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ON GENERALIZED SYMMETRIC MEANS
AND STIRLING NUMBERS OF THE SECOND KIND

1. Introduction and notation. Let ¢, t;, ..., t; (ke No) be non-negative
real numbers. The generalized n-th symmetric mean h,(ty, t, ...,t,) is defined

In the following way

n+k -1 io il ik
(11) h”(ro, rl"",tk)=( ) Z t() fl “'tk

k igtig+..+ig=n
(o, iy, ..., ie !0, 1, ..., n'; neNg; holto, ty, -, t) =1) (cf. [11]). The sum
(1.1) involves (Hk) terms. In what follows we assume that k is arbitrary but
k

fixed. Without loss of generality we may assume o <t <...< 1.

In Section 3 we derive recurrence relations as well as inequalities that
hold for the means (1.1). For our aims we recall the definition of logarithmic
Convexity. A real sequence |g;} is said to be logarithmically convex if

(1.2) at<a-,;a,., foralll

(see, €.g, [11]). Strong logarithmic convexity means strict inequality in (1.2).
Nalogously we define logarithmic concavity. In the monograph [11] the

Question concerning the proof of logarithmic convexity of the means (1.1) has
©n stated. Earlier K. V. Menon [9] gave such a proof for n =1, 2, 3 only.
®Cently DeTemple and Robertson [4] have proved that

hi (to, 1)) < hy_ 1 (to, t) Has 1 (to, 1)  (neN).

We wil establish logarithmic convexity of the means (1.1) without any
‘estrictions on the parameters n and k (see Theorem 3.2).

. The second object of our study are the Stirling numbers of the second
king usually denoted by S(n, k) (n, ke No). These are defined to be the
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number of ways of partitioning a set of n elements into k non-empty subsets
(cf. [15]). They are closely related to the means (1.1) (see (4.5)). In Section 4
we prove a number of recurrence relations as well as some inequalities that
are valid for them. Among other things, we prove the strong logarithmic
concavity for S(-, k), i.e,

(1.3) S2(n, k) >S(n—1,k)Sn+1,k (2<k<n).

Strong logarithmic concavity for the sequence S(n, ) has been established by
Harper [6] and Lieb [8].

The useful tool in our considerations are the B-splines of Curry and
Schoenberg [3]. The definition and some elementary properties of those
important splines are postponed to Section 2.

2. Preliminaries. In this section we give a definition and some facts
concerning the B-splines of Curry and Schoenberg [3]. Let
.. < Xx_; < X9 < x; <... be a bi-infinite partition of R with at most k (ke N)
values of the x’s equal to each other, ie., x; < x;,, for all ie Z. The function

M () = k[X;, Xiv 15 oo Xiid (- =04 (i€Z;keN;teR)

is the B-spline of degree k—1 (order k). Here [x;, X;1, .... X;+x]f is the
divided difference of order k for the function f in the points x;, (I =1,
i+1,...,i+k) and as usual %' =(max{0,t})*"!. For the reader’s
convenience we list below some well-known properties of B-splines.

1° M;,(t) >0 for te(x;, x;+,) and M;,(t) = 0 otherwise. Thus,

supp M, , = [xi, Xited-

2° In each interval [x;,j, X;+j41] (Xi+j < Xi4j413J =0, 1, ..., k—1) Mix
coincides with an algebraic polynomial of degree k—1 or less.

3° Let x;,; be a knot of multiplicity r, ie., let x,;-y <X, =
e =Xiyjer—1 < Xi4j+r, then M, is exactly k—1—r times continuously
differentiable on (x;,;_;, X;+;+,) (see, e.g, [3], [16]).

The B-splines satisfy the following fundamental recurrence relation
(2.1) Ek—lMi,k(f)=—LLMi,k—1(t)+LtMi+1,k—1(f)

Xi+k— X Xi+k— X

(ieZ;k>2;teR)

(cf. [1, [16]) |
In the sequel we use the moments of B-splines M, ;. Let ie Z. By (i, k)
we denote the nth moment of M;,, ie.
*it+k

mi, k)= [ "My, (0)dt  (neN).
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The explicit formula for u,(i, k) in terms of the knots x; has been derived in
[13] and [16]. Namely, we have

. n+k\ !
(22 TR (R k)=< ) ) . Y Xjy Xjyoee X
isj

j1SJ2S... Sy, Sitk
. n+k
The last sum involves ( ) ) terms.

3. The recurrence formulae and inequalities for the generalized symmetric
means. In our further considerations an important role plays the identity (3.1)
given below. Let My, be the B-spline with knots 0<1t, <t; <...<t,.
Making use of (1.1) and (2.2) it is easy to check that

(3.1) h,(to, ty, ---> t) = 1,(0, k)  (ne Ny; ke N).

Setting ,(0, 0) = 15 we see that (3.1) is also valid for k = 0. Thus, in view of
(3.1) all results established for the means (1.1) also hold for the moments of
M,, as well. For the sake of notation we write often h,(i, j) instead of
ha(tiy tin gy ..y t) (0<i<j<K).

Our first result is given by the following theorem.

THEOREM 3.1. For any ne N, and ke N the generalized symmetric means
Satisfy the following recurrence relations:

(32 a0, K) = —— [ty by, 0, K)-+khy (0, k—1)],
n+k
(33 _ k- _ _
) 10, k) = e Thye (L D —hues (0 k=1 (10 <)
(G4 __ k- _ _
) hn(07 k) (n+k)(tk—to) [tk hn(I, k) tO hn(ov k l)] (tO < tk),

B9 hattotr, coos et = 3 (1)1 bacilton s 8 (keNoi 3> —t0)
=0
Proof. Let

G 0= T k0 Ky

deHOt.e the exponential generating function for the moments y,(0, k) of the
stpllne M,,. In [13] we have shown that y, satisfies the following
differential-difference equation

(3.) (k=109 O+ 30) = ky 1 () (ke N).
SubstitUting (3.6) into (3.7) and equating the coefficients of t" one gets
(38) (n+k) (0, k) = nty pi,— 1 (0, k) +kp, (0, k—1).
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Hence and from (3.1) the assertion (3.2) follows. In order to prove (3.3) we
observe that the identities (2.5) and (3.3) in [13] together with (3.1) yield

(3.9) h (0, k) = (":">_l [to, ..., t]1"* (ke Ny).

Hence and from the equality

[for ooy " H =

r [ty oo b J 1" =[t0y ..oy i1 1 1"**} (ke N)
k—to

the desired recurrence (3.3) follows. For the proof of (3.4) we employ the
recurrence (2.1) setting i=0 and x;,;=t; (j=0,1,...,k). Further
multiplying both sides by t" and integrating over [ty, t,] one obtains, in view
of (3.1), the following:

k—1

(tx —10) hn(0, k)

=t hy(1, k=1) =10 h, (0, k= 1)+ by s 1 (0, k=1)—hyy (1, k) (k> 1).
Hence and from (3.3) we get the assertion (3.4) for k > 1. Direct calculations
show that (3.4) is also valid for k = 1. We now prove the last statement of
our theorem. For k = 0 the assertion is a trivial one. Assume k > 0. Let
Mo, (“ltg, ...s ) = My (). For any ye R we have
Mo, (lto+7, ooy et 7) = Mo (- —7yltos -5 1)

Thus we have for y > —¢t,

Ik+'y
h(to+7, oo ity = [ "Mo,(tlto+y, ..., te+y)dt
lo+y
lk+y
= | t"Mo(t—7lto, ..., L) dt
t0+y
%

= [(z+7)" Mou(zlto, ..., t)dz,
]

where z = t—7y. Hence the assertion follows. The proof is completed. =
The recurrence (3.2) is useful if one wants to calculate the value O
h,(0, k). Is is easy to see that there is no cancellation in evaluating the right-
hand side of (3.2).
Now we derive some inequalities for the means (1.1). For convenience
we denote h,(0, k) by h,. Among other things we derive the logarlthrnlc
convexity of the sequence [h,}2,.
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We are now ready to prove the following
THEOREM 3.2. Let m, ne N, and let
%[tk; 00) if modd,
(—o0, 0) if m even.

Then
(3.10) li(—l)""'c)a’h"m—, > 0.
Moreover, if neN, then
G.11) L LT - N ey
Proof. If k=0 or 1, =... =1, then the thesis is obvious. Thus, we

assume k >0 and t, <t,. Now the inequality (3.10) follows immediately
from the following onc

3
jr"(a—r)"‘ Mgy (t)dt = 0.
to
In order 1o prove the first inequality in (3.11) we use the following one

(3.12) -':-kt" h_,<h, (neN).
n

This is an obvious consequence of (3.2). Further, setting m=1 and o =1,
Mto (3.10), we arrive at

Chey<hy (1€ No)

k
_Hence and from (3.12) the assertion follows. For the proof of the second
Nequality in (3.11) we employ (3.10) setting m = 2. In such a case we get

h"a2~2hn+1a+h"+2>0 (HGNO).

Since the leading coefficient of the above quadratic is positive, the assertion
Ollows. This completes the proof. m

From the proofs of (3.10) and the second of the inequalities (3.11) we see
at these results are true not only for the means h,. Particularly it is known
at any totally monotonic sequence is logarithmically convex (cf. [2]). We
Tecall that 4 real sequence {c,}.2, is said to be totally (or completely)
Monotopic (TM) if the inequalities (—1)"4™c, = 0 are valid for all m, ne N,

fsee, ©8. [2], [17]). Generally the means h, are not in TM. This confirms the

th
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CoRrOLLARY 3.1. If 1 <

t <1, then {h,}2 e TM.

Proof. In order to prove the first part of the thesis we observe that if
for some le N is h;_, < h;, then also h; < h;, ;. This fact follows directly from
the second inequality (3.11). According to the definition of (1.1) we have hg

1
=1, hy = 1 Z t;. The assertion follows. The second statement follows
I1=0

from the classical results due to Hausdorff ([7]) or from (3.10) with a =1. =

k I Z t;, then hy < h, < ... On the other hand if
1=

Theorem 2.52 of [2] and the identity (3.1) give the following
THEOREM 3.3. Let p,q> 1, 1/p+1/q =1/r < 1. Then

(3.13) hr(l+m) hl/phlr’f (I, me No)

provided r(l+m), pl and qm are non-negative integers.

Other inequalities for the means h, can be easily derived making use of
the well-known inequalities that hold for TM sequences and the so-called
Stieltjes moment sequences. For details and results see [2], [17].

4. The recurrence formulae and inequalities for Stirling numbers of the
second kind. In Section 1 we have recalled the definition of Stirling numbers
of the second kind. For further purposes we summarize below some more of
less elementary facts concerning these numbers. The S(n, k) is positive for
1 < k < n and equal to zero for other values of k. As usual we set S(0, 0)
= 1. The explicit formula for S(n, k) is the following one

k

st b =5 2 -0 () = 7 3 (e

The S(-,+) are combinatorially distributed by the following difference
equation

4.1) S(n+1,k)=S(n, k—1)4+kS(n, k) (keN;neN,).
These and other properties of these numbers are given in Riordan [15]-

Rennie and Dobson [14] proved by elementary arguments that
42 (n—k)Sn, k)y>k*k+1)Snh, k+1) m=4;4n+1)<k<n-1),
(4.3) S(2n,n)>S(2n,n+1) (n=2).

It is known (cf. [5], [14]) that, for fixed n, S(n, k) has a single maximuim:
i.e., that there is k, such that
Sn,1)<S(n,2)<...<8S(n, k,)
and
S(n, k) =S, k,+1)>...> S(n, n).
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In the above mentioned paper [14] the authors proved that
(4.4) k, <3(n+1).

The asymptotic behaviour of k, has been studied in [10], [14] (see also the
references therein).

In this section we derive new recurrence formulae as well as inequalities
for the numbers S(-, -). Among other things we establish the inequality (1.3)
and the lower bound for k,. Some of our results form a counterpart for the
inequalities (4.2) and (4.3) (see Theorem 4.3 and Corollary 4.2).

The key identity that is used repeatedly is

(4.5) S(n+k, k) = (n:k>h,,(to, ty o t) (n keNy),

where t, =1 for all =0, 1, ..., k.

This follows immediately from (3.3) in [13] and from (3.1).

In the sequel we write M,(-) instead of Mg,(:|0,1,...,k). The
B-splines M, are referred to as forward B-splines. For further use we recall a
differentiation formula

(4.6) Mit)=M,_; ()—-M_ (t=1) (k=2,3,..).

This holds for any teR except the case k =2 where we must assume
te R\ {1} (see, e.g, [16]). By u,(k) we denote the nth moment of the M,.
We are ready to state and prove the following

THeorem 4.1. Let n,le No; ke N. Then
P . P
@7 ¥ (_1),,_,-<z k+l)<p>s(i+1,k)= 5 (1 "“)(”)S(i,k—l),
i=p-n l i i=p-1 n i
Where p = n+k+1-1.

Proof. To verify (4.7) for k=1 we take into account the identities
S(m, 0) = 8,0 (m>0) and S(m, 1) =1 (m>1). Let k > 1. We define

(4.8) u() =(@-1"t (n,leN,),
and |
k
(4.9) I=[u(®M;()dr.
0
P erforming integration by parts we obtain
k
(4.10) I=— [u () M(r)dt.
0
Su

2etb8tituting (4.8) into (4.10) and further applying the binomial formula we

(411 =y (—1)""'*‘C)(i+l)u,-+z-1(k)-
j=0

10

= Zastornwanie va. an..
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On the other hand inserting (4.6) into (4.9), we obtain easily

k—1

I= § [u@—u+1)IM,_ (t)dr.
0
Using (4.8) one obtains

I =j§o(—1)"‘f(")uj+,(k—1)—jzio iyente=1)

J

after little algebra. Comparing this with (4.11) we get

n n 1
¥ (-1)"“1'(_)[u+l)u,-+,_1(k)+u,-+,<k—1)] -y ’,)u,-ﬂ(k—l).
j=0 J j=0

Applying to the above the identity
k
4.12) S(n+k, k) =(": )u,,(k) (n, ke Ny

(see [13], (3.3)) we obtain with the help of (4.1) the assertion. The proof i
completed. =

From the above theorem many particular recurrences follo
immediately. We record only two of them.

CoRroLLARY 4.1. Let k, pe N. Then

4.13) kS(p, k) = pil (?)S(i,k—n,

and

(4.14) S, k=1)= ¥ (—1)P-f(’_’)5(i+1,k).
i=k—1 !

Proof. For the proof of (4.13) we insert n =0 into (4.7). Furthe
employing the recurrence formula (4.1) we obtain the desired assertion. Th
recurrence (4.14) follows directly from (4.7) letting [ =0. =

Our next result reads as follows.

THEOREM 4.2. For any ke N and any le N, the following recurrencé

4.15) (k—DEkSk+1L ky=(1+1)Sk+1, k—1)+

X

k+1

‘>[(k—1)(k+j)S(k+j—1, k—1)—(+1)S(k+j, k—1]
k+j

holds.
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Proof. For k=1 there is nothing to prove. Assume k > 1. For the
progressive B-splines the recurrence (2.1) may be rewritten as follows

k=DM, (1) =tM,_, () + (k=) M,_,(t—1) (teR).

Multiplying both sides by t' (le N,), further using the binomial formula and
integrating over the interval [0, k] one gets the following recurrence

i
416 (k=1 mk) = pas =D+ Y ('J’,)[(k—l)u,-(k—l)—u,-ﬂ(k—l)].
j=o

Applying (4.12) to (4.16) one obtains the assertion (4.15). This completes the
proof. m

We give a number of inequalities involving the numbers S(-, -). Some of
them follow simply from the results of Section 3 and of this section.

THEOREM 4.3. For the numbers S(-, *) the following inequalities

4.17) (n+1)kS(n, k) > (n+1—k)Sn+1,k (1 <k<n),
(4.18) (n—k+2)S(n+1,k >m+1)S(n, k) @2<k<n),
(4.19) kS(m+1,k)>m+1)Sn, k—1) (1<k<n),
(4.20) k(k+1)S(n, k+1) > (n—k)Sn, k) (A <k<n)

hold true.

Proof. The inequality (4.17) is obvious for k=1. Let k> 1. The
function ¥ (k—1—t)M,_,(t) (je No) is positive for te(0, k—1). Hence also

k-1

[ Uk—=1—0)M,_,(t)dt >0,
4]
and further (k—1)p;j(k—1) > p;,;(k—1). According to (4.12) one gets
(4.21) k=1Dk+)Sk+j—1,k—=1)>({+1)Sk+j,k-1)
(k=2,3,...;jeNy).

Setting above k+j—1:=n, k:=k+1, we get (4.17). In order to prove (4.18)
we use the identity (4.7) for n = 1. Simple calculations lead to the following
recurrence

(p—k+1)kS(p, k)

2

= kS (p—1, B+ p(p—k+1)S(p—1, k=1)+ ¥ (i-k+1)(’_’)$(i, k—1).
i=k !

Hence one gets (p—k+1)S(p, k) > pS(p—1, k) and the assertion (4.18)
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follows directly. Making use of (4.15) and (4.21), we obtain the inequality
kS(k+1, k) >k+DS(k+1-1, k—1).

Setting above k+I/—1:= n one gets (4.19). For the proof of (4.20) we employ
the identity (4.15), and the inequality (4.21). Hence we get

(k—1)kS(k+1, k) > (1+1)S(k+1, k—1).

Now setting k+1:=n, k:=k+1 we obtain the desired inequality (4.20). The
proof is completed. =

CorOLLARY 4.2. For any ne N, the inequalities
2n+1)nS(2n, n) > (n+1)S(2n+1, n),

(n+1)S(2n, n+1) > S(2n, n)
are valid.
Proof. The first inequality follows directly from (4.17), and the second
one follows from (4.20). =

With the help of (4.20), we obtain immediately the following
CoroLLARY 4.3. (n+1)Y? < k,,.

Before presenting our next result we introduce more notation. Following
K. V. Menon [9] let

io i1 ik
Hn= Z ao al ...a,,
io+i1+...+ik=n

(neNo; ig, iy, ..., 4e{0,1,...,n}; Hy=1)

denote a complete symmetric function of the nth order for the non-negative
variables a,, a,, ..., a;,. In that paper it is shown that

Hp—qu+m>Hp—m—lHq+m+1 (qu’0<m<p)s
H > Hi?>H}?> ..

These inequalities are strict unless all but one of the variables are zero-
Making use of (1.1), (4.5) and the definition of H, we get

S(n+k,k)y=H, (neNy;keN),

provided a, = [ for all I =0, 1, ..., k. This identity and the above inequalitics
lead to the following
THEOREM 4.4. For any m, ke N the inequalities”

4.22) S(m, k)S(n, k) >S(m—1,k)S(n+1,k) (m<n),
(4.23) Stk+1,k)>S(k+2, V2> Sk+3, k"1 >...
hold true.
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Inserting m = n into (4.22) one obtains the inequality (1.3).
We have also the following

THEOREM 4.5. Assume m, ne Ny; ke N. If
{[k, o) if modd,
ae

(—o0,00) if meven,
then

é:o(—1)'(7)<j:l>_la’""5(i+l, k) >0,

where j = n+k. Also the following inequalities

I+1 !
4.2 — 1,k < 2 <—3S(-
(424) S(I-1,k)S(1+1,k) l+1_kS(l,k)<l_kS(l 1, k)S(I+1, k)

(k <),

[("*’i’*'”))” S (k+r(l+m), k)]”'

< [(":”')” S(k+pl, k)]l/p [(" 1""‘)4 S(k+gqm, k)]”q

(P, 4> 1; 1/p+1/g = Ur < 15 1, r(I+m), pl, gme No),
-1 k4+2\"! 1/2
(4.25) (":‘) S(k+1,k)<[<:> S(k+2, k)]
]

-1 1/3
< [(":3> S(k+3, k)] <..

are palid.

Proof. The first three of the above inequalities follow immediately from

3.10), (3.11) and (3.13), respectively, making use of (4.5). For the proof of

4.25) we employ the inequalities h, < hi/?> < h}® < ... that follow simply

Tom the logarithmic convexity of the means h,. Hence and with the help of
(4.5) we obtain the desired result. This completes the proof. =

The second inequality of (4.24) has been established in [12].
We conclude this section with the following

Prorosition 4.1. If k, pe N and k < p, then

p—1
Sp, k)= Y S3, k-1).
i=k—1
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!

Proof. First we observe that (p)Zk for all i=k—-1, k,...,p—1

provided k < p. Hence and from (4.13) the assertion follows. =
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