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OSCILLATION OF AXISYMMETRIC BODIES IN A STRATIFIED FLUID

0. Summary. The flow due to the oscillation of an axisymmetric
body in a rotating stratified fluid is considered. First, taking into account
the effect of stratification on the inertial terms, the solution is obtained
when the oscillating body is an oblate spheroid. Using the radiation con-
dition to eliminate the incoming waves, the solution is found in terms
of oblate spheroidal wave functions. In the limit as the frequency of oscil-
lation ¢ becomes small, we find that », w, the radial and axial components
of the fluid velocity, tend to a finite limit, whereas v, the swirl component
of the velocity is O(1/c). Then, neglecting the effect of stratification on
the inertial terms, the solution of this problem is obtained and it is found
that, in the absence of rotation and as ¢ — 0, v and w tend to zero every-
Where except on the tangential planes where « has a finite limit.

1. Introduction. The problem of axisymmetric bodies moving in
a non-homogeneous fluid has been considered by Warren [6]. Stating from
the unsteady Oseen-type linearized equations for a slender body, he obtains
the limiting form of the solution for large time which shows that as the
body moves, waves are produced in the downstream side only. In this
Paper we consider the flow due to the oscillation of an axisymmetric body
In a stratified fluid. The fluid is taken to be inviscid, incompressible and
unbounded in all directions. In the case of a rotating fluid this problem
Was considered by Gortler [2], Morgan [3] and Sarma [4]. They have
Shown that there are real characteristic cones arising in the fluid on which
the velocities become infinite when o < 20Q2. As the frequency of osecil-
lation ¢ tends to zero, these cones tend to cylinder with its generators
Parallel to the axis of rotation and circumscribing the body. Here we
consider the vertical oscillation of the body in a stratified fluid when the
fluid is subjected to a constant rotation £ about the vertical axis.

First, in Section 2 the solution for the flow due to the oscillation of
an oblate spheroid is obtained taking into account the effect of stratifi-
cation on the inertial terms. Using the radiation condition to eliminate
the incoming waves, the solution is obtained in terms of oblate spheroidal
wave functions. Here we find that if ¢ is very small, then no discontinuous
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or singular surfaces arise and the radial and axial components of the ve-
locity # and w tend to a finite limit whereas the swirl component of the
velocity v is O(1/0). Thus, in the presence of stratification and rotation,
the linearized equations are inadequate to study the steady flow in an
unbounded fluid. However, in the absence of rotation, the swirl velocity
is zero and at any general point # and w tend to finite limits as o approaches
zero, thus showing that the steady flow is possible. (Also there are real
characteristic cones when fg > o¢2.)

Second, in Section 3 the solution for the above-mentioned problem
when g is small (thus neglecting the effect of stratification on the inertial
terms) is obtained and it is found that the flow exhibits the same charae-
teristics when both rotation and stratification are taken together except
for the wave nature. In the absence of rotation, we now find that, as ¢ — 0,
the velocity components # and w tend to zero everywhere except on the
tangential planes [2| = b, where the radial velocity « has a finite limit
Ua?/2r|b|. The case of circular disc is deduced from that of the spheroid
in the last section.

2. Governing equations and solution of the problem. The equations
of motion of an inviscid fluid with respect of a frame of reference rotating
with a constant angular velocity {2 about a fixed axis can be written
(see [7]) in the vector form as

v - -
Q(—W'F(V'VV)) = —Vp+0X —2002 XV —0Q2 x(2x7),
where V is the velocity vector, 7 — the coordinate vector, and X represents
the body force. When we consider stratified incompressible fluids, gravity
being the only body force, the equations governing axisymmetric motion
in cylindrical coordinates (r, 6, 2) are

o[ s0nan) = - %
dt r or’
() g(ﬁ+“—”+z.ou) o,
dt r
dw JP
i mal

d 0 n 0 0

— = wu-—— -

a ot ar Vo)’
where u, v, w denote the velocity components in the direction r, 0, 2,

respectively, and the axis of rotation is taken in the direction opposing
gravity.
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Since the fluid is incompressible,

do
2 = =0
(2) .

The equation of continuity reduces to

ouw uw Ow 0
or o r + 9z

The stratification g, in the undisturbed state is taken to be a function
of z alone as g, = gy¢ 7, Where g, is the characteristic density and g is
the stratification parameter. (In addition, g is taken to be so small that
as z varies fz always remains finite.) If P, is the corresponding pressure
then

g 927'2

Py = 0o ('E + ) )

Consider a spheroid whose axis of symmetry coincides with the axis

of rotation, oscillating along the axis of rotation with a velocity Ue™’.

Choosing the origin to be at the centre, the section of the spheroid in the
(r, 2)-plane is taken as 72/a®+2%/b% = 1.

Let u, v, w be the components of the fluid velocity along the directions

7, 0, 2, respectively; let also P and ¢ be the perturbed presure and density,

respectively. Now u, v and w are taken to be so small that their products

can be neglected. Hence, substituting «, v, w, Po+ P, g+ ¢ into equations

(1) and (2) and using the Boussinesq approximation, we obtain (see [5])
the linearized equations of motion to be

ou 0P
) | —_ e
Qo( ot 'Q'U) or’
(3) go(fgjuwu) =0,
at
ow oP
QO at - az —Qg’
do 00
(4 hi -8 —
) v =Y
(5) ou uw Ow _o.

o e
With respect to an instantaneously fixed axis situated at the centre

of the body, the boundary conditions are

(1) u,v,w >0 as z — oo for fixed r and ¢,
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and
.. a? a? i
{ii) wr + 53 W2 = —b~2—Uzew‘,
i.e. on the body the normal velocity should be zero.
Eliminating u, v, w from (3) and (4), using the continuity equation
(b), we obtain the governing equation in terms of P to be

ot? ot2 0z

Taking oscillations for the variables as P = P'¢™, etc., this equation
reduces to (dropping the dashes from the wvariables)

0* o*p 02 oP
(o) VP 422 ) 4 B +427) S~ 0,

(6) o*P N 1 0P N 40Q9*—o* *P N 4Q°—o"\ 0P 0
ar: ¢ Or fg—o? 022 Bg—o? | 02
The velocities are given by
—1i0 oP 20 oP —1i0 0P
= v = - w = — .
C T G = o (4D~ o) or’ eolfy— o) 02

In terms of P, the boundary conditions are P — 0 as 2z — oo and

oP a® [40Q°—o* OP 10,0° (42 —o*) Uz
(7) r—+—2z
r Bg—o* 0z b2o

on r%/a?+22/b* = 1.
Introducing the oblate spheroidal coordinate transformation defined by

40°% _ 2 \12
z=\- : ) ¢én and 7 =c(14 &) (1Y),
g —o*
the governing equation (6) transforms to
(8)
02 02 ] d [P\ :
14 8%) — (1 —n2 2 _9p— 2 | 2 presnl2 _
[( )0§2+( ")an2+ 505 " G (2)(5 +77)]Pe 0,
where
402 — g2 \'?
St =2
The spheroid 72/a%+22/b2 =1 is given by
(Bg — o*)b* e
5 - 50 =
o2(b?—a?) 4 (40Q2%a% — fgb?)
and
oo . (0P —a) 1 40%al— fgb?

402 _ g2
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The boundary conditions (7) reduce to P — 0 as & — oo and
(9) ~pn,

where

(6P) ne
- = u
0F )y,

W0t g2 (be — at) + 4050 — b1 (g — 0.
g

M:

Equation (8) separates into the two equations

d 2 d_f 2__ 32 F2)f
(10) dE [(E +1) dg] +(m*—22&)f =0,

d dg 2 2,72 -
(11) zl;[(ﬂz“l)%] +(m?+A2n%)g =0,

where m? is the separation constant and 2 = #'¢/2. These equations have
oblate spheroidal wave functions as their solutions (see [1]). The angular
Solution of equation (11), which is finite in the range —1 <75 <1, can
be expressed as '

S, (—it, m) = 3 di"(—id)P, (),
r=0

Wwhere P, () is the Legendre polynomial of »-th order and summation
(") is over even or odd values of r according to as » is even or odd.
The coefficients dv*(—1%4) are given by

- 2r 027 li2_’n
r=0 — [—

(=124 o (S +1)
Z 221+ll,’.'r+1 2r+1 7 22n+1'/ﬁ’.n—ﬂ

(n =0,1,...).

r=0

(The other angular solutions S, cannot be considered because of their
Singular nature at n = +1.)

The radial solutions R,(—%4, i£) of equation (10) can be chosen as
R} (—i, ) and R:(—1A, &) which behave at infinity as

el it

Tespectively, and hence satisfy condition (9) at infinity. Now, applying
the radiation condition, the &-dependence is confined to the radial function

8 — Zastosowania Matematyki XIII.1
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RY(—1i2,i&). Thus

DAY R (A8)
Ri(—id,ig) = = ‘

yar

Hence, the most general solution of euqation (8) can be taken as
P = 3 A,8,(—id, n)Ry(~id, i8),
r=0

where the constants A4, should be determined by the condition on the
body. Now

. p—AS 1 40
P=c "§Ansn(n>R,,<zs>.
Applying the boundary condition on the spheroid
oP
i — e—ﬁbn
( 0§ ) £=¢, H ’

we get

(12) N A (Ri6E) Y AP (n)— ARA(i&) Y &P, (n) = pne”,
n=0 r=0 r=0
“where

d
R*(g,) =|-- R (3 :
n (@50) I:dwf n (7’5)]5260

Using the orthogonal properties of the Legendre polynomials, we
have

! 0 for r =1

[P, Py =[ ’

-1 2/(2l+1) forr =1,

! for r = 1+1

[P, Pan =1 . ’

_1 2r/(4r* —=1)  for r =141,

and

1 o Aor—1) . (= 12) for r—1 cven
[ Pidn =} (r+1+1)(r+1--1) ... (r—1+3) -
-1

0 for r <1 and r—1 odd.
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From (12) we obtain

ZBMR (i£0) di — ZanHRznﬂusod”"“=¥f1,o(v>,

ZZanRgn 1&,) {d02n+ dom} Z an+1 2n+l (¢ )dgznﬂ = - 1,1(”)7

S’anR;‘; i£,)

4l+1

S L 2m @) agy } 5
) . N 1| T
A Z By 1 Repp1(260) l 1612 —1 4(20+1)2—

. (2l+1)d°2” 2(1+1)dy, }
2 . N
2B27L‘R2n(z§0){ , (2l+1) — + 16(l+1)

. ZB £,) dgﬁhfl _ = Y o141 ()
2n+1 2n+1 4l+3 3 ’

where
luBn = An’

1 ,
Y, = 7 — [(21—1) l-{ll,l—l_(l_l)'{,l,l—2]7

¥, = Oi [ 1,2 (v) + 2L, (¥)],
zZY

gll’o - 3 VL 13/2 (v)
2v

These infinite simultaneous equations, for the values I = 0,1, 2
determine the infinite set of constants B,.

. Thus P is uniquely determined. Hence the velocities at any general
boint are given by

P AR 4

— UV oy0(Bg — o)1 (Pg,cos ot — By, sin ot)
[o%(b%®—a®)+ 4.(22 a®— Bgb2]'* (&2 4 2) ?

_2_1791/00/@ (Bg — 0®)'*r (Pp,sin ot + By cos ot)
o[o(b*—a? )+492a2—ﬂgb2]“2(§2+n2) ’

Dl/oo/g (XRe0OS 0t — Y’Imsinat)
(E2+72) ’
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where Re denotes the real part. Im denotes the imaginary part, and
? = ZB {£8},(n) Byt (58) — S (n) BA(36)},
1= Bu{n(L+&)Sk(n) Rt (16)+ E(L— ")) (n) RA(i6)—

— ME +71°) 85 (n) Ry, (36)},
£ ={2[*(B*—a’)+ 4 2%’ — Bgb*]} 1P {(42° — &*)r* +
+ (B9 —o*)2* — 2(bz_ 2)—(492 a’ — Bgb*) +
+[((42* — 6*)r* + (Bg — 0°) 2" + &* (b — @°) + 427 a* — Bgb°)* —
——4(4!22-—6 )(02( —a )+4Q2a2— Bgb?)r?| P},

n = {2[0* (V" —a’) + 420> — fgb* T {[((4 2 — o*)r* +
+(Bg — 0*)2* + o*(b* — a®) + 402%a® — Bgb°f —
—4(492—0 ) (0% (b — a?) + 4.9%a® — Bgb?)r?|"* —
—[(492% — 0*)1* + (Bg — 6%) & — o*(b* — a®) — 4.Q%a* — Bgb* I},

Particular case. Sphere as a limiting case of a spheroid.
In the case of a sphere of radius a, we have

. (1= )”2 N e
: (4!22 e "‘“(492 _)

Thus, this analysis fails when 40Q° = f¢. In this case the original
equation (6) simplifies to
V:—B24)(Pe™*) = 0.
This is to be solved using the boundary condition on the sphere
r2422 = a2 i.e.
opP opP 100 U (492° — 6%z

7nar—i_z@zz o

In terms of spherical polar coordinates (R, 6), the problem reduces
to solving the equation

”? 2 0 1 & cot0 0
13 _— - — I L ARcos0/2y __
(13) (0R2+R R TR e TR a6 4)(1)6 ) =90

satisfying the conditions
( opP

——) =ve Py and P —>0 as R—> oo,
R=a

1
(14) R
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where
u =cosd and v =ig,U(40*—6%/o.

The general solution of (13), satifying the condition at oo, can be
taken as |

1
—Ee_ﬂR#/z vD Hn+1/2 ?’ﬂR/‘Q pn

where H),, ,,is the Hankel function and the p,, () are Legendre polynomials.
Applying condition (14) and using the orthogonality relation of
Legendre polynimoals, we obtain

1 1 2
Z-Dn[Hn-H/Z ﬁa/2)_% n+l/2 @ﬂa’/‘?] l/a om +1 n,m /3“/2)_

/3 2) 2m
- 2]/61 n+1/2(7’/3a'/ -1 SUn,m—l(_ﬁa’/2)+

2(m+1 v/ ifm=1
+———’( ) Y mr 13“/2] . ’
4(m+1)2—-1 0 iftm=0,2,3,...,

where

1
Tn,m = -/,71,— [(2m —1) gyn,m—l - (m _1) l—{171,,771——2]7

The above-mentioned set of infinite simultaneous equations deter-
lines the constants D,,.

Let us discuss the results when £ # 0 and g # 0. From the expres-
sions for the velocity components u,v and w, in general, we find that
they become infinite when &2+ 7% = 0. They are real if 422> 02> fg
or if 40Q2 < o2 < f¢g. Thus, the flow is continuous everywhere if the fre-
quency of oscillation does not lie between the frequency of rotation and
the Brunt-Viassild frequency. When o is small, so that its powers may
be neglected in comparison with the other terms, these discontinuous

cones become imaginary. On the axis of rotation (r = 0) wehaveu =v = 0
and

w — RG(UV(%ZB,,(1+§ )8 (1) R, (i2+£+§ )85, (n) Ry, ($&) M).
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At any general point, as ¢ — 0, we have
u =~ — UVoyloVBgAr(Ppeloo,
v =~ —20Vo5/eV BgAT (Prry)smo®/c ~ O(1]0),
w =~ UV go/0 A(xre)azo*
where
2—1602%74)712,

A4 =40%2—Pgb and x = ([4Q*(F*+a’)+Bg("—bY)]
Thus, as o approaches zero, the radial and axial velocities will be

finite, whereas the swirl component will increase indefinitely
When 2 =0 and g # 0, the swirl component of velocity is zero

The discontinuous cones are given by

ro :};l/ﬂg— o? zil/
If fg > o2, these cones are real. At any general point, as ¢ — 0, we

— b e+ fgb? = 0.

have, for |z| # b,
_ —Weailebghr(Pumdos = Ub¥ a0 (tre)a-
B By 2% — b2 ’ - 2% —b?|

When g = 0 and 2 £ 0, the discontinuous cones are

V4 — Pr + oz +Va* (49° — 0%) + ¢*b® = 0.

They are real if 202 > ¢. At any general point, as ¢ — 0, we have,

for r # a,
— a?
w ~ 0’ P~ Ua’r((pRe)o=0 , ~ U (Xlie)a:_o.
r*—a? r—a?

3. Solution neglecting the stratification effect on inertial terms. Starting
from equation (6), if we neglect the term containing 8, the governing
differential equation is of the form

*P n 1 0P 40Q0°—¢" O*P 0
or? r or + Bg—o? 022 '

and
__ —io o 20 0P —ic 0P
- = 5 = - w = T e
00(42* — 6% or’ 0o(Bg —0*) 0z

0o(+2*— o) or’
This equation can also be derived by neglecting the effect of strati-
fication on inertial terms, i.c. by taking 0o s a constant (g,) in the left-

hand sides of equations (3).
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Using oblate spheroidal transformations as in the previous section,
the problem reduces to solving the equation

Hare St (a-m ) = o
& o0& ) oy ’
where P has to satisfy the boundary conditions

oP
P ->0as £§—>o00 and —— = an,
0& Jeee,

where a = ig, UV o?(b%— a?) +-@Q2a2—ﬂgﬂ;2l/zig'——<§/a.
The solution for P satisfying these conditions can be written as

a

P =

E—i
log ;
E—i  20g, (E et +2’)’7

Eo+i &1

Hence, the velocity components are

log

R —2i UrV Bg — o? nei‘")
u = Re
A(&,n) ’
4QUrV Bg — o2 ne™t )
v = Re — ,
cd(&,1,)
E—1 2¢& )
U 10 elaf
( &6t 52+n2)
w :Re o N . ’
log S0t + 2
Eo+i &+1
where
: i Eo—i  2i&,
A 2 2,2 b' 1 S 2 2 LE2
(&,7) = Vo (b*—a?) + 492a%— g (og ot §0+1)(f +7?)(1+ &2)

Thus we see that the discontinuous surfaces are the same as in the
brevious section. In general, also, as ¢ approaches zero, ¥ and w will remain
finite and v will be of the order O(1/o).

When ©Q = 0, i.e. in the case of stratification alone, we have

—2iVo* — Bg Urne™™

% = Re £ 5iE ,
- )
Vo (a® — b%) + Bgb* (1°“§0+ + §§+01)(52+772)(l+§2)
E—1 21& .
U(log +— 2)6“"
w—TRel g+ - 4
Eo—1 2@50 ’
log :

§0+'é+ £0+1
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where

B b*(o®— fB9) . s
5"_]/02(a2—b2)+,9gb2’ £ =aly+tp), n*=alp—y),

with

a = 1/(2[o%(a®—b%) + Bgb2]),

y = 120%+(o*— Bg)2* — o*(a* — b%) — fgb?,

U= V[r2e?+ (02— Bg) 2%+ o2 (a2 — b2) + Bgb?]® — 40212 [0 (a® — b2) + pgb3] .
The discontinuous surfaces are ro j:l/ﬂg —o%2 il/az(az.— b2) + Bgb* = 0.
Since &, — i, from the expression for the velocity we see that v — ¢

and w — 0 as ¢ — 0 at any general point in the fluid. Also, on the planes
|2] = b we can show that as ¢ -~ 0 we have v ~ Ua?/2rb and w ~0.

In the degenerate case when the spheroid becomes a circular disk
r = a, we have

( __2]/0_2_ﬂg U,,.ne'iot )
u =R
oarm (&4 n?) (14 &2) )’

U E—1 2¢& .
— -—11 iol
w Re(in(og E+i+§2+n2)6 ),

if 2 #0 and ¥ ~0, w ~0 as ¢ — 0. On the plane z = 0, as ¢ - 0, we
obtain

U —1Vr2—a? 2a
u~0 and w :—(213311 -+

T @ Vrt—a?

—}—n) for r > a,

u-—>00 and w~U forr<a.

Thus we see that as the frequency of oscillation approaches to zero,
the radial component of the velocity will not remain small on the disk,
although, in general, it tends to zero everywhere in the flow field. The
vertical component of velocity will remain finite on the plane z = 0 outside
the disk, whereas it is zero at any general point.
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DRGANIA OSIOWO SYMETRYCZNYCH CIAL W ROZWARSTWIONEJ CIECZY

STRESZCZENIE

W pracy rozpatruje si¢ przeplyw powstaly wskutek drgan osiowo symetrycznego
ciala w wirujgcej rozwarstwionej cieczy. Warunck promieniowania zostal uzyty dla
wyeiminowania fal przychodzacych, a rozwigzanie uzyskano za pomocsg zmodyfiko-
wanych sferycznych funkeji falowych. Zbadana jest réznica w charakterystykach dwu
przeplywéw: w jednym z nich wzieto pod uwage wplyw rozwarstwienia na wyrazy
inercjalne, w drugim za$ zalozono, ze wplyw ten jest znikomy.



