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AN EXTREMAL PROBLEM ARISING IN SOIL EROSION MODELING

Under certain conditions the effect of soil erosion on crop production can
be described by a random process {X,}T, where X = Y L,, {Y,}T is an iid.

Sequence of strictly positive 1.v.’s, L, = [[ Z;, and {Z,}7 is an ii.d. sequence of

1
L.v’s with support [0, 1], independent of {Y,}{. This paper is concerned with
the d.f. of X» = sup{X,; 1 < k < n} and its limit. It was shown that the limiting
df is a solution of a Volterra type linear integral equation. The results
Sbtained also include the joint distribution M, (x,k) of (x,, N,), where N,, is the
Occurrence time” of x,, as well as the limiting form of this bivariate
distribution,

_ 1. Introduction. It seems that one of the first attempts to extend asymp-
totic results of classical extreme value theory to some classes of dependent r.v.’s
Was made by Watson [10]. Since that time there have been many further
attempts (see, e.g., [1]-[5] and [7]) resulting in generalizations of considerable
Practical and theoretical interest. A comprehensive account of classical, as well
Post-classical, results of extreme value theory can be found in [6].

This paper is concerned with some problems of extremal type arising in
Modeling of the effect of surface soil erosion on crop production. Here we deal
With maximum term in a non-stationary sequence of dependent r.v.’s. The
ffslllts obtained include the joint distribution of the maximum term and its

Occurrence time” as well as the limiting form of this bivariate distribution.

_2. Preliminaries. In a recent paper [9] it was shown that the effect of soil
®rosion on crop production may be, under certain conditions, described by
4 process {X,}¥, where

(2.1) X =YL

n n n

and L,=1]]Z.
4 i=1
Here {Y,}¥ and {Z,}? are r.v.’s subject to the following conditions:
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(i) {Y,}7 is an iid. sequence of strictly positive r.v.’s with common d.f.
Q@) = P{Y < y} and p.df. g(y) such that p=E{Y} < co.

(i) {Z,}¥ is also an i.i.d. sequence of r.v.’s with common support in [0, 1],
independent of {Y,}7, such that

H(z)=P{Z<z}, hz)=H(z) and o, =E{Z}<l.

It follows from (ii) that {L,}{ is a Markov chain with stationary transition
pd.f

22 (It)_{"h(s) 0<s<t<l,

elsewhere.
The pdf of (L,,..., L)) is then

n—1
(23) (pl,...,n(tl’ ter n) - h(tl)n ! (

t.

and the pdf. of L, is
n—1
(24) .= [...] oy .yt 0 ] de.
.. 1

Consider
(2.3) Xn= sSup X;

. 1<€j<n
and denote by
(2.6) N,= 3 M 0,0

k=1

the “time” when y, is attained. In thxs paper we are interested in the d.f.
2.7 M, (x) = P{x, < x}

and in its limit as n—oo. We shall also determine the joint distribution of
(x,,N,) specified as

(2.8) M, (x,k)=P{y,<x, N,=k}, 1<k<gn,
and discuss its asymptotic behaviour as n— oo.

3. Some properties of {y,} . From conditions (i), (ii) and equation (2. 3) we
infer at once that

3.1) M) = Is jugh(‘x){nnllh(::1)}HQ()

The existence of the limit of (3.1) as n— oo is easy to establish: As we have seen
in [9], the sum
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is an (a.e.) finite-valued r.v. Since {x,}% is non-decreasing and dominated by S,
le, xa,<Sforalln=1,2,...,it is clear that y,1x (a.e.), where y < § implies
that y is also (a.e) finite-valued r.v. Write

(3.2) M(x) = P{y< x};

then from the previous it follows that at least

M, (x)5 M(x).

_ ProPosITION 3.1. The df. M(x) is a solution of the following Volterra
Singular linear integral equation:

(3.3) M(x)=x }J %h (3) Q)M (u)du.

Proof. From the definition of ¥y we obtain
(3.4) x=sup{Y,L,, Y,L,,...}

=sup{Y;, Y, Z,, Y3ZZZ3,.._.}ZI = sup{Y;,x*}Z,,
Where

(3.5) t* = sup{Y,Z,, ,Z,Z,,...}.

It is clear from conditions (i) and (ii) that x* is a version of y independent of
(Y;,Z,). This and (3.4) yield at once that

_ L /x X

from which, after a simple transformation, the proposition follows.

In view of this result, we can formulate the following characterization-
theorem: |
CoroLLARY 3.1. Let Z with support in [0,1] and P{Z =1} <1, and
> 0(a.e) with E{Y} < oo be two independent r.v.’s. Then there exists a unique
‘.l’sb'ibution with support in (0, 00), such that if y has this distribution and is.
independens of Z and Y, then

X < max{Y, y} Z.

. Remark 3.1. We can relax somewhat regularity restrictions (i) and (ii)
Without changing substantially Proposition 3.1. Suppose for instance that
(gzm Y],)}i" is an ii.d. sequence with common probability density f(s, y); then in

4) x* is still independent of (Z,, Y,) and

d

x=r*
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Therefore from (3.4) it follows at once that

X
A4(xj jl?(s ) (éi)ds,
where
h(s) = {f(s,y)dy and  F(yls) = |fluls)du.
0
Write |
(3.6) ) Xew = SUP X;, k=1,...,n,

k<j<n

and denote by
M, ,(xy=P {Xk,u < x}

the corresponding d.f. The next result is a generalization of Proposition 3.1.
ProprosITION 3.2. For every k=1, 2, ...,

1
3.7) My (x) = jQ(f)M(f) 0,(s)ds,
o \S S

where M, ,(x) = M,(x) as n—co and @(s) is given by (2.4).
Proof. Since
=sup{¥L,, ..., YL} =sup{¥,,x* .} L,

where xr_, is a version of y,_,, mdependent of (Y, L,). This gives at once the

following:
1
M) =] Q(E)M,._k(f) @y (s)ds.

From this, invoking Proposmon 3.1 and the Beppo-Levi theorem, the
proposition follows.

4. A case study. A mapping f: R™—R is said to be completely symmetric if
it is invariant with respect to permutations of its variables. If the mapping is
invariant with respect to permutations of some of its variables, we shall say
that f is -partially symmetric.

Let a function f(, ..., ), R-integrable on the n-dimensional cube (a < b),
Ca,b)={X,;a<x;<b;i=1,...,n},
be"partially symmetric with respcet to its first k variables; then we have

4.1) fof f(xl,...,x,,)ﬁdxi

8x,<...€x:<b

1 b b
=:E_ < j j { j e j j(ul’---sukaxk+19“ XJI]Chl} II dx

8<xn<¥. <xk+1 b xp+1 Xk + 1 k+1



Soil erosion modeling 285

For a proof of this and more details see [8].
It was pointed out in [9] that a plausible distribution of the r.v. Z may be
the following one:

4.2) h(s) = as*~ 1
for some o > 1. In such a case it follows from (3.1) that

a—1 n
M= ff (P,

ostas...<n<1(fy -

. n 11 X |
—e o {II Q( )dt‘}t:"‘Q(—)dtJ
0<t"\ K11 <1 tﬂ

Now, the integrand is partially symmetric with respect to (¢,, ..., ¢,_,), so that
according to (4.1) we have

@ et el e

Since for n > 2

o {iso)ef o)- -rafiseC)el:

integration by parts of (4.3) gives for n>2

(4.9) M, (x) = “"H}{PQ() }"t“"’dt

and

M, () = a}s"—lg(f)ds

The limit of (4.4) as n—o0 can be obtained as a solution of the integral
quation (3.3). Substituting (4.2) in (3.3) we have

1
M(x) = ax® j e O(u) M (u)du.

Diﬁerentiating both sides of this equation we get
4.5) XM'(x) = a{1— Q(x)} M(x).

From this, taking into account that M(x)—1 as x—oo, it follows that
(4.6) M(x)=exp{—aju"1[1—Q(u)]du}.

Remark 4.1. One can obtain (4.5) directly from (4.4) by showing that the
M, (x) satisfies the following difference-differential equation:
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M,(x) = = {M,(x)— Q) M, _,(x)

and then letting n—oo.

Remark 4.2. Due to the fact that (4.7) is continuous, the convergence of
(4.3) is uniform.

5. On the limit of M,(x, k). Consider the sequence of r.v.s {N,} defined
by (2.6). Since, for every k=2, ..

{Nn 2 k} {Xk 1= Xk n}
it follows that

(5.1) No=14 Y Insy=1+ Y I, <pomr
k=2 k=2

From this we see clearly that {N,}¥ is non-decreasing and as such
N,TN (ae) as n—oo.

We want to show that the r.v. N is (a.e.) finite valued. To this end notice that,
for all i=2,3,...,

(5.2) {N ’} {Z; X(i+1)}

The rest of the proof depends on the following observation: for every
k=1;2,.

(5.3) Xoe+ 1y = LyX85

where x3 is a version of y independent of (L,, X»)- As we know (see [9]) L, — 0
(a.e) as k— oo, and thus Xa—0 (ae) as k—oo. Hence

P{N < oo} = lim P{N < i} = im P{y, > x4+ )} = 1

' . i- oo i-w
and the assertion follows.
Let M(x, k) be the distribution of (y, N) defined as

(5.4) Mx,k)=P{y<x,N=k}, k=1,2,...
Since (x,, N,)T(x, N) (a.e), it follows that at least
M, (x, k) ® M(x,k).

In this section we shall determine (5.4). To this end we need the next
lemma. Write

(5.5) Gils, x) = P{L, < s, 3 < x};
then we have
LemMMA 5.1. For every k=1,2,...,
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(5.6) Gis,x)= [...f ki) {kﬁl tl h(t‘i)}ﬁ 0 (tf) dt,.
s 1 J

0SS, .. Sty < 1 b t;

Proof. It is straightforward and direct that

= [...f ou. k(tv""tk)l;IQ(;_c:)dtj'

s, Sy €1

This and (2.3) prove the assertion.

It is clear from (5.6) that the p.d.f. g,(s, x) of (L,, ;) exists. We now have
ProPOSITION 5.1. For every k=2,3,...,

(5.7) M (x,k) = E }M(u/s) {gx(s,u)—g,_ (s, u)} dsdu
and 00
(5.8) M(x,1)= ﬁM (u/s)g,(s,u)dsdu.

00

Proof Our proof is based on the following relation: For every
= 1’2s--- and X ? 0,

(5.9) P{y<x, N<k}=P{t <X, tx 2 La+1)}-
From this we have
M(x,1)=P{X, <x, X, > X}
M(x, k) =P{x; <%, X2 Ko+ 1) = P{lu—1 <X Xuot 2 A}

Now, taking into account equation (5.3) we see at once that

x1
P{Xk <Xy Xk 2 X+ 1)} = IIM(I‘/S) gi(s, wydsdu,
00

Which proves the assertion.

A general form of the distribution M,(x, k) has a very cumbersome

:—;ﬁpression. A somewhat simplified version is given by the following proposi-
on:

ProrosiTion 5.2, For n> 2,

| M,(x,1)= Jjfj'M,,_l(u/s)gl(s, u)dsdu,
00

M, (5,6) = [ {M,_y (4/5) 8405, )~ M, _y s 1 (4/9)g -1 (5, )} dsdu
00 ’

Jor 2 < k<n—1, and
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Mn(xan) = Mn(x)_}(j;Ml (u/s)gn*l(‘g’u)deu'
0

Proof. We observe that the following holds for all k=1,...,n—1:
(5.10) Py, < x, an_k}=P{xk$x, Xk>Xk+1,n}-

In addition,

d
(5.11) Xk+1,n = Loxx_x,

where yx7_, is a version of y,_, independent of y,_,. From this, after some
straightforward calculations, the assertion follows.

Remark 5.1. Since X,-»0 (ae.), we infer from the equality
Mn(x’n) = P{Xn g x’Xn~1 s Xn}

that M,(x, n) - 0 as n — co uniformly in x. Now letting n — o in Proposition
5.2 we obtain, taking into account the Beppo-Levi theorem, yet another proof
of Proposition 5.1.

6. An application. We shall outline a possible application of some of the
previous results. As we have seen in [9], in the presence of soil degradation due
to erosion, we are concerned with the duration of economically viable
productivity period. The question is how long, under steady soil erosion, an
economically effective crop production shall be maintained? We begin our
discussion by establishing certain criteria for an economic production.

The following definition, which represents a somewhat oversimplified view
of economic productivity, can be used as a first approximation. We assume that
the crop production is economically viable as long as it can be maintained
above a certain threshold level x,,. Let D(x,) be the duration of an economical-
ly viable productivity period, i.e.

(6.1) D(xy) = sup{n; X, > x,}.
It is clear from (6.1) that
{D(xo) = 0} = {x < xo}
and that
{D(xo) =k} = {X, > x,, X+ 1) S Xof = {X(k+ S Xo < Awyt

Hence

P{D(xo) = 0} = M(x,),

P{D(xo) =k} = M. 1)(x0)_M(k)(x0)
for k=1,2, ... Since L, -0 (a.e.), it follows from (5.11) that

P{D(xp) < 0} =1 for every x,> 0.
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It is also easy to show that

E{D(xo)} = 3 [ {1—00co/s)M(xo/)} @y(5)ds.

k=10

In the particular case where h(s) = as*~! we obtain from (2.3), (2.4) and
(4.1) that

k

_ Y a1 inek-1 —
@i (5) F(k)s (—Ins) for every k=1,2, ...

This and (3.7) yield, after some straightforward calculations, that
. ax k lnu X k—1 o]
M,(x) = (F(’:) § ( u£+)1 Q(u)exp {—a | s™1[1—0Q(s)]ds}du.

Xx
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