions
with their address parts empty. On the top of the stack there are stored
the procedure identifier and address BCP, and for the pair (PO, Op)
there is assigned (BCP +1, endparameter), afterwards a transfer is made
to execute operations related with the beginning of compiling the actual
parameter (see s2 below).

With compiling the procedure call there is connected a subroutine
of part ¢2, viz., ‘endparameter’, which consists of the two following
parts:

s1. The generation of instructions connected with the end of the com-
piling an actual parameter (after executing these instructions AceC
is equal to the parameter address and there takes place a return
to object instructions of the procedure declaration for parameters
with their specification different from label and switch, and for the
actual parameter which is a designational expression or switch iden-
tifier no instructions are generated).

82. Operations connected with the beginning of compiling an actual
parameter and the end of compiling the procedure call. Let us denote
by j the number of the last compiled actual parameter of a procedure

Semantic analysis of ALGOL

433

with »n parameters (if no parameters were compiled, then j = 0).
If j < n, then there is completed a jump instruction to the subroutine
of the (j+1)-th actual parameter (according to the value of PO),
and in the stack there is being stored the pair (PO +1, endparameter).
If j = n, then according to the parameter stored in the stack there
is completed a jump to the end of compiling the procedure call, and
for procedures with type there are generated the instructions of
assigning the value LOC(AecC) to AceC.
For a parameter with the specification switch the instructions of
the parameter call are generated in the subroutine ‘,’ after compiling
the subscript expression (see 2.7).
As an example we give a scheme of compiling the following sta-

tement:

a: = aXxfla,'m)+x+a;

where f is a non-standard procedure identifier, and « is a formal para-
meter called by name.

Topmost element (PO, Op>

of the stack

undefined a =
undefined a =

a = a X

par. endparameter @)

parameter par. endparameter
par. endparameter ‘m’)

parameter par. endparameter
a = a X

undefined a P =

a T = empty -+

@ = R1 -+

undefined a : =

a P = empty -+

undefined a : =

(0O, NO>

undefined
a X
f (
undefined
a ’
undefined
“m’)
emply -
empty -
x +
emply -+
emply +
a ;
a ;

Res

PFHHRPHHMHOO OO SO

1

During compiling there are generated the following instructions:

entrance to first instruction of the procedure f declaration;

API:

AP2:

jump to ECf;
jump to API;
jump to APZ;
take address of a;

return to the object instructions of f declaration;

take address of ‘m’;

return to the object instructions of f declaration;

434 K. Jerzykiewicz

ECf: take LOC(AccC);
multiply by a;
store in RI;
call the parameter z;
take LOC(AccC);
add RI;
add a;
store in a;

From the example it follows that the side effects are different in
ODRA-ALGOL that in ALGOL 60 (if in the function f body the value
of variable a changes, then to compute the value of entire expression
the new value of a will be taken). This is caused by the discussed already
violation of the rule of computing expressions from left to right (see 2.3).
In order to obtain the side effects in accordance with the Report on
ALGOL 60, all the variables whose values can change during computing
the value of entire expression because of the side effects should be enclosed
in parentheses.

2.5. Addresses Calculation. All identifiers occurring in a program
(with the exception of the formal parameters with specifications label,
switch and of the formal parameters with specifications real, integer,
Boolean, called by name) have the addresses assigned to them (the para-
meter Addr in an identifier description — see Table IV). For the iden-
tifier of the simple variables, arrays and formal parameters, the value
of Addr is fixed during the execution of the first pass of the compiler,
where for the identifiers declared outside the procedure bodies Addr is
equal to the address of some location from the block LI (see 1.5), while
for the identifiers declared in a procedure body and for the formal para-
meters it is a relative address (relative to the beginning of the storage
space, which is the working space of the procedure during the execution
of its body). The address of the beginning of the working space of a proce-
dure is computed dynamically at. the start of execution of the procedure
body.

The first pass of the compiler introduces also some additional variables,
referred to as reservation indicators, which in the run-time of a program
contain informations as to the storage space dynamically reserved by the
program. Reservation indicators were introduced by Gries [5]. Assign-
ing addresses to the reservation indicators is performed by the first
pass of the compiler in the manner which is to be described now.

The main program is the procedure of level zero. If a procedure
is declared on level n (i.e., in the body of procedure of level n), then its
level is equal to n+1 (in the ODRA-ALGOL compiler the level of a pro-
cedure is limited — it cannot be greater than 3). For each level there

Semantic analysis of ALGOL 435

are defined the block orders. Every proccdure is a block of order zero.
A block is of order n (n > 0), if it is contained in a block of order n —1.
The reservation indicators are assigned to blocks separately for each
level and in such a way that, for blocks the orders of which are the suc-
cessive numbers, the reservation indicator addresses of the blocks are
also successive numbers, and for the blocks of the same order on the same
level the values of RI are all the same. For the level zero each value of
RI is equal to the address of a location from the block L1, and for a level
greater than zero the RI are relative (relatively to the beginning of the
working space of a procedure). At run-time of an ODRA-ALGOL object
program the reservation indicators of the executed blocks contain the:
address of the last dynamically reserved location.

In the program given below (on the right-hand side there are denoted
the procedure levels) the zero level procedure (i.e. the main program)
is assigned to three reservation indicators with the addresses RI,,
RI,, RI, (where RI, = RI,+1, RI, = RI,+1), because the procedure
is a zero order block and contains block FI (of order 1) and block E2
(of order 2); the procedure f of level 1 is assigned to two reservation indi-
cators (a zero order block and block E3 of order 1); the procedure fI
of the level 2 is also assigned to two reservation indicators (a zero order
block and block E4 of order 1); and the procedure f2 of level 2 is assigned
to one reservation indicator (a zero order block).

El: Begin -
real z;

E2 : begin
procedure f;
E3 : begin
procedure fI/;
E4 : begin
real u; 2

end f1;
procedure f2;

The instructions which perform operations on the reservation indi-
cators are generated in the subroutines ‘beginb’ and ‘procedure’ (the

6 — Zastosowania Matematyki 12.4

436 K. Jerzykiewicz

execution of the instructions causes the assignment of an initial value
to respective reservation indicator) and in the subroutine ¢, after gene-
rating instructions of the storage reservation for arrays (the execution
of them causes assigning a new value to the reservation indicator, because
the storage space reserved dynamically by the program has increased).
The value of Addr for the procedure identifiers, labels and switch
identifiers is the address of this location in which there occurs the first
object instruction corresponding to the procedure declaration, the labelled
statement or the switch declaration, respectively; therefore, Addr can be
defined only during the generation of object instructions. Since generation
of an object instruction can require the Addr of a still undefined value
(a forward reference), the Dijkstra method of changing the address parts
[3] has been applied. We shall now give a short description of the method.
In the identifier descriptions, the Addr for which are fixed by the
third pass of the compiler there appears as additional parameter IntA
with the initial value equal to zero. The parameter value is set to one
at the moment when Addr is being defined (in subroutines ‘:’, ‘procedure’,
‘switch’). For IntA +# 0 the Addr value is the address assigned to the
identifier. If in order to generate an instruction a value of Addr is needed
and IntA = 0, then initially the current value of Addr will be taken
as the address part of the generated instruction, and to Addr there is
assigned the address of the instruction. Hence, for IntA = 0, Addr is
equal to the address of the last generated instruction, in which AR is
to be equal to the address assigned to the identifier, and AR is equal
to the address of the preceding such instruction; for the first instruction
AR = 0.
The just described situation is illustrated in the following example:
During compiling the fragment of a program

there are generated the instructions
L1: jump to 0;

L3: jump to LZ2;

and in the description of identifier E were fixed the values: Addr = L3.
IntA = 0.

Semantic analysis of ALGOL 437

In such a manner there arises a sequence of the addresses of locations
(the first element of the sequence is zero, and the last one is equal to the
running value of Addr) in which the address parts are to be changed
at the moment, when to a given identifier the address is assigned.

In the object program there appear also the anonymous variables E;
(see 2.3). The address computation for these variables is performed by
third pass of the compiler separately for each level (Rj is local on a given
level). The anonymous variables are used to store the intermediate results
when computing the values of expressions, the subscripted variable
address, the formal parameters, and the location reserved for the func-
tion values, and also to store the return address of the subroutine computing
the address of a controlled variable and of the subroutine of a controlled
statement. The variables Rj play on each level the role of a working
stack, with the maximum depth of the stack determined during compiling,
while in the run-time of a program the space for the stack is fixed when
the levels are changed. Introducing a new Rj is therefore connected with
increasing the working stack of the compiled program by one or two
elements (the latter only in the case of storing an arithmetic value in
Rj). At the moment the value of Ij is used up, the current depth of the
stack is decreased by as many locations as was the number of locations
occupied by the last Rj. Since the maximum depth of the working stack
is known only after the completion of compiling the level, during compiling
Rj is assigned a relative address. In the main program assigning the
address to Rj starts with one. Since on the zero level the B part of the
generated instruction word is zero, to the relative address Rj a parameter
is added, which changes B. After compiling whole of the program, B is
zeroed in these instructions, and to the AR part there is added the address
of the last instruction of the object program. Hence, the output text
of the third pass of the compiler consists of the following two parts:

the generated object instructions,
the space for the working stack of level zero.

In the procedure bodies Rj is a local variable, and therefore its address
remains relative. The address of the first Rj is computed on the basis
of a procedure identifier descritpion (in ‘procedure’); it is the working
space volume of the procedure as computed by the first pass of the com-
piler increased by one (the space for values and addresses of the formal
parameters — see 2.8, the local variables declared in the procedure body
and reservation indicators of a given level). After the completion of
compiling the procedure declaration (in ‘endprocedure’) its working space
is increased by the maximum depth of the working stack.

2.6. For Statements. Compiling the for statement in its general form

for cv: = FLE1, FLEZ, ..., FLEn do 8

438 K. Jerzykiewicz

where I'LE: is any for list element, causes the generation of the following
sequence of instructions: .
jump to FLEI;
CV: subroutine of computing the address of variable cv;

FLEI: realisation of the first for list element containing a jump to the
subroutine of instruction § and a jump to FLEZ2 obeyed in the
case when the element is exhausted;

FLEn: realisation of the n-th for list element containing a jump to the
subroutine of instruction § and a jump to EF obeyed in the
case when the element is exhaused;

S: subroutine of the controlled statement S;
LF: next object instruction;

The subroutine CV and the jump preceding it are generated only
when ¢v is a subseripted variable or a formal parameter called by name
(this variable address can change during the execution of for statement).

With compiling a for statement there are connected the following
subroutines:

‘for’ and ‘for-assign’ which generate the subroutine CV;

‘step’ which generates the instructions of assigning the first value
to the controlled variable and assigns values to parameters
according to the kind of the compiled for list element or pre-
pares compilation of subroutine §;

‘until’ which generates instructions of the value ¢v change (for the
element of the form AE, step AE, until AE,);

‘end-for-list-element’ and ‘while’ which end compiling the successive FLEi;

‘endfor’ which ends compiling the subroutine S.

The only optimisation performed by the compiler during compiling
a for statement consists in generating or not the subroutine CV. The
decision depends solely upon the form of co.

2.7. Subscripted Variables and the Array Declaration. Since in the
input text of the third pass of the compiler the colons in the bound pair
lists had been substituted with commas, a bound pair list has the form
of a subscript list and so compiling an array declaration is connected
with compiling a subscripted variable.

To a subseript list there corresponds a sequence of instructions of
computing the successive subseript expressions and of storing their
values in the successive Rj. The instructions of storing are generated in
the subroutine ‘,’, which determines also the number of subseript expres-
sions. The number is stored in the stack as a parameter, together with
the operator number 20 (comma) and is the address part of the one of

Semantic analysis of ALGOL 439

the generated instructions of computing the address of a subscripted
variable. The instructions are generated also in the subroutine ¢, in
the moment when NO is] and NO actually ends the subsecript list. In
order to recognize whether the cornpiled subscript list is a bound pair
list there is used the parameter A D, which has a negative value after com-
piling a bound pair list. At the start of compiling a program parameter
AD is equal to zero, in the subroutine ‘[’ is increased by one, and after
compiling a subseript list is decreased by one. Additionally, AD is decre-
ased by one in the subroutine ‘array’, in which there are read in and
stored in the stack all the pairs {operand, operator) for which the ope-
rator is a comma, and subsequently the transfer is made to execute the
subroutine ‘[’.

After compiling a bound pair list (AD < 0) to the parameter AD,
zero is assigned and there are generated instructions to form the array
segment vector (informations about the values of bound pairs and the
array dimension, equal to one-half of the determined number of sub-
scripts) and to reserve the necessary store for arrays, whose identifiers
are stored in the stack. Next, in order to find out if the array declaration
is already compiled, the next pair {(operand, operator) is read. If the ope-
rator turns out to be a comma, then compiling the next segment begins
(transfer is made to the subroutine ‘array’), otherwise the declaration is
already compiled.

In the subroutine ‘[’ there is stored in the stack the operand appe-
aring in front of [and, additionally, as the topmost element, the pair
(1 ,>. If the operand stored in the stack is a switch identifier, then after
compiling the subscript list (in the subroutine ‘,’) there is generated the
instruction of jump according to the switch designator, and for the formal
parameter with the specification switch there are generated instructions
of the formal parameter call (see 2.4) with AccC equal to the subseript
“expression value.

2.8. Procedure Declaration. Before starting to compile a procedure
body there are generated the object instructions corresponding to its
heading, i.e., the storage administration instruections and instructions
connected with the formal parameter list. The generation of the instruc-
tions and some additional operations are performed in the subroutine
‘procedure’:

1. There is generated the jump instruction that skips the object
instructions corresponding to the procedure declaration.

2. The next pair {operand, operator), which has the form {(procedure
identifier ;> is read in (see 1.5), and from the procedure identifier des-
cription there are obtained all the informations about this procedure
heading. |

440 K. Jerzykiewicz

3. There are generated the storage administration instructions.

4. There are analysed the formal parameters of the procedure (on
the basis of their descriptions, in the order they appear in the formal
parameter list), and for the parameters listed in the value part, as well
as for strings and arrays called by name there are generated call instrue-
tions (during execution a procedure body in the implementation addopted
for the ODRA-ALGOL compiler the address of the beginning of a string
and of an array cannot change). The difference between the parameter A
call and the parameter B call, where A is the formal array called by
value and B is the formal array called by name, consists in the following:
elements of the array A are transferred to the working space of the proce-
dure, while for B only the array address is stored. In the descriptions of
these formal parameters, for which the calls were generated, the parame-
ter Type is set to zero (see Table IV). Hence, if one of these parameters
will play the role of the operand during compiling the procedure body,
then it will not be recognized as the formal parameter.

5. In the stack there are stored the informations which are repro-
duced in the subroutine ‘endprocedure’ when compiling the procedure
declaration is completed (e. g., the address of the running Rj, the address
of the jump which skips the procedure declaration). After compiling
a type-procedure, in subroutine ‘endprocedure’ there is generated the
instruction to load the accumulator with such a value ALOC that
LOC(ALOC) is the procedure value. The last object instruction corres-
ponding to the procedure declaration is the exit instruction.

As an example consider the following procedure declaration:

real procedure G (4,1, j);
value ; '
integer 17, j;
array A;
G: = A[i xi,]5];

The corresponding object instructions are the following:

jump to EG;

instructions of the storage administration;
call the parameter A4;

call the parameter i;

assign AG to RI;

take 17;

multiply by ¢;

store in R2;

call the parameter j;

take LOC (AccC);

store in R3;

compute and store in R2 the address 4[R2, R3];

Semantic analysis of ALGOL 441

take LOC(R2);

store in LOC(R1);

take AG;

exit from the procedure;
EG: next object instruction;

By AG there is denoted the address of the location reserved for the
procedure G value.

The system of storage administration for procedures has been des-
cribed by Watt in [14]. In what follows we give some essential features
of the system in connection with the ODRA-ALGOL object programs.

All the variables local in a procedure body and formal parameters
whose calls appear before the execution of the procedure body (e. g.,
parameters called by value, parameters with the specification string)
are assigned to relative addresses (see 2.5). The generated instruction,
in which the address part AR is relative address, has a non zero part B
(see 1.4). More accurately, B is equal to the level n (n < 3) on which an
identifier (or variable) has been declared (or introduced by compiler),
and in the run-time of the program LOC(n) is equal to the address of the
location that is the first of those reserved for the working space of the
procedure. Storing the current value (it is restored at the exit from the
procedure) and assigning a new one into the modification register n is
performed by means of the instructions connected with the procedure
call (see 2.4); it is increased by one value of the reservation indicator
of the block, in which the procedure call has occurred. After the procedure
is entered, the instructions of the storage administration assign a value
to the reservation indicator assigned to the procedure. If, therefore,
a procedure is a recursive one, then a repeated call causes a change of
the corresponding modification register value, i.e., the reservation of
the storage locations for a new working space of the procedure, and exit
from the procedure causes the assignment of the previous value to this
reservation indicator (a return to the previous working space of the pro-
cedure) and the transfer to execute instructions appearing after the pro-
cedure call. During compiling a program the compiler does not distinguish
the recursive procedures from the other procedures, for the recursivity
is already guaranted by the implementation adopted in the ODRA-ALGOL
compiler.

2.9. Switch Declaration. The set of the object instructions corres-
ponding to the switch declaration is similar to the set of object instructions
corresponding to the procedure with parameters (see 2.4), in which in-
structions of storage administration are skipped. Therefore the method
of compiling the switch declaration is the same as the method of compiling
the procedure call, so that subroutines ‘endswitch’ and ‘endparameter’
have common parts.

442 K. Jerzykiewicz

To the switeh declaration

switch S: = DFE1,DE?2, ..., DEn
there correspond the following object instructions:
jump to ES;
jump to TDEI;
jump to TDEZ;

jump to TDEn;
TDE1I: object instructions corresponding to the expression DEI;
TDEZ2: object instructions corresponding to the expression DEZ;

TDEn: object instructions corresponding to the expression DEn;
ES: the next object instruction of the program;

Subroutine ‘endswitch’ performs the following optimisation: if the
currently compiled expression DFE:¢ is a label E which is not a formal
parameter (object instructions corresponding to DEi occupy in this case
one jump instruction), then the instruction — jump to TDEi — is changed
into the instruction — jump to ¥ — and there are separately generated
no object instructions corresponding to the expression DFEsi.

3. TABLES

Table I. Values of the Parameter CN when it is a Part of a Syllable

Value of CN Element of the source program
0 an operator
1 an identifier
2 an arithmetic or Boolean constant
3

a string

Table 1I. Values and Interpretation of the Parameter IN of a Syllable
Value of CN Interpretation and value of IN

0 the number of an opcrator (see Table I1I)
1 one half of the relative address of the identifier description
2 = the Boolean valuc false
IN§= the Boolean value true
> INx2-3 is the relative address of the arithmetic
constant

3 the rclative address of the string

Semantic analysis of ALGOL 443

Table III, Machine Representation of Operators

Operator Operator

number

1

AN P~ W

3
-
tny

11
12

13

14

15
16

17

18

19
20
21

t

endprocedure

elge

endelse

endparameter

-e

Remarks

end which ends-a compound sta=-
tement
end which ends a block

an auxiliary operator while
cohpiling a switch declaration
stands for the assignment sym-
bol in a for clause

stands for the comma which se-
parates for list elements;
also appears before do

an auxiliary operator while
compiling a for statement

an auxiliary operator while
compilling a procedure decla-
ration

an auxiliary operator while
compiling statements or expre-
ssions containing an if clause
stands for the closing round
bracket in the read a number
statement

an auxiliary operator while
compiling a procedure call

444

22
23
24
25
26
27
28
29
30
-31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56,

K. Jerzykiewicz

IE + ¥V A n Iy VI > Uom

arra

procedure
readreal
readinteger
readarray
regdintegerarray
readBooleanarrax
printreal

printarray

stands for unary minus

begin which commences a com=-
pound statement
begin which commences a block

the
the
the
the
the
the

read-real-number operator
read-integer-number operator
read-real-array. operator
fead—integer-array operator
read-Boolean-array operator

print-arithmetic-value ope=~

rator

the

print-arithmetic~array ope-

rator

57

58
59
60
61
62
63
64
65
66
67
68

69
70
1
72
73
74
75
76
77
8
79
80
81
82
83
84
128

Semantic analysis of ALGOL

printstring

445

the print-string-or Boolean-

array operator

the
the
the
the
the
the
the
the
the
the
the

standard
standard
standard
standard
standard
standard
standard
standard
standard
standard
standard

procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
function

function

function

having a Boolean value

the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the

standard
standard
standard
standard
standard
standard
standard
standard
standard
standard
standard
standard
standard
standard
standard
standard
operator

function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
placed af

line
space
format
affix
outdev-
outchar
wait
indev
number
char
button

abs
sign
entier
sqrt
sin
cos
tan
arcsin
arccos
arctan
1n
log10
€Xxp
expi0
max
min
ter the

last end of the source program

peaB1os9p ST 8903 TMS pus
JIS9TJTIUSPT 9U} UOTYM UO TAAST 9Yj JO Iequmu s1aqeT 3dsoxe SISTJITIUSPT TT® 1T 6
9AT3BIOI 8am® simeBu £q PeTIBO UO3 IMB I0
gesgaapps 9y} Lpoq aanpsdoxd B Ul paaBIOap ¢*I9qeT ‘TUBoroog ‘Tod8ojur ‘Tl
sfelIe pus ‘soTqBTIBA ‘Basjousasd TBWIOF 9yj UOT3BOTJTO0eds oyj3 Jo sxejeusasd
J0J ¢I9TJTIUSPT UB 0} peudiese S8oIppPB 9y} [BWIOF ayj} 3dedXs I9TITJUSPT TT® IPPY 8
(snotaaxd eyj woxy omj £q ISTTBUS
8T Jo9qeusasd TBWIOJ 3X9Uu ayj3 JO uotrjdraosap
ay3 Jo ssaxppe 9yj3) uopjdiaosep Jejeuwsasd TsuW

-I0J 38ITJ Y} JO SH4IPPB 9AT}BISI JO JTBY OUO SIITJFIUSPT danpadoxd d1dd L
N aanpaooxd B8 JOo saojeuwssed TBWIOJ JO Jequmnu oy3} SI9TJTIUapT a2anpadoad JIN 9
I OSTMIOYLO0 = Q
m £poq aanpaooxd ayj Ul SNIBA B paUITSSB
P 8T axoyy Jogomsasd Tewroy 8y} 03 JT = | aAOQRB 8B 1JeT G
m 98 TMISYL0 ~ susu Aq peTIBY ‘U8sLo0g
i 8TqQBTJIBA B 30U ST J0 *T5893uUt ‘TEOX UOT3BOTJ
sxejeusxed TBN3O8B 8y} JO auo %8BT 3B JT - | =Fo9ds ayj Jo sg9jswsasd TeWIO avay b
98TMISYL0 =
anTsA £q pelTBO sx9troweasd I0J ~ | gxoqeusaed TBWIOZ dA €
18T1
Jojousaed Tswrol uo gdjreusasd ayj3 Jo Jsqunu sxejowsxsd TsmIOJ Nad 2
SI9TJTIUSPT I9Y30 I03 = O
sIzeojewsIed TBWIOJ 3Yj JI0J =~ | 8I8TJTAUSPT TT® odAg L
vmnﬁwo@ ST onTBA B UYOTUM JI0J
sanTsp mex3doxd aoanos ayj JO jULWATH AFTiuBnd JIaquUMY

446

SUOT}dTIO89(Q IS9TJTIUSPI 9Y3} UT SUTIIMDD(Q S9TIFIuUBNY °*AT OTABJ -

447

is of ALGOL

Semantic analys

gsuoTjouUNny TeaX 9y} JI0J =yl
gfexraB TBAX 89U} JI0J =(|
S9TqBTIBA TBAIX QY3 JI0J =2|
SUOF3OoUNI I839qUT 8Y} JI0JF |Qe
sfBIaB JI9394UT oY} JI0J = §
89TQBTIBA JI9303UT 9y} I0JF = g
SUOT}OoUNI UBSTOOg 9y} JI0J = 9
s£BIIB UBOTOOg 9y} JI0F = G
89TqQBTIBA UBSTOO 9} JOJ =~ ¥
s3uta3s I103 = ¢
goanpoooxd I0J = 2
SoYO04TMB JIOJ = |
sT8qBT I0J - O
UOT{BIRT
=09p UYOJTMS B UT 38TT UYO3TM8 B JO TISuaT ayj
98 TMIAYJ0 = |

198 394
}ou 8T JASTJITIUSPT UB JO 8S34dppeB dYl JT =~ O
aanpaooxd
B JO SJIO01BOTPUT UOT4BAJISSaI JO JaqumMu aYy
anTBA UOT4OoUNy B8 pus ‘ousu
£q pelT®o SUTA3S a0 ‘XB8aas UBoloog ‘Xeaas
Ioge7Ut ‘Xexae uoTieOoTJToeds ayj JO sSI9jouwel
-8d TBWwIO] ‘anTsAa £q pPOIIBO SIojisumasd TBUIOT
*£poq eanpaooxd B UT pPaIBIOSP SBATUBIIBA 9]
$JI0J pAAJASaX SUOT}BOOT 938BI038 JO JequmU ayj

SIOTIT4USPT TTE®

SISTITIUSDPT YOG TMS

SIOTITHUSPT
Yo3TMs pus ¢ToaqeT ‘*anpsooxd

SJI9TJTJUSPT aanpaooxad

SI9TJTJUSPT aanpaooxd

To3a

TIS

JUIY

uxen

VXBIN

145

€L

cl

L

oL

448 K. Jerzykiewicz

Table V. The Operand Values during the Analysis

Operand value Element of the source prog- Parameter A stands for
ram represcnted by the
operand
(16 x T'ype(A4) + identifier declared in the relative address of the iden-
Decl(A)) x 2048 + A prograin tifier description
o operand is empty
4 x 2048 +2 Boolean value true
4 x 2048 Boolean value false
7Tx2048+ A4 string relative address of the
string on the string list
15 x 2048 + A arithmetic constant relative address of the
constant on the constant
list
(8+3)x8192+ 4 anonymous variable con- relative address of the
taining a real value anonymous variable
(8+2)%x8192+ 4 anonymous variable con- as above
taining an integer value
(84+1)x8192+ 4 anonymous variable con- as above
taining a Boolean value
(12+3) x 8192+ 4 anonymous variable con- as above
taining the address of a real
value
(12+2) x8192 + 4 anonymous variable con- as above

taining the address of an
integer value

(12+1) x8192 4+ 4 anonymous variable con- as above
taining the address of
a Boolean value

Note. From the apove-mentioned operand values it follows that if an operand
is written in the form

(((((ax2+b)x2+c)x2+d)x2+e)x2+f)x2+g)x2048+ A4,
where a, b,c,d, e, f, g take on the values 0 or 1 (denote the successive bits), and

0< 4 < 2048, then. from the parameter values the program element represented
by the operand can uniquely be determined. '

Acknowledgments

The author is greatly indebted to Dr. S. Paszkowski and Dr. W. M.
Turski for the valuable discussion-of the subject-matter of the paper.
Especial thanks are due to Dr. W. M. Turski for many helpful suggestions
on reading an earlier version of the manuscript.

The author would also like to thank Dr. J. Szezepkowicz who has
helped to overcome same .difficulties encountered in the course of pre-
paring the third pass of the ODRA-ALGOIL compiler.

Semantic analysis of ALGOL 449

Appendix. The Procedure which Performs The third Pass of the
ODRA-ALGOL Compiler
The identifiers in round brackets at the right hand side of
a page do not belong to the algorithm; they are used for referen-
ce purpose., If before the semicolon which terminates a comment
there appears an identifier in round brackets, the comment per-
tains to the lines succeding it, down to the line indicated by

the identifier,

procedure Pass3;
comment The global quantities in the body of the procedure

Pass3.
a. The addresses of Boolean values and of working locations

used by the object program.

FALSE The Boolean value false.

TRUE The Boolean value true.

ADS,C,R,S1 Working locations.
b. The addresses of the fixed parts of the object program.

FIN The exit from the object program due to normal com-
pletion.

BFNS The part which causes the message that the value of
a function is undefined.

KPP The exit from the actual parameter subroutine.

KP[i] (i=1,2,3) The exit from a procedure of the level i.
Cce The addresses of subroutines used by the object program.
Variable Punction of the associated subroutine

START Setting the initial parameter values before execu-

ting an object program.

450

CCZP
INDP

PRPI

PRPT

RSA

AST

WEN

PP[i]

WE[1,]]

wyli,j]

PF[i]

PFM[i]

K. Jerzykiewicz

Rounding off the accumulator value.

The computation of the switch designator address
and the jump‘to a corresponding place of the
program.

The reservation of storage locations, copying

and rounding off elements of the integer array
listed in the value part.

The reservation of storage locations and copying
the real or Boolean array listed in the value part.
Forming a vector of informations about the bound
peir list.

The reservation of storage locations for the array
according to the information stored by the subrou-
tine RSA.

Setting parameters before leaving a level j to exe-
cute the body of a‘procedure which has the level i
(j<i).

(i=1,2,3) Resetting parameters before the execution
of a procedure body on the level i.

(j>i, j=2,3, i=1,2) Setting parameters before lea-
ving level j to execute the procedure body on the
level i.

(j>i, j=2,3, i=1,2) Resetting parameters after the
exit from a procedure of the level i to the level j.
(1=1,2,3) Setting parameters before calling a formal
parameter with the specification other than label
or gwitch of a procedure of the level 1i.

(i=1,2,3) Setting parameters before calling a for-

mal parameter with the specification label or

gwitch of a procedure of the level i,

Semantic analysis of ALGOL 451

d. The variables which have values equal to the operational

codes of the ODRA 1204 digital computer (the detailed

information concerning the codes is given in the referen-

ce [4]).

ROPO

ROP2

ROP7

ZEAW

SKB
USAN
USAK
UZAK
PSKA
PZKA
SKP
MOK1

MOA1

SSAN

The zero programmed operation. The operation body
is a fixed part of the for statement having its
controlled variable of the real type and its for
list element of the form: AE, step AE, until AEB’
where AEi (i=1,2,3) denotes an arithmetic expre-
ssion.

The second programmed operation. The operation
body is equivalent to that of the operation ROPO,
but it is executed when the controlled variable
is of the integer type.

The seventh programmed operation. The computing
of the subscripted variable address.

The clearing of the accumulator contents and of
the auxiliary register contents.

Unconditional jump.

Loading the accumulator with a value of an address.
Loading a fixed-point number.

Loading a floating-point number,

Storing a fixed-poin number.

Storing a floating-point. number.

Subroutine jump and storing the return address.
Modification of the address part of the next
instruction by a location contents.

Modification of the address part of the next
instruction by the accumulator contents.

Adding an address to the accumulator contents.

452

ODKJ
SKZ

SKD

PLR

USWK

PAKW

UBK[1i]

Code1[i]

Code2[i]

K. Jerzykiewicz

Decreasing by one a location contents,

Jump if the result of the previous operation was
Zero.

Jump if the result of the previous operation was
positive.

Storing the sequence control register contents
increased by two.

Loading auxiliary register.

Storing an auxiliary register contents.

(1=1,2,3) Storing a location contents in the i-th
modification register.

(1=22,23,.44,38) The operational code that is an
implementation of the i-th operator (see Table III)
if in the accumulator there is the value of an
operand appearing in front of the operator (for the
unary operators the accumulator value is zero).
(i=22,23,4.44438,50,51,..,,84) The operational code
that is an implementation of i-th operator (see
Table III) if in the accumulator there is a value

of the operand which appears after the operator.

e. The labels,

AssEr

MEr

The error mesage. It results if in the source pro-
gram the variables and the procedure identifiers
of a left part list of an assignment statement have
diverse types, or if an actual parameter corres-
ponding to the formal parameter for which Left=1
(see Table IV) is not a variable.

The mesage of an erroneous operation of the com-
puter, The label is equal to such a value of the

switch designator which cannot occur if the exe-

Semantic analysis of ALGOL 453

cution of the body of the procedure Pass3 is

correct.

f. Other global variables and arrays.

RI

NLN

ASL
ACL
0PA

Sto

Address of the reservation indicator (see 2.5).

Initial value of the variable is defined by the

second pass of the compiler.

The current value of this variable is printed

together with the mesage of an error in the

source program, It is being increased at the start

of compiling a block, for statement, and a proce-

dure declaration,

Address of the beginning of the string list.

Address of the beginning of the constant list.

Address of the currently generated instruction,

Before the execution of the Pass3 procedure body

the value of this variable is equal to the address

of the last location occupied by block L3 (see 1.5).
re The machine core storage, considered as an one-di-

mensional array.

The working stack, considered as an one-dimensio-

nal array;

begin
integer procedure RSyl;

comment The function is equal to the successive syllable
of the text of the source program, €. g., IN<4+CN (see
Table I and Table II);

code;

procedure Compile(i,i1);

value i,i1;

integer i,1i1;

454 K. Jerzykiewicz

comment The generation of an object instruction, for which
operational code is equal to i, and the address part is
equal to i1, The execution of the procedure body causes
also an increase of value of the variable OPA. E. g. The
execution of the statement Compile(SKP,OPA¥3) causes the
generation of the instruction of the unconditional jump
to the location having its address equal to OPA+3, and
next the increase by 1 the value of the variable OPA;
code;
procedure UID(i,i1,i2);

value 1i,i1,12;

integer 1,i1,12;

comment The assignment of the value i1 to the i-th quan-
tity in the description of the identifier determined by
the parameter i2 (see Table IV), e. g., the execution of
the statement-~UID(12,1,P0) causes the assignment of value
1 to the quantity AInt from the description of the identi-
fier corresponding to the operand PO;

code;
comment The value of each of the fourteen given below
functions is equal to the value of the quantity from the
identifier description indicated by the procedure parame-
ter. Name of quantity is identical with the procedure
identifier. E. g. the value Type(PO) is equal to the value
of quantity Type from the identifier description indicated
by operand PO;
integer procedure Type(i);

value i; integer i;

code;

integer procedure FPN(i);

Semantic analysis of ALGOL

value 1; integer i;
code;

integer procedure VP(i);
value i; integer i;
code;

integer procedure AEAP(i);
value 1; integer i;
code;

integer procedure Left(i);
value i; integer ij;
code;

integer procedure NFP(i);
value i; integer i;
code;

integer procedure FPLP(i);
value 1; integer i; ,
code;

integer procedure Addr(i);
value i; 2integer i;
code;

integer procedure IL(i);
value i; integer i;
code;

integer procedure MaxA(i);
value i; integer i;
code;

integer procedure MaxR(i);
value i; integer i;
code;

integer procedure AInt(i);

455

456

Th
id
Op

NO

PO

co

PH

K. Jerzykiewicz

value i; integer 1i;

code;
integer procedure SLL(i);

value i; ineger i;

code;
integer procedure Decl(i);

value i; integer i;

code;
integer Op,NO,PO,CO,AD, PH, AssT,J ,MaxJ ,ModJ ,CV,CVA,

CPS,CPDI,NAP, Res, AccT,BP,p,1,q,k,k1,k2;

comment The local wvariables in the body of the procedure

Pass3,

e variable Values of the variable

entifier
Operator. The number or the first analysed
operator (see Table III).
Next Operator. The nwnber of the operator
appearing after the Op operato?.
Preceding Operand. The operand (i. e., the
element of the program different from an
operator) appearing in front of the Op ope-
rator (see Table V).
Current Operand., The operand appearing in
front of the NO operator.
Array Declaration. The parameter used when
compiling subscript expressions and having
negative values only at the beginning and
at the end of the compiling an array decla-
ration,
Procedure Hierarchy. The level of the proce-

AssT

MaxJ
ModdJd

CV,CVA

CPS

CPDI

NAP

Semantic analysis of ALGOL

dure whose body is being currently compiled.
Assignment Type. The parameter defining the
type of the variable, together with an assig-
nment symbol forms the left part list of an
assignment statement. It takes on the follo-
wing values:

1 for a Boolean variable,

2 for an integer variable,

3 for a real variable.

The number of the currently used anonymous
variables. During compiling a procedure

body it is equal to the relative address

of the last occupied anonymous variable.

The maximum value of the variable J.
Parameter, which has to be added to the value
of J in order to obtain the relative address
of the anonymous variable of number J.
Controlled Variable, Controlled Variable
Address. These parameters are used in for
clause compilation,

Current Procedure Statement. The value of this
variable is different from zero during the com-
pilation of the actual parameter list of a pro-
cedure.

Compiled Procedure Identifier., The operand
corresponding to a procedure identifier when
complling the actual parameter list of the
procedure.

Number of Actual Parameter, The address of the

formal parameter description when compiling the

457

458

Res

AceT

BP

p

i,q,

X,k1,k2

K. Jerzykiewicz

actual parameter of the procedure.

Result. This parameter value is different from
zero if AccC is defined.

Accumulator Type. This parametr value is diffe-
rent from zero if in the accumulator there is
an arithmetic value, otherwise is equal to zero.
Beginning of Program. The address of the first
generated instruction,

The sgtack indicator.

The working variables;

procedure Read(PPO,POp);

integer PPO,POp;

comment If a successive syllable is an cperand, the

suitably transformed value of the syllable is assigned

to the parameter PPO (see Table V), and the operator

number defined by the next syllable is assigned to the

parameter POp. Otherwise, zero and the operator with is

number defined by the syllable are assigned to the para-

meters PPO and POp, respectively. If the operator ends

the program (operator number 128), a jump to the label

EPass3 is executed;

begin
integer i,q;

i:=RSyl;

Semantic analysis of ALGOL 459

is=if i=1 then 16xType(q)+Decl(q) else if i=3 then 7

else if q<3 then 8 glse 15;
i:=1%2048+(if i=7 then q:2 else q);
q:=RSyls+4

end 140;
if q=128
then go to EPass3;
PPO:=1i;
POp:=
end Read;

integer procedure Typel(FP);

value FP;

integer FP;

comment The function is equal to 1 if the operand FP
is the formal parameter called by name, otherwise the
function value is equal to zero;

Typel:=if FP>65536VFP<32768 then 0 elge 1;
integer procedure Decll(FP);

value FP;

integer FP;

comment If the operand FP is an identifier, the func-
tion is equal to the value of Decl from the identifier
description. Other cases are the following:

If the operand is the function

is equal to

a Boolean value, or an anonymous var-
iable which contains a Boolean value
or a Boolean value address 4
a constant string 7

an anonymous variable containing an

460 K. Jerzykiewicz

integer value or an integer value

address 8
an anonymous variable containing a

real value or real value address 12
an arithmetic constant 153

if PP>65536

ct

then

begin

FP:=FP+8192;

Decl1:=4=(if FP>4 then FP-4 glse FP)
end FP>65536

[
s
(]
D

1

F
(]
=3.

FP:=FP+2048;
Decll:=if FP>16 then FP-16 else FP
end FP<65536;
integer procedure Addr1(FP);

Yalue FP;

integer FP;

comment The function is equal to the absolute or
relative (the latter for anonymous variables and
for the identifiers declared in a procedure body)
addregs of the operand FP., If FP is an identifier
whose address is not yet set, the function is equai
to the address of the last instruction, the address
part of which is to be also the address of FP;
begin

integer i,q;

i:=Decl1(FP);

q:=FP-FP+2048=<2048;

Semantic analysis of ALGOL

Addr1:=if FP>65536 then ModJ+(if FP>98304 then 8388608

elge 0)+FP~FP+8192x8192 glge if 1<3Vi=6Vi=10vi=14

then ForwJ(FP) else if i=7 then ASL+q eglse if i=15

then ACL+q else if i1=4Aq<3 then (1f q=0 then FALSE

elgse TRUE) elge 2097152xIL(FP)+Addr(FP)
end Addri;
procedure LDA(FP);
value FP;
integer FP;

comment The generation of the instruction of loading

the operand FP value to the accumulator. If FP is

a label, a jump instruction is generated. The proce-

dure assigns also a value to the parameter AccT;

AccT:=0;
Compile (ZEAW,0)
end FP=0
else
begin L
integer i,q;
i:=Decl1(FP);
i:=3if i=0 then SKB else if i

7 then USAN else

if 1=8vi=12 then UZAK else USAK;
AccT:=if i=UZAK then 1 else O0;
Compile(i, Addr1(FP))
end FP{0,LDA;

Boolean procedure Compare;

comment The function has the value true if bhefore

gene-

461

462 K. Jerzykiewicz

rating the instruction which corresponds to the opera-
tor NO it is necessary to generate instruction corres-
ponding to the operator Op (the operator Op precedence
is greater than the precedence of the operator NO);
Compare:=if Op>37 then Op>NO else if Op>36 then NO<L37
else if Opz33 then NO35 elge if Op>27 then
NO<32 else Op>21A0p>NOA(Op$21VNO421);
procedure Incd (FP);
value FP;
integer FP;
comment Increasing by FP the number‘J of the currently
used anonymous variables and determining the maximum

value of the hitherto existing values of the variable J;
begin

J:=J+FP;

if MaxJ<J

_then MaxJ:=J

end Incd;
procedure Decd (FP);

value FP;

integer FP;

comment Decreasing the number of the currently used
anonymous variables by one or two according to that
how many locations are occupied by the operand FP;
begin

FP:=FP+8192-8;

J:=J-(if FP>4VFP=1 then 1 glse 2)

end Decd;

integer procedure ForwJ(FP);

value FP;

Semantic analysis of ALGOL 463

integer FP;
comment The function is equal to the address of the

identifier indicated by FP (see procedure Addr1 above);
begin

ForwJ : =Addr(FP);

if AInt(FP)=0

then UID(8,0PA+1,FP)

end Forwd;

procedure DetA(FP);
value FP;

integer FP;
comment Assigning a value OPA+1 to the address of the

identifier indicated by FP;
begin
intéger i, q;
i:=Addr(FP);
UID(8,0PA+1,FP);
UID(12,1,FP);
comment A change of address parts of the instructions
which refer to the identifier indicated by FP (A1),
for FP:=i while i40 do
begin
q:=Store([FP];
1:=29-q+16384<16384;
Store[FP):=q~1+0PA+1
gnd, FP (a1)
end DetA;
procedure GSI;
comment The procedure body is executed only when AccC
is defined. An instruction of storing the value in

464 K. Jerzykiewicz

an anonymous variable is then generated and the value
of the operand PO is changed;
if Res$0
then
begin
IncJd (AccT+1);
Compile(if AccT=0 then PSKA else PZKA,ModJ+J);
Res:=0;
PO:=8192%(9+AccT) +J
end GSI;
procedure FRP1(FP);
value FP;
integer FP;
comment The generation of instructions to calil the
formal parameter of the specification label or gwligh
indicated by FP;
begin
Compile(SKP,PFM[IL(FP)]);
Compile(MOK1,S81);
Compile (MOK1,1);
Compile (SKB, FPN(FP))
end FRP1;
procedure FRP2(FP);
yalue FP;
integer FP;
comment The generation of instructions to call the
formal parameter of any specification but label and
switch;
begin
integer i;

Semantic analysis of ALGOL 465

then Compile(USAK,RI)
else

egin

F

Compile (USAK,R);

Compile(SSAN, 3)
end CPS}0;
Compile(SKP,PF[i]);
Compile(MOK1,S51);
Compile(MOK1,1);
Compile(SKB,FPN(FP));
Compile(MOK1,R);

Compile(UBK[1],2);
if CPS{o
then
for 1:=1,2,3 do
Compile (ODKJ,R)
end FRP2;

procedure FRP(FP);

integer FP;

comment The generation of instructions to call the
formal parameter indicated by FP and a change of the
operand FP value;

begin

integer ap,i;

ap:=FP;

i:=Decl(ap);

comment The formal parameter has the specification

label (A2);

466 K. Jerzykiewicz

then FRP1(ap) (A2)

FRP2(ap); .
if AEAP(ap)=0
then
begin
comment All the corresponding actual paraméters are
variables. The address of the corresponding actual
parameter is stored in an anonymous variable (A3);
Incd(1);
Compile (PSKA,ModJd+J) ;
FP:=8192%(12+1i+4)+J
end AEAP(ap)=0 (A3)

comment The accumulator is loaded with a value of

the corresponding actual parameter (A4);
Res:=1;
Compile(MOA1,0);
Compile(if i<8 then USAK else UZAK,O0);
AccT:=1+8;
FP:=0
end AEAP(ap)+40 (A4)
end i40
end FRP;
procedure AssS(FP);

value FP;

integer FP;

Semantic analysis of ALGOL 467

comment The generation of the instruction assigning
AccC to.the operand FP;
begin

if AssT=2

then

begin
comment The generation of the instruction of a jump

to the round off AccC subroutine before the first
assignment of a value to an integer variable (AS5);
Compile(SKP,CCZP);
AssT:=3
end AssT=2; (A5)
Compile(if AssT=0 then PSKA else PZKA, Addr1(FP))
end AssS;
switch c1:=Re,BecOp,0p41,DecOp,DecOp, LB,0p45,0p46,
Op47,0p48,0p49;
switch c2:=if NO=1 then EB else RNS,if NO=2 then Op2
else RNS,Op3,RRP,MEr,ESD,MEr,0Op8,0p9,0p10,
MgEr,0p12,0p13,0p14,0p15, GAFR,MEr, EEAP,
MEr,0p20;
comment Assigning initial values to the parameters (A6);
PH:=CPS:=AD:=NLN:=J:=MaxJ:=0;
Compile(SKP,START);
BP:=0PA;
ModJ :=4194304; (46)
comment The beginning of cpmpiling a new statement;
RNS:
AssT:=0;
comment The beginning of compiling a new expressionj
RNS1:

468 K. Jerzykiewicz

Res:=0;
comment Reading the pair {P0,0D) ;
Re:
Read (PO,0p);
comment The analysis of the operand appearing in front
of operator Op (A13);
Rel:
if P0>65536
then go to Open;
comment The operand PO is not an anonymous variable (A13);
q:=Decl1(P0);
if Typel(P0O)=0
then
hegin
comment The operand PO is not a formal parameter (A11);
if q-q#4=4=2
then
begin
comment The operand PO is a procedure identifier
(A10);
1i:=IL(PO);
if Op=21

E

(5

;

comment The pair (P0,0p) is a left part of an

asgignment statement (A7);
Compile (USAN, 2097152xi+MaxA(P0));
Compile(PSKA,8388608+1);

Incd(1);

Compile(PSKA,ModJ+J);

Semantic analysis of ALGOL 469

PO:=8192x(12+q+4)+J;.
go 1o SAS
end OP=21; (AT)
comment The generation of instructions of a proce-
dure call (A8);
if CPS=0

——

hen Compile(USAK,RI)

e o

ct

lse

[

|

ezl

:

Compile(USAK,R);
if Decl(NAP)40
then Compile (SSAN,3)
end CPS0;
CPS:=CPS+13
Compile(SKP,if PH<i then WEN else WE[PH,1i]);
Compile(SKB,ForwJ (P0));
q:=NFP(PO);
if qfo
then
begin
comment The operand PO is a procedure with
parameters (A8);
p:=p+5;
S[p-4]:=CPDI;
S[p-3]:=NAP;
S[p-2]:=0PA+1;
NAP:=FPLP(P0)x=2;
CPDI:=PO;
S[p-11:=0PA+2;
S[pl:=18;

470

EPS:

K. Jerzykiewicz

for i:=0 gtep 1 until q do
Compile(SKB,0);

go to ESD1
end q0;
comment The generation of instructions to be execu-
ted after the exit from a procedure body (A10);
1:=IL(P0);
if PH>1
then Compile (SKP,WY[PH,1]);
CPS:=CPS-1;
if cPsio
then

|

for i:=1,2,3 do
Compile(ODKJ,R) ;

i:=Decl?(PO);

if2

l

H

1

ct

hen

|

o’

egin

comment The procedure is a function. Loading the

accumulator with a value of a function (A9);
Compile(PSKA,C);
Compile(SKZ,BFNS);
Compile(if i<8 then USAK elge UZAK,B5388608+C);
AccT:=1+8

end i42;

Res:=1;

if Op=4

then go to RRP1;

NO:=0p;

P0O:=0;

(48)

(A9)

Semantic analysis of ALGOL 471

go, to Unstack

end q-q+4x4=2 (a10)
end Typel(P0)=0 (a11)
else
begin

comment The operand PO is a formal parameter (A13);
Af g=1
then
begin
comment The formal parameter is a switch identi-
fier (A12);
if Op=44
then go to LBj
FRP1(P0);
Res:=1;

go to Stack2

end q=1; (412)
FRP(PO)
end Typel(P0)40; (A13)

comment The analysis of the operator Op (A27);
comment A choice of a subroutine from the part c1
(see 2.1) (A14);

Open:
if Op>38A0p<50

then go o c1[0p-38]; (A14)
Close:

if Op=TVOp=21
then

SAS:

begin

472 K. Jerzykiewicz

comment Assigning a value to the parameter AssT (A15);
i:=Decl1(P0)+4;
if AssT{0AAssTEi
then go to AssEr;
AssT: =1
end Op=TVOp=21; (A15)
if Op<21
then
Stack2:
begin
comment The operator Op belongs to the class C2 (A16);
CO:=PO;
NO:=0p
end 0p<21 (A16)
elge
begin
comment Reading the pair (CO,NO) (A17);

Read (CO,NO) ; (A7)
1f NO>38ANO<50
then

p———

Stack1:
begin
comment The operator NO belongs to the class C1 (A18);
GSI;
p:=p+2;
S[p-1]:=PO;
S[pl:=0p;
Stack:P0:=C0;
Op:=NO;
go to Rel

Semantic analysis of ALGOL

end NO>38ANO<50;
comment The analysis of the contex of operators Op
and NO (A29);
Dec1:
if -~Compare
khen go to Stackl;
comment The generation of instructions corresponding
to the operator Op and the operands PO and CO (A29);
if C0<65536
then
begin
comment The operand CO is not a formal parameter
(419);
if Type1(CO)=0
then
begin
i:=Decl1(CO);
go ko if 1-1+4x4=2 then Stackl glse Dec4
end Typel(C0)=0;
comment The operand CO is a formal parameter (A20);
GSI;
FRP(CO);
if Res=0
then go to Dec3
end C0<65536

anagat—

else

E

Dec4:if Res#C
then go to Dec5;
comment AccC is undefined (A22);

Res:=1;

473

(A18)

(A19)

(A20)

474 K. Jerzykiewicz
if Op=21

shen

Degin
comment The generation of instructions to compile

an agsignment statement if to the right of the

asslgnment symbol there occurs a single quantity

(421);

LDA(CO);

AssS(PO)
end Op=21 (A21)
else
begin

comment The generation of the instruction to load

the accumulator with the operand PO value and of
instructions which realise the operator On if a
value of the operand preceding it is in the accu~
mulator (A24);
LDA(PO) ; (A22)
comment A-change of the parameter AccT value, if
the execution of the instruction which realises
the operator Op results in a chenge of a real or
integer accumulator value into a Boolean one (A23);
Dec5: if Op<33VOp=68
then AceT:=0; (A23)
Compile(CODE1[Op], Addr1(CO))
end Op$21; (A24)
comment Decreasing the number of currently used ano-
nymous variables (A25);
if C0>65536
then DecJ(CO);

Semantic analysis of ALGOL 475

COs=03
if P0>65536
then DecJ(P0) (A25)
end Op>21; (A26)
copment Picking up an {(operand, operator) pair from
the stack (A27);
Unstacks
Op:=S[pl;
PO:=S[p-1]; (A27)
copment The analysis of the context of operators Op
and NO in the case when there have been already gene-
rated the instructions which realise at last one ope-
rator occurring in the source program between Op and
NO, and AccC is defined (A29);
Dec?2:
if Compare
then
begin
comment Removing from the stack the previously
picked up {operand, operator) pair and the genera-
tion of the instructions which realise the opera-
tor Op when in the accumulator there is the value
of the operand occurring after the operator (A29);
p:=p=2;
Dec3:
£ Op=21

then AssS(PO)
else
begin

if Op<33V0p=68

476 K. Jerzykiewicz

then AccT:=0;
Compile(CODE2[Op], Addr1(PO))
end Op$21;
comment Decreasing the number of currently used ano-
nymous variables (A28);
if P0>65536
then DecJ(PO); (A28)
go, to Unstack
end Compare; (A29)
if No>21
then go to Stack;
comment The operator NO belongs to the class C2 (A47);
if NO47

o |

erl

egin

:

comment The operator NO is not the for-assign
operator (A47);

if Res$0VCO=0

then go to Closel;

comment Subroutine ¢}* (A30);

if NO=17

then Compile(USAN,Addr1(CO)) (A30)

comment Subroutine ‘endparameter® (A40);
i:=Decl(NAP);

if i=0

Semantic analysis of ALGOL 471

(2

hen

|

egin

:

comment The corresponding formal parameter has
the specification label (A31);
if Res=0
then Compile(SKB,ForwJ(CO))
end i=0 (A31)

I

comment The corresponding formal parameter

has the specification gwitch (A32);

Compile(SKP, INDP);

Compile(0,SLL(CO)x16384+ForwJ(CO))
end i=1 (A32)

lge

(]

|

o

egin

comment The corresponding formal parameter
is an array of any type or a string (A33);
if i-i+2x2=0

then LDA(CO) (A33)

comment AccC is not defined (A36);
i:=Decl1(CO);
comment The actual parameter is a constant

and in the description of the corresponding

478

K. Jerzykiewicz

formal paraﬁeter the value of Left is equal

to 1 (see Table IV) (A34);

if (1=15Vi=8VC0-1i=2048<3)ALeft(C0)=1

then go to AssEr; (A34)
Compile(USAN,Addr1(C0O));

comment Decreasing the number of currently

used anonymous variables (A35);

if C0>65536

then J:=J-1 (A35)
end Res=0 (A36)
lse
begin

comment AccC is defined (A37);

if Left(CO)=1

then go to AssEr;

IncJ (AccT+1);

1:=ModJ+J;

Compile(if AccT=0 then PSKA else PZKA,1);
Compile(USAN,1);

J:=J=-AccT=1
end Resi0; (A37)

comment The generation of the instruction to
exit from the actual parameter subroutine (A38);

Compile (SKB,KPP) (A38)

end i>1;
NAP:=NAP-2;

if NO=20

then go to ESD1;

comment The end of compiling a procedure call (A39);

P:=p-5;

Semantic analysis of ALGOL 479

PO:=S[p+3];
Store[P0]:=Store[PO]+0PA+1;
PO:=CPDI;
NAP:=S[p+2];
CPDI:=S[p+1];
go to EPS - (A39)
end Op=18; (A40)
if Op=6
then
begin
comment Subroutine ‘endswitch® (A45);
comment The change of the address part in the
instruction of a jump to coﬁpute a designational
expression value in the switch list, if the expre-
ssion is a label (A41);
q:=0PA;
OPA:=P0-2;
Store[P0O-1]:=Store[P0-1]-16384x16384+ForwJ (CO) ;
OPA:=q; ’ (A41)
ESD: if NO=20
then
ESD1: begin
comment A change of parameters in the stack
after compiling the successive element of the
switch list or the successive actual parame-
ter (A42);
S[(p=1]:=P0+1;
S[pl:=0p
end NO=20 (A42)

else

480 K. Jerzykiewicz

ESD2: begin
comment The end of compiling the switch decla-
ration (A43);
p:=p-3;
PO:=S[p+1]
end N0420;
comment Completing the address part in the instruc-
tion of jump to compute a designational expression
in the switch list or to an actual parameter sub-
routine (A44);
Store[P0]:=Store[PO]+0PA+1;
go to RNS1
end Op=6;
LDA(CO)
end NO$17;
Res:=1;
if C0>65536
then DecJ(CO);
comment A choice of a subroutine of the part c2 (A46);
Closel:
g2 to c2[0p]
end NO47;
comment Subroutine ‘for-assign® (AS0);
p:=p-2;
if C0<65536
then
begin
comment The controlled variable is a simple one,
and the value of CVA is equal to its address, and

the CV value is equal to zero (A48);

(a43)

(A44)

(A45)

(A46)
(A4T)

Semantic analysis of ALGOL 481

IncJ(1);

CVA:=Addr(CO);

OPA:=O0PA-1}

CV:=0
end C0<65536 (A48)
elge

begin
comment The controlled variable is a subscripted one

or is'a formal parameter., The value of CVA is equal
to the address of the subroutine computing aeddress
of the controlled variable and CV value is different
from zero (A49);
Store[CVA]:=Store[CVA]+OPA+2;
CVA:=CVA+13;
CVi=1;
Compile(SKB,8388607+ModJ+J)
end CO>65536; (A49)
g9 to EFLE; (A50)
comment Subroutine ‘beginb® (A51);
Op41:
NLN:=NLN+1;
Compile (USAK,RI);
RI:=RI+1;
Compile(PSKA,RI);
29 Yo DecOp; (A51)
comment Subroutine ‘gwitch® (A53);
Op45:
Read (P0,0p) ;
DetA(PO);

pP:=p+3;

482 K. Jerzykiewicz

S[p=2]:=0PA+1;

PO:=0PA+2;

Op:=6;

comment The generation of jump instructions to compute
the switch designators in the switch list (A52);

for qi:=SLL(PO) gtep -1 until O do

Compile(SKB,0); (452)
go to ESD1; (A53)

comment Subroutine ‘for® (A55);
Op46:

Compile(SKB,0);

PO:=CVA:=0PA;

IncJd(2);
comment Subroutines ‘begin’, ‘if® and ‘(* (A55);

comment The change of an operator which belongs to the
class c1 (A54);
DecOp:
Op:=0p-39; (A54)
comment Stacking a pair (P0,0p), transfer to assigning
new values to (P0,0p) (A55);
Openl:
p:=p+2;
S[p=-1]:=P0;
S{pl:=0p;
go to Re; (A55)
comment Subroutine ¢:* (A56);
Op4T:
DetA(PO) ;
gO o Re; (A56)
comment Subroutine farray® (A58);

Semantic analysis of ALGOL 483

Op48:
Read (P0,0p) ;
Compile(USAN,if Decl(PO)<8 then 1 glse 2);
Incd(1);
Compile(PSKA,ModJ+J) ;
AD:=AD-1;
comment Stacking array identifiers separated by commas
(arrays share the bound pair list) (A57);
Arr1:
if Op=20
then
begin
p:=p+2;
S[p=-1]:=P0;
S{p]:=0p;
Arr:Read (PO,0p);
go to Arri
end 0p=20; (A5T)
comment Subroutine *¢[® (458);
LB:
AD:=AD+13
Pi1=p+4;
S{p-3]:=PO;
S[p-2]:1=5;
S{p=11:1=0;
S[pl:=20;
g9 to Re; (A58)
comment Subroutine ‘procedure’ (A465);
Op49:
NLN: =NLN+1;

484 K. Jerzykiewicz

Compile(SKB,0);
pi1=p+4;
S[p~3]1=4096xMaxJ+J;
S[p=-2]:=RI;
S[p=1]:=0PA;
S{pl:=14;
Read(P0,0p) ;
DetA(PO);
i:=MaxA(PO) ;

Ji= :=MaxR(P0)+1;
PH: =PH+1;

ModJ : =2097152=PH;
RI:=ModJ+i;
UID(10,i-1,P0);
Compile(USAN,0);
Compile(SKP,PP[PH]);
Compile(PSKA,RI);
CO:=FPLP(PO)x2;
i:=NFP(PO);

comment The generation of instructions to call the for-
mal parameters called by value or those which are arrays

or strings (A63);

for q:=1 step 1 until i do
begin
k:=Decl(CO);

k1:=VP(CO)3;

k21t =k-k+4x4;

if k140Vk{1AKk240
then

b

i

Semantic analysis of ALGOL 485

NO s =ModJ +Addr(CO) ;
FRP2(C0);

AL k2=0
then
begin
comment The parameter has one of the following
specifications: resl, integer or Boolean (459);
Compile (MOA1,0);
Compile(if k=4 then USAK else UZAK,O0);.
if k=8
then Compile(SKP,CCZP);
Compile(if k=4 then PSKA else PZKA,NO)
end k2=0 (A59)
else

begin
comment The parameter is an array or a string

(A61)
if k140
then

begin
comment The parameter is an array in the value

part (A60);
Compile(USWK,RI);
Compile(SKP,if k=9 then PRPI else PRPT):

Compile(PAKW,RT)
end k140; (A60)
Compile(PSKA,NO)
end k240; (A61)

comment A change of the value of Type (see Table IV)

in the formal parameter description (A62);

486 K. Jerzykiewicz

UID(1,0,C0) (A62)
end k140Vk41Ak240;
CO:=C0=2
end q; (A63)
comment Clearing the variable which contains the function
value address after executing the function body (A64);
if Decl(PO)42
then Compile(ZERK,8388608+PH) ; (A64)
go to Re; (A65)
comment Subroutine ‘endb’® (A66);
Op2:
RI:=RI-1;
comment Subroutine *end’ (A66);
EB:
p:=p-2;
go to RNS; (A66)
comment Subroutine ‘then’ (A67);
Op3:
Compile(SKD,O0);
S[p-1]:=0PA;
S[pl:=15;
go, to RNS1; (A67)
comment Subroutine ‘gtep® (A76);
Op8: |

begin

comment The end of a for clause (A69);
NIN: =NLN+1;

OPA:=0PA-2xCV;

Semantic analysis of ALGOL

Compile(SKB,0);
comment Completing jump instructions to the subroutine
executing a controll statement (A68);
for Op:=S[p-2] while Op=7 do
begin
p:=p~2;
PO:=S[p+1];
Store[PO]:=Store[PO]+0PA+]
gnd Op;
S[p-11:=0PA;
S[pl:=12;
J:=J-2;
g9 to RNS
end NO=11;
comment Assigning the accumulator value to controlled
variable (A70);
if AssT=2
then Compile(SKP,CCZP);
Compile(PZKA,if CV=0 then CVA glse 8388608+ModJ+J) ;
comment Setting the parameter values when NO is the
operator while (A71);
if NO=13
then S(pl:=13

elge

E

if NO=8

= _J

then

egin

-

comment The operator NO is step (A72);
Compile(ZERK,ModJ+J=2);
S{p=-1]:=0PA+1;

487

(A68)

(A69)

(A70)

(A7)

488 K. Jerzykiewicz
Slpl:=9;
if cvio
then go to EFLE2;
Compile(USAN,CVA);
Compile(PSKA,ModJ+J)
end NO=8
else
begin
comment The generation of instructions to enter the
subroutine executing the controlled statement if the
for list element is an arithmetic expression (A73);
Compile(PLR,ModJ+J=2) ;
Compile(SKB,0);
S[p-1]:=5PA;
comment Setting values of parameters in the stack
after compiling an element of the for list (A74);
EFLE1:

S[pl:=7;

EFLE:p:=p+2;

S[p=1]:=0PA+1;
S[pl:=8;
if cv4o

then

EFLE2:begin

comment The generation of instructions to call the
subroutine which computes the address of the con-
trolled variable (A75);
Compile(PLR,ModJ+J~1);
Compile(SKB,CVA)

end CV40

(A72)

(A73)

(A74)

(AT75)

Semantic analysis of ALGOL 489

end NO4$8,N0413;
go to RNST; (A76)
comment Subroutine ‘until®’ (AT77);
0p9:
Incd(2);
Compile(PZKA,ModJ+J);
Slpl:=10;
go to RNS1; (ATT)
comment Subroutine ‘gnd-for-ligt-element® (A79);
Op10: | ’
Compile(if AssT=2 then ROP2 else ROPO,ModJ+J);
Js=J=2;
comment The generation of instruction to enter the
subroutine which executes a controlled statement and
the instruction to return for assigning a new value’
to the controlled variable (AT78);
EFLE3: ,
Compile(PLR,ModJ+J~2)};
Compile(SKB,0);
Compile(SKB,P0); (AT8)
S[p-1]:=0PA-1;
go to EFLE1; (A79)
comment Subroutine ‘endfor® (A80);
bp12:
C.ompile(SKB,8388608+M0dJ+J) ;
Ji=d~1;
go to GAFR; (A80)
comment Subroutine ‘while’ (A81);
Op13:
Compile(SKD,0PA+5);

490 K. Jerzykiewicz

g9 to EFLE3; (a81)
comment Subroutine ‘endprocedure’ (A82);
Opl4:.
Compile (USAK,8388608+PH) ;
Compile(SKB,KP[PH]);
Store[PO]:=Store[PO]+0PA+1;
PO:=PQ+1;
Store[P0]:=Store[PO]+MaxJ+1;

'PH:=PH-1;

ModJ :=2097152~(Lf PH=0 then 2 glse PH);
p3=p-4;

RI:=S[p+2];

J:=S[p+1];
MaxJ s =J+4096;
Tt =J -MaxJ=4096;
go to Unstack; (A82)
comment Subroutine ‘else® (A84);
Op15:
if NO=15
then

begin
comment Setting parameters when the operator NO is

the operator glge (A83);
i:=Store[0OPA]+16384;
1f 1-i+128%128=PZKA

then AssT:=0;
Compile(SKB,0);
S[p=-1]:=0PA;

S[pl:=16;
Store[PO]:=Store[PO]+0PA+1;

Semantic analysis of ALGOL 491

g9 Lo RNS1
end NO=15; (A83)
comment Completing the address part of the instruction
to skip the execution of a statement or computing the
value of an expression appearing after an if clause,
or after glse, or to skip the subroutine executing a
controlled statement (A84);
GAFR:
p2=p~2;
Store[PO]:=Store[PO]+0PA+1;
g0 to Unstack; (A84)
comment Subroutine ¢,* (A93);
0p20:
Incd(2);
Compile(PZKA,ModJ+J);
PO:=PO+1;
if NO=5
then
begin
comment Setting parameters before compiling the next
subscript expression (A85);
S[p=1):=8[p-1]+1;
g9 1o RNS1
end NO=5; (A85)
cdggegt Setting parameters when the operator NO is a
closing square bracket (A86);
Pi=p~2;
J¢s=J=2xP0;
NO:=S[p];
CO:=S[p-1];

492 K. Jerzykiewicz

AD:=AD-1; (A86)

comment The end of the bound pair list in an array
declaration (A89);

Compile(USAN, Addr(CO));

Compile(PSKA,ADS) ;

Compile(USWK,RI);

Compile(USAN,ModJ+J);

Compile(PSKA,4);

Compile(USAN,PO);

Compile(SKP,RSA);

comment The generation of the instruction of a jump
to the subroutine of reservation the storage locations
for the arrays, the bound pair list of which has just
been compiled (A8T);

for p:=p,p-2 while S[pl=20 do

Compile(SKP, AST) ;. (A8T)
Compile(PSKA,RI);

Res:=0;

Read (PO,0p);
if Op=20

then go %o Arr;

comment The end of an array declaration (A88);

t=AD+1;
Je=J=1;
go to Stack? (a88)
end AD<D; (A89)

i:=Decl(CO);

Semantic analysis of ALGOL 493

if 1is1

ihen

beln
comment The complled subscript expression is the
subscript in a switch designator (A92);
OPA:=0PA-1;
if Type(CO)=0
then

begin
Compile (SKP, INDP) ;

Compile(0,16384%SLL(CO)+ForwJ(CO))
end Type(CO)=0
elge FRP1(CO);
somment Subroutine ¢)* (A91);
gomment The removing an {operand, operator) pair
from the stack (A90’;
RRP:p:=p-2; (A90)
comment The assignment of a new value to operators
and operands after the instructions which realise
the operators Op and NO had been generated (A91);
RRP1:
op:=S[pl;
PO:=S[p—1];
AL op<@i
then go o Re;
Read (CO,N0) ;
g9 to Dec2 (491)

end i=1; (A92)
comment The end of the subscript list in a subscripted

variable (A93);

494 K. Jerzykiewicz

InoJd(1);
Compile(USWK,Addr(C0));
Compile(USAN,PO);
Compile(ROP7,ModJ+J);
pi=p-23
Res:=0;
Read (CO,NO) ;
CO1=8192x(12+i+4)+J};
Op:=S[pl;
PO:=S[p=-1];
if Op<21
then go 1o Stack;
p:=p-2;
go to Dect; (A93)
comment The operations which end compiling the program
(A97);
EPass3:

Compile(SKB,FIN);
PO:=SKP+PP[1];
CO:=SKB+KP[1];
comment Completing address parts of the instructions
referring to the anonymous variables and occurring
outside procedure bodies (A96);
for BP:= BP+1 step 1 until OPA do
bezin

i:=Store[BP];

if i=PO
then

begin
comment Skipping the object program instructions

Semantic analysis of ALGOL 495

corresponding to a procedure declaration (A94);
for i:=Store[BP] while iiCO do
BP:=BP+1 ’
end i=PO (A94)
else
begin
qs=1+4194304;
if q=1Vvq=3
. then Store[BP]:=1-4194304+0PA (A95)
end 14PO
end BP; (A96)
comment The assignment of a value to the reservation
indicator corresponding to the main program (A97);
Store[RI]:=0PA+MaxJ (A97)

end Pass3;

496 K. Jerzykiewicz

References

[11 J. P. Anderson, A mote on some compiling algorithms, CACM 7 (1964), p.
149-150.

[2] H. Bottenbruch and A. A. Grau, On translation of Boolean expressions, CACM
5 (1962), p. 384-386:

(3] E. W. Dijkstra, Making a translator for ALGOL 60, Annual Review in Auto-
matic Programming, Pergamon Press, London 1963, p. 347-356.

(4] Dokumantacja techniczno ruchowa maszyny ODRA 1204, Opis funkejonalny,
WZE Elwro, 1968.

[6] D. Gries, The object program produced by the ALCOR ILLINQOIS 7090 com-
piler, Rep. no. 6412, Rechenzentrum der Techa. Hochsch., Miinchen 1964.

[6] C. A. R. Hoare, The ELLIOTT ALGOL programming system, Introduction to
system programming, Academic Press, London 1964, p. 156-165.

{71 P. Z. Ingerman, 4 syntax-oriented translator, Academic Press, London 1966.

(8] — Thunks, CACM 4 (1961), p. 55-58.

[9] J. Jensen, Generation of machine code in ALGOL compilers, BIT 5 (1965),
p. 235-245.

{10] P. Naur, The design of the GIER ALGOL compiler, BIT 3 (1963), p. 123-166.

[11] S. Paszkowski, Jezyk ALGOL 60, PWN, Warszawa 1968.

[12] B. Randell and L. J. Russel, ALGOL 60 implementation, Academic Press,
London 1964.

[13] J. Szczepkowicz, On table-driven syntax-checking within an ALGOL compiler
Zastosow. Matem., 11 (1969), p. 3-89.

[14] J. M. Watt, The realization of ALGOL procedures and designational expressions,
Computer Journal 6 (1963), p. 332-337.

MATHEMATICAL INSTITUTE
UNIVERSITY OF WROCLAW

Received on 20. 3. 1970 ;
revised version on 23. 9. 1971

KRYSTYNA JERZYKIEWICZ (Wroclaw)

ANALIZA SEMANTYCZNA TEKSTU ALGOLOWSKIEGO

STRESZCZENIE

Praca zawiera opis metody analizy semantycznej poprawnego pod wzgledem
syntaktycznym tekstu algolowskiego i algorytm realizujacy te metode przy zalo-
Zeniu, ze w czasie wykonywania algorytm s3a dostepne w pamigei maszyny wazystkie
informacje o nazwach i stalych uzywanych w analizowanym programie. Podany
w pracy algorytm stanowi trzeci przebieg translatora ODRA-ALGOLu; jezyk ODRA-
-ALGOL jest konkretna realizacjg ALGOLu 60 dla maszyny cyfrowej ODRA 1204.
Gramatyka jezyka ODRA-ALGOL i dwa pierwsze przebiegi translatora tego jezyka
83 opisane w pracy Szczepkowicza [13]. W algorytmie realizujgcym trzeci przebieg
translatora zaklada sie, ze tekstem poczgtkowym dla algorytmu jest tekst koncowy
drugiego przebiegu translatora, a w wyniku dzialania algorytmu otrzymuje si¢ w pa-
migci maszyny réwnowazny program w jezyku wewnetrznym maszyny ODRA 1204.

Semantic analysis of ALGOL 497

Metoda dzialania algorytmu jest pewna modyfikacja znanych metod rozwiy-
zania zadania tlumaczenia programu napisanego w ALGOLu 60 na jezyk maszyny
jednoadresowej z jednym akumulatorem. Generowanie rozkazéw przekladu wykonuje
sie W czasie jednego przegladania tekstu programu z lewej do prawej. Algorytm jest
sterowany procedurg poréwnujgca pierwszenstwa operatoréw, ktére sg rowne we-
wnetrznej reprezentacji tych operatoréw. Algorytm nie zawiera podprograméw
rekursywnych i uiywa jednego stosu roboczego.

Zaleznodé opisywanego algorytmu od maszyny ODRA 1204 jest zwigzana
tylko z realizacja maszynowy poszczegélnych elementéw skladniowych jezyka ODRA-
-ALGOL. Realizacja ta zostala opracowana wspélnie z autorem dwéch pierwszych
przebiegéw translatora i bedzie przedmiotem oddzielnej publikacji. W pracy wyjaénia
sig jedynie znaczenie kodéw operacyjnych rozkazéw generowanych przez translator.
Nie wyjaénia si¢ natomiast trefci podprograméw, ktére sg czeécig stala programéw
przetlumaczonych. Aby otrzymaé inng realizacje elementéw skladniowych, wy-
starczy nadaé¢ odpowiednie wartoéci zmiennym oznaczajacym kody operacyjne
i (jedli wymaga tego realizacja) usungé lub dolgczyé generowanie niektérych roz-
kazéw.

