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THE DISTRIBUTION OF THE DISCRETE TREE LENGTH ON A LINE

1. Assume a point process on a line in which the distances between
successive points are independent, nonnegative, and identically distri-
buted random variables. Let us join every point of this process with the
nearest one: we obtain sets of linked points which are called trees (see [3],
[4]). The number of links in a tree will be called discrete tree length on
a line or simply — tree length. It is easy to see that tree lengths are
identically distributed random. variables, the distribution of which does
not depend upon the distribution of the distances between successive
points of the given point process.

The present note answers a question posed by S. Zubrzycki, namely,
what is the distribution of the discrete tree length. More interesting but
more difficult, too, are similar questions asked by Zubrzycki for a Poisson
point process on the plane: what is the distribution of the tree length
on the plane, and what is the distribution of the number of links emerging
from a given point. These distributions, estimated empirically, have
been applied to comparisons of the configuration of process points

{see [5], [6], [7]).

2. Let {D,; — co <mn < co} denote a sequence of discrete tree
lengths on a line, and let U, denote the Euclidean length of the interval
between trees number n and n-+1. From the assumption that point
distances are independent and identically distributed follows that the
sequence {U,; — oo < m < oo} is a stationary, transitive Markov chain.
Moreover, the discrete length D, ., with condition U, = u depends upon «
and does not depend upon {Uj_;, Dy; — oo < k < n}. Thus it follows
{see [2], p. 233) that the correlation coefficient between D, and D, .,
decreases geometrically with increasing n:

0(Dp, Dm+n) = 0(Dmy Un)o(Un, Um+n—1)Q(Um+n_1, Dm+n)
= o"Const, |o] <1, = >0.

Denote by P,,n =1,2,..., the probability that a given tree on
a line has length =, P, = Pr{D; = n}, and by p,,n =0,1,2,..., the
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probability that a given distance between process points on the line
belongs to a tree of length n; let p, denote here the probability that the
distance does not belong to any tree.
Now we define the random variables D;, in the following way:
1 if D;=n, )
D;, = . for n»n=1,2,...
’ 0 if .D,' #* n,
The random variables D; and, for any », the random variables D;,
form stationary, transitive stochastic processes, thus from the strong
law of large numbers we have (see [2], p. 465)

N 1

= ]_im =
Po= S N+D,+Dyt... 4Dy 1+EDy)’
p . n[Dlyn+D2’n+...+DN,:n] — ’nPI'{D]_ - 1’&}
" Now N4+D;+Dy+...4+Dy 1+E(D,)
Hence we obtain
1
(1) Po=—""""
1+ }iP;
i=1
nP, .
(2) Pn=—o— for i=1,2,...,
14+ ) iP;
i=1
and from above
o
3 P, = .
) NPo

We shall now calculate the probabilities p,. For p, observe that
the event that a given distance between process points does not belong
to any tree depends only upon the length of this distance and upon the
lengths of the neighbouring distances. These distances, however, are
independent, any ordering of their lengths is thus equally probable.
The assumption of a continuous distribution of those lengths allows us
the assumption of different lengths. A given distance does not belong
to any tree in two cases only, namely, when the distance of greatest
length is the middle one. We have thus p, = 1/3 and from (1) we get
the mean tree length of 2. Similary, we may prove that p, = 2/15.

To calculate p, for » > 1 consider n-} 4 distances of different lengths.
Let K (n) denote the number of those permutations of these distances
which result in a tree of length n. A given distance may be in any place
of the tree, thus

(4) Py = _nK(n)

(n+44)!°
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We shall prove later that

(5) K(n) = n(n+3)2"+,
wherefrom we get

. n?(n+3)2" !
(6) Pn = W

and for the distribution of the tree length

3p,  3n(n+3) g1
n (n+4)! )

(7) P, =
The probabilities p, and P, for different n are given in Table 1.

TABLE 1. The distributions of discrete tree length

Probability Empirical
distributions distributions
n Pn Py (a) (b) ()
0 0,3333 — — — —
1 0,1333 0,4000 131 412 389
2 0,2222 0,3333 337 335 333
3 0,1714 0,1714 192 157 179
4 0,0889 0,0667 171 54 72
5 0,0353 0,0212 97 33 21
6 0,0114 0,0057 42 7 3
7 0,0031 0,0014 13 1 2
8 0,0008 0,0003 12 1 1
9 0,0002 0,0000 4 — —
10 0,0000 0,0000 — — —
11 0,0000 0,0000 1 — —
0-11 0,9999 1,0000 1000 1000 1000

3. To prove formula (5) consider »+ 4 distances of different lengths,
say of the lengths 1,2, ..., n+4. For any permutation of these distances
dy,dyy ..., dn ., to form a tree of length = it is necessary and sufficient
to fulfil the following three conditions: '

(i) d; < ds,

(ii) dn+4 < dn+3’

(iii) there exists a %k such that 2 <k <n+3 and d,>d;>...
> A > dp < dk+1 < ... < dn+2 < dn+3.

We have previously denoted by K (») the number of permutations
satisfying conditions (i), (ii) and (iii). Given any additional condition &/



we shall denote by K (n|£Z) the number of permutations which satisty
also condition /. '

Conditions (i)-(iii) imply either d, =n-+4 or d, ; =n-+4. For
symmetry reasons assume d, = n-+4 and thus

(8) K(n) =2K(n|ld, =n+4).
If dy,y = n+4 then 3 <d,, 3 <n+43 and hence
ni3
(9) K(nldy =n+4) = D K(nldy =n+4,dn 5 = i).
i=3

From condition (ii) we get

i—1
(10) E(n|de=n+4,dp;s =i)= > K(n|dy=n+4,dn,s =1, dns=j).
j=1
If + =3 we have
(11) K(nldy, =n+4,d,,3 =3) = 2n

since only two cases are possible: either d,, , =1 with d, , = 2 fol-

lowing, or d,,, = 2 which gives d,,, = 1. In both cases d; may be chosen

in #» ways from among numbers 4,5, ..., 7+ 3: the remaining numbers

have to be arranged in an decreasing order on the places.3, 4, ..., n+41.
For 7> 3 let us form two sets

Aij={k:k=1,2,...,i—1, and k # j},
Bi,j == {k k= ’L+1,”L+2, ...,’I’b+3}.

Consider two possibilities. In the first let d,eA4;;. Then the element
d, may be chosen in ¢— 2 ways, and the elements of the set B;; as being
greater than d, .5, have to be arranged in decreasing order on the places
3,4,...,n—i-+5: the remaining ¢—3 elements of set A;;— {d,} are to
be disposed on places n—i+6,n—i+47,...,n4+2. It is easy verified
that, given condition (iii), this may be done in 2°~* ways.

In the second possibility d,eB;;. Now the element d, may be chosen
in n—1+43 ways, the remaining elements of the set B;;—{d,} are to
be arranged in a decreasing order on the places 3,4,...,n—¢44, and
‘the remaining 7—2 elements of A;; may be disposed on places n—<i-4-5,
n—3+6,...,n+2 in 2% ways. Thus

(12) EKm|dy =n+4,dp,3 =0,dp,y =j) = (i—2)2" *+(n—i+3)2"%
From (8)-(12) we obtain

n4+3 1—1

K(n) =4n+2 Y [(i—2)2"*+(n—i+3)2""]

n-1

= dn+ Y (2n—1)(i+3)2%" = n(n+3)2",
i=0
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This ends the proof of formula (5).

4. The distribution of tree length may be found as a simple exercise
by Monte Carlo methods. We have used in our calculations three pseudo-
-random number generators, namely (a) the Fibonacci generator, (b)
the multiplicative generator, both of which belong to the programme
library of the Odra 1003 computer, and (¢) the middle-square generator
used e.g. in [1].

The empirical distributions of 1000 trees obtained by using the above
mentioned generators are given in the last three columns of Table 1.
They cannot be compared by means of the standard tests of fit since
the tree lengths on a line are dependent. It seems, however, that the
empirical distribution from type (a) generator is too far from the expected
distribution. It was not known a priori which of the generators was best
suitable for the Monte Carlo calculations required.
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