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ON A VARIATIONAL ESTIMATION OF ERROR

1. Let us consider () the boundary-value differential problem:

m

(1) Lyl = D (=1 [p:(@)y?1 = r(a),

(2) ya) =yP@®) =0 fori=0,1,...,m—1,

where a < b, m is a natural number, y© =y, ¥ = d'y/ds’, all the
P;(2) are non-negative real functions of the class € in the closed interval
{a,by for i = 0,1,...,m, and p,(x) = p > 0 for v e {a, b).

Let v(x) denote an arbitrary function of the eclass C®*™ in (a,b),
satisfying (2), and let Y [x] be the exact solution of problem (1)-(2). We
consider v(x) as an approximate solution of the same problem. Thus,
the maximal absolute error of this approximation is

¢ = max|Y (x) —v(z)|.
{a,b)
Let us take z(x) = [Y () —wv(x)]/¢. The function z(z) is evidently

one of the class C®™, satisfies (2) and we have sup |z(x)| = 1.
. <(l,b>
Bertram [1] has showed that, for every natural m,

b m

(3) e\f[L[QJ——; d:r/f S P (2) [ (@) dz.

Thus, if we want to get an ‘over-estimation for e, it is sufficient to
under-estimate the integral

and (3) gives an a posteriori estimation of the error of an approximate
solution of problem (1)-(2).

() The main results of this paper were firstly presented without proofs in [4].
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Substituting ¢t = (z—a)/(b—a), w() =z[(b—a)t+a], w9() =
29[(b—a)t+a](b—a) and ¢;(t) = p;[(b—a)t+a]/(b—a)*"!, we obtain
b m

L, = [ Y a:(®)[w® 1,

where ¢;(t) e C? in €0, 1), ¢;(t) > 0 and g, (t) > g = p/(b—a)™ ' > 0 (%)
Evidently, w(t) e C®), max|w(t)] =1, and w®(0) =w®1) =0 for
2 =0,1,...,m—1. 0.1

Let &,,[u, a, ] denote a functional of the form

B m
(4) Ouluyay fl = [ ) () [u® T dt,

where 0 < a < f < 1. If we define Z™ as the class of functions u(t), u () e 0™
for te(0,1>, max|u(t)] =1, and »®(0) = «D(1) =0 for i =0,1,...

<0, 1>
..., m—1, then

(5) I,,>inf®,[u,0,1].
zm

We can assume the maximum of «(¢) in the interval {0, 1) to be equal
to 1, because @,,[ —u, a, ] = D,,[u, a, B].

Let Lj' (h > 0) denote the class of functions ¢(t) with absolutely con-
tinuous (m —1)-th derivative, |c(¢)] < 1 in the interval <0, k), c¢(h) = 1,
and ¢®(0) =0 for 4 =0,1,...,m—1. Further, let P} (h < 1) denote
the class of functions d(f) with absolutely continuous (m —1)-th deri-
vative, |d(t)| < 1in the interval (h, 1>, d(h) =1, d?(1) = 0fori =0, 1,
cenym—1. .

Thus, we define U}’ (0 < h < 1) as the class of functions u (¢) (¢ € (0, 1))
such that for every function u(t) ¢ U}’ there exist functions ¢(t) ¢« Ly and
d(t) e« Py’ satisfying the relation

c(t) for ze€{0,h),

u(t) =
d(t) for tedlh,1)>.
We take now
u" = U Uy.

he(0,13

Evidently, Z™ <« U™ and from (5) we have

6y I,>infd, [u,0,1]>infd, [u,0,1] = inf infd,,[u, 0, 1]
zm ym

he0,1) U';n
[

= inf (min®,,[%, 0, k]+mind,, [u«, h,1]).
hel0,) m pMm
h h
(?) Similarly, if for some ¢ (0< i< m—1) p;(@)>P;> 0, then ¢ () > Q; =
Pi/(b—a)2~1> 0,
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The last identity is a conclusion from the relation
(Dm[u7 07 1] = Qm[/l’h 07 h]+®m[u7 h7 1]

The existence of the minima of these component functionals results
from the corollary proved in paper [3].

We may calculate or estimate these minimal values by methods
of the calculus of variations. Further, we may calculate the lower limit
of a function of h by the classical methods of calculus. Finally, we get
a constant H™, H" < I,,. '

Proceeding in this way, Tatarkiewicz [2] has received the estimations

b
(M L>4/ [ (p@) " de = HY = 4p/(b—a) = H},

and from this, for p,(#) =p =1, a =0 and b =1,
(8) I,>4 = Hj.

Moreover, assuming p,(z) > P, > 0, he has received
(9) I,> 2pVP,/p/[(b—a)tanh (VP,/p/2)] = H..

It is easy to see that, from the inequality 0 < tanht < ¢ for ¢ > 0,
Wwe have H}> H,.
Bertram [1] has received, for every natural m,

(10) I,,=p@m—1)[(m—1)! 2"P)(b—a)™ " = HY.

This estimation for m = 1 is evidently identical to that one with
H; in (7).

We present here an estimation with the constant HY' for an arbitrary
natural m, analogous to H;.

2. For this purpose we have to prove some lemmas.

LEMMA 1. Let f(x) be a function defined in the open interval (0, 1)
by the formula

fl@) = [a" f gya| " +[(1—a)y flg(wdt]"‘,

where g(t) is a continuous and positive function defined in the closed interval

0,15, and n is a non-negative integer mumber.
Then

minf(z) > 2"”/ f g(t)dt

(0,1)

(the equality holds for m = 0).
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Proof. The function f(x) is positive and a continuous one, and

lim f(z) = lim f(z) = + oo.

z—>0+ r—1"

Then, it follows that the minimum of f(x) in (0, 1) exists.
Let us consider the function

) =|v" fy(t)dt]_l+[(1—y)" flg(t)dt]"l,
0 T

where » is a natural number (3). The function F(z, y) is defined in the
open square S: 0 < <1, 0 <y < 1. It follows from the evident relation
f(x) = F(x,x) that

minf(z) = min ¥ (z, r) > min F(z, y).
(0,1) 0,1) S

Moreover, F(x, y) is positive and its limit, when (x, y) tends to the
boundary line of 8, is equal to 4 oo. Thus, there exists such a point (z,, ¥,)
in the interior of S that F(x,,y,) is an absolute minimum of F(x, y).
It is necessary that 0F(x,y)/0x and 0F(x,y)/0y vanish in this point.
These constraints can be written in the form

([ owaf - (fg i’

n+1fg 1 Jn+1fg

Squaring the second equation and substituting into the first one
we have

[A—y)yT" g™ = A—yy™™*  or  [(A—y)y]""™* =1

For y ¢ (0,1) we have y > 0 and 1 —y > 0, then 1—y = y and we
obtain y, = 0.5. Substituting this value into one of the original equamons,

we obtain
x 1
[gwat = [ gtat
0 T

and, from this,

2 [ gtydt = fg(t)dt

Then
z 1 1
[gwmat = [gydt =05 [ gt)at

(®) See Tatarkiewicz [2], p. 397, who has proved this lemma for n = 0.
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. .
The function g¢(¢) is positive and [g(t)dt increases for increasing x.
0
Thus, there exists an only value of x, such that

)

[ gwa =05 flg(t)dt

0

and the function F(z,y) assumes its absolutely minimal value for this
z, and for y, = 0.5.

Therefore, we have
1

min F(z, y) = 2"“/f g(t)dt

s 0

and our lemma is proved.

LEMMA 2. If the function f(x), defined in the open interval (0, 1), has
a continuous first derivative in this interval and if it is non-negative and
strictly convex, then the function F(x) = f(x)+f(1—=x) has the absolute
minimum in the interval (0, 1) for z = 0.5.

Proof. The lemma is evidently true, because F(x) is strictly convex
and symmetric relative to the point x = 0.3.

LEMMA 3. For every natural m and real t, the vector x with components

;= (=1 T m![(j-1"] (=1,2,...m)

)

is the solution of the system of equations A, x = e,,, where A, is the m-th
degree square matric with elements

dm —t—Jj+1 t-m
Ay = dtm—i_'ﬂ-l (my)
and e, is the m-th column of the identity matrix.
Proof. The k-th row of the matrix A,, has the components

a, = [k, (R, ..., 1,0,...,0),

Where the element equal to ¢ lies in the k-th column. In the m-th row, it
1S the last element.
For k < m we have

k41
aye = Y (—1)FTmIETT[(k—j+1)! (j—1)! gmi+
1

j=
k

" O .
— ( _1)m+l _/'n_k(_ 2{ ( _1).’) (‘I;) — 0.

7=0
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Similarly, for k¥ = m,

— ( _1)m+1 [2 ( _1)1' (/';7’) _( _1)1n(:::)] —

Thus, 4,z = e,.
Before the formulation of the next lemma, we introduce a new symbol

D[ f@)aa*

defined for integer non-negative & as follows:

(O)Qfmf(x)dw" = f(x), (k)jf(x)dw’“ = j [(k_l)j,f(u)du"‘l]du.

Similarly, we introduce the symbol ¥ [ f(x)da".

Evidently,
V[ f@ant = (-1 ECLS

(r)f [(k)ff dlf ]d.T _ (rTA)ff H—k
mzf [(k),,f flo)aot] dat = (Hk)mf f(@)da"+",

LeMMA 4. If 1° f(x) is a positive, continuous function, defined in
the interval <(0,1%; 2° a ¢« Int {0, 1>; 3° n is a non-negative integer; then

ff a~'t—1)"dt = (—1)"a " "n! f[(n)ff(t)dt"]dt
o 0

and
1
ff a 't—1)"dt = a "n! fl[‘"’ff(t)dt"] dt.
« t

Proof. Both formulae are identities when » = 0. We may obtain
them for positive n integrating m times by parts their left-hand sides.

LemMA 5. Supposing as in lemma 4, we have

F1f ot vy ) [ o
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1

f[‘")ff (a='t— "dt”]dt —a n!(zn"’) | [(2"‘)f1f(t)dt2"]dt.
a t

Proof (). Multiplying the first formula by (—1)"n!a”", we obtain

! f | J f)(a—tat| at = f [‘2") f foyae|ar.

Similarly, the first formula proved in Lemma 4 can be transformed
into
a 14 a
f[(')fg(t)dt’]dt = fg(t)(a—t)rdt/r!.
0 0
Assuming successively: 1°m = n, ¢(t) = f(t)(a —t)" and 2° m = 2n,

g(t) = f(t), we may transform the left-hand side of the equality to be
proved into the same form as the right-hand side, namely into

ff ) (@ —t)°

Analogically, using the second formula of Lemma 4, we may prove
the second equality of this lemma.

3. Introducing the notation

B
Y, [, a, 8] = [ g, (O [™ O dt,

Wwe evidently have
D, [u,a,fl=¥,[u,a, ]

and, in virtue of (6),

(11) I,,> inf (min¥,[«,0, ]+ min®, [u, L, 1]).
he0,1> L‘);lz PZL

. Let us denote by u, (analogically, up) the function realizing the
minimum of ¥,,[u, 0, k] on Ly (of ¥, [u,k,1] on P?), They exist in
virtue of Corollary 1 from [3]. Both functlom uy, and up must satisfy
the Buler-Poisson equation

(12) (qm(t) ’lt(m))(m) 0.

Moreover, the function u; must satisfy the boundary constraints
of the class Ly (ie. uf(0) =0 for i = 0,1 y ooy m—1, u;(h) = 1), and

(*) The general idea of this proof was proposed to me by A. Biclecki.
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the function up must satisfy the boundary constraints of the class P}y
(i.e. u(1) =0fori =0,1,...,m—1, up(h) = 1). Both these functions
must satisfy m —1 “natural boundary conditions’ for ¢ = h:

(13) [gm(®)u™@1®),_, =0 for k =0,1,...,m—2.

Then, to calculate u; and u;, we solve equation (12) with constraints
(13) and boundary constraints of the corresponding class of functions
Ly or Py'. There are exactly 2m boundary conditions and equation (12)
is of order 2m.

Integrating this equation, we see that there exist m constants C,,
Cyy...,C,, satistying with «(¢) the equations

m—k tm]k

(14)  [4n (t)u(m)](k) = Z C; m for k =0,1,...,m—1.

But, in virtue of (13), these constants both for «; and for wp must
satisfy the equations

m—k
Z C;R" 7 Fjm—j—k)! =0 for k=1,2,...,m—2,
(15) me1

2 C;h™ I m—j)! = —C,,.
j=1

The matrix of this system is 4,, , as in Lemma 3, with ¢ = h, and
the vector of the right-hand sides is equal to —C,,¢,, ;. Thus, C; = —C,;
for j =1,2,...,m—1, ie.

(16) C; = (—1)"Y(m—1)! 0, /[(j—1)! "] for j =1,2,...,m,

because for j = m we have an identity.
Thus, for any function u, (respectively, up), there exists such a con-
stant C that

m . -1 !tm-—j
gty = ¢ M (oapr DR
“— (73—t (m—j)lh

Otherwise,

w™ = 0lgu 017 X (=1 (77 by

= (—1 g 01 Y (—1)

Jj=0

= (—1)"*'Clan(®)] (t/h—1)" ",

m—1

2wy
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Since 4 (0) = 0for¢ = 0,1, ..., m —1, we obtain from this
4
) _
ug(t) = (1" ¢ ™ [ (t/h—1)"" g, () e,
0

Wwhere C may be computed from the condition #, (k) = 1; namely,

_ m+1/f[(m l)f (t/h—1)""/q,.(t) tm I]dt

and, finally,

(m)f (t/h 1 m— l/qm arm
(17) ur(t) =

f [‘"“”f (t/h—1)""" g, (8) dt™ Y dt '

Both the denominator and the numerator of this expression have
the same sign independently of the parity of m, and the absolute value
of the numerator increases with £, because the integrand does not change
the sign inside the interval <0, h)>. Thus, the function uy, (1) is non-negative
in thig interval, u;(0) = 0, u;(h) = 1, and it increases with ¢. Consequently,
0 < uy(t) <1 in the interval <0, k> and ur e Ly .

Analogically, using relations #{(1) =0 for ¢ =0,1,...,m—1,
Up(h) =1, we obtain

(m)f t/h 1 m— l/qm dtm

(18) up(t) =

1

f[(m 1)} t/h 1 m— l/qm dtm 1] dt

and we may prove that up < Py

In virtue of the mentioned Corollarv from paper [3], both functionals
¥{u, 0, k] (in the class Ly) and ¥Y[u, h, 1] (in the class P}') must attain
thelr mlmmal values. Since u;, and up are unique, satisfying, respectively,
the necessary conditions (12) and (13); thus

(19) mm![’[u, 0, h] = T[’ML, 07 h]y nlin':p[“y h"l] = W[“P7 h’ 1]-
o p

However, substituting the calculated value of ¢ (for u; and wup,
Tespectively) to the obtained above-mentioned expression for «™, and
using the definition of Ylu, a, B, we have

h
| (t/h—1)"2/q (t)at
¥lug, 0, h] = .

h

{f[(m l)f t/h 1m I/an dtm I]dt}z
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and

1
[ t/h —1) e “[g,. (1) dt
Pluyybhy1] =1 h S .
{f[(m 1) f t/h m l/qm "= lldt}

Now, in virtue of Lemmas 4 and 5, we may obtain, finally,
2 (2m—2) e 1
WYlug,0,h] :{( i 1)0” - fdtz (1 |dt} ’

Wiy, b, 1] = -{(2"‘ ) [‘2’” 2 f at" =g, (1) dt‘

m—1

From this and from (11) and (19) we have

(20) 1, > inf ¢ (k) (2’”“2),

(0,1) m—1

_ {f’ [‘2"“2’ ft a2 g, (1) at " +| fl [‘2”‘”2’ fl a2 /qm(t)l ay
0 0 h t

4. The function (k) is continuous and positive in the open interval
(0,1). Moreover,
lime(h) = lime(h) = +-oco.

h—01 h—1—

Then, there exists a point A such that ¢(h,;,) = ming(h). If we

0,1
can compute directly the integrals in the formula for (p(h)(, t)his minimum
may be calculated by the usual method. In the opposite case, one can
estimate it from below as follows.
It is easy to compute for a natural m

min

h ¢
f[{mll—‘i)ftdtmn—d-] dt = h2ln—2/<27n_2)!
0 0

and

[(2m 4)f 1) d2" 4] dt = (1 —h)*™2/(2m —2)!.

Moreover, we see that

¢ t r ’
mofdtz/qm(t) ::J[Of ds/qm(s)] dr < tnnxfds/qm — t(j' ds/q,,(s)

re0,h) o
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Similarly,
1 1
Y [ ajg ) < (1=1) [ ds/gn(s)
t h

Thus, for m > 2,

[(Zm 2)f a2 /q. (1 ]dt _ {(27" 4)f[2)fdt Jg..(t ]dtzm 4} dt

< [ f ds/qm(_s)] f [‘2’”‘4’ f tdtzm—‘*] t
0 0 0

that is

h

( m—2
f 2 )fdtzm 2qm( )] dt <

0

2m, 2

f dt / Qﬁl

This inequality is evidently true also for m = 1. In the same way
We obtain, for every natural m, the inequality

1 2m 2

1
(2m—2) o
[T [ avm=jg,n)] a< f /g, (1)
t

h

Hence
w(h) = (2m—2)! f(R),
Where

nh 1
) = [ [ atjan @] [ —n [ atig o]

The calculation of these integrals may be more easy than in the
formula for @ (h) and it may be possible to compute the minimum of the
function f(n) ) directly. If it is also impracticable, then we obtain from

¢mma 1 the estimation

1
minf(h) = 2°"/ [ dt/g,,(t),
(0,1) 0

where the integral may be computed approximately.

5. Finally, we obtain the estimations

(21) 1, nnnl[(Qm—o) ((m H)fdtm 21, (1) ) ] et

0.
+[(2m”‘__11) f (i tf a2y, 1)) dz]“l} = BT,

h
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where ¢,,(¢) = p[(b—a)t+al/(b—a)™ ! and

1
(22)  HT > [2™(m—1)!1/ [ dt/gn(t)

b
= [2"(m—1)1/ [ (b — @) * [ da[p,,(2)] = €T,

where the integral may be calculated approximately, but with a positive
remainder.

We may observe that, taking into consideration the relation ¢, (t) > g,
we can estimate the function ¢ (k) by

h 4 1 1
o) = q|| Oj (- Of atm=?) at] ™ + | ,f (¢ tf ar™=2) at|”’)

= q(2m—1)! [1/B* ' +1/(1 —h)*™1].
In virtue of Lemma 2, the function 1/A*™ '41/(1—h)*""! assumes
its minimal value in the interval (0, 1) for 2~ = 0.5, and we have
(23)  HP> q(2m—1)[2"(m—1)!]2
= pEm—1)[2"(m—1)!]*/(b—a)™* = HY',
l.e. estimation (10) obtained by Bertram in another way.
In the same manner we may underestimate G7':
(24) GT = p[2"(m—1)!]?/(b—a)™ " =Gy
It is easy to see that H}' > G3'. The equality holds for m = 1 only.
6. The estimation of I,, by G} is better than that one with HY,

when p,,(x) deviates from its lower bound p so much that
b

[ da/p,, () < (b—a)/[p(2m—1)].

GT' < HY (in this special case H™ — HYY).
We consider as an example the problem

dz2

d2y
%[(1—%%)3 dtz] +k(1-+at)y—Ilt =0,

¥(0) =9'(0) =y(1) =9'(1) =0,

where a, k and | are constants, and a > 0.

This equation concerns an clastic radial deformation of a filled vertical
cylindrie cistern for liquids; @ is the linear increase coecfficient of its wall
thickness (the greater one is at the bottom). Here P2(t) = (L+at)®*>1 = p.
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For calculation of H; we should solve a logarithmic equation, but
1=32(1+a)?/(2+a), H; = 48.
When a > (1/33 —1)/4 ~ 5/4, i.e. when the wall is 5/4 times thicker
at the bottom than at the top, the constant G} is better than H:.
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0 PEWNYM WARIACYJNYM OSZACOWANIU BLEDU

STRESZCZENIE

W pracy uogélnia sie wyniki Tatarkicwicza [2] (poprawiajae réwnoczesnie wyniki
Bertrama [1]), odnoszace sie do oszacowan a posteriort bledu rozwigzan przyblizonych
Probleméw (1)-(2). Otrzymuje sie mianowicie oszacowania od dotu wartosei catki z mia-
nownika wzoru (3) statymi H?, GV*, H}* i G3* (patrz wzory (21)-(24)). W paragrafic 6
Podano przyktad zastosowania otrzymanych oszacowar.

7 — Zastosowania Matematyki XIII.1



