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INNER SEARCH METHODS FOR LINEAR PROGRAMMING

A class of linear programming algorithms is proposed. They differ from
Simplex and reduced gradient methods in a systematic use of inner (strictly
admissible) search directions. The purpose is to implement the idea that one
Step along a search direction pointing to the relative interior of the admissible
se.t can be more effective than many steps along its relative boundary.
F_lniteness of the algorithms is proved and some computational aspects are
discussed,

1. Introduction. Consider the following linear programming problem,
Called LP. Minimize the cost function x> 4,x subject to xe W< R", where the
admissible set W is a closed and convex polyhedron determined by

(L1) Ax <b, ieC, Ax=b, ieCy,
C,uCp={1,....m}, C,nCr,=@, C,#8@,
AeR,, A, #0, i=0,1,..., m

R (resp. R,) is the Euclidean space of n-dimensional column (resp. row) vectors.
he inner search methods that we wish to present are a class of methods of
dmissible directions and share their general properties (for a brief description
5€e [6]). They can be decomposed into two levels. The upper level algorithm
Ormulates a sequence of problems LLP(k), k = 1,2, ..., which are solved by
the lower level algorithm. LLP(k) has the following form:
Minimize x> a(k)x subject to xew(k) = R", where a(k)eR,, a(k) # 0,
a0d w(k) is a closed and convex polyhedron determined by

Ax < b,, iec,(k), Ax=Db;, iecg(k).
For every k,
Wewk+1) cwk),
cik) e ck+1)=C;  and  cg(k) < cxlk+1) = Cy.

The Sequence is finite and ends with the original linear pogramming probiem.
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For the sake of simplicity the argument k will be omitted. The lower level
algorithm applied to LLP (with w # @) produces a sequence {x"} cw
intended to converge to an optimum. The general rules for its construction are

(1.2) X0 = gD x® — 4@ DI i s 0,

where v” e w is the starting point and d”’ € R" is the search direction of the i-th
iteration. The real s® is determined in the following way:
Let M be the set of all reals s > 0 such that

(1.3) Jje{l, ..., m}: Aj(v(i)_l_sd(i)) — bjs Ajd(i) £0

and Vo 2= 0: N(s) = N(a), where N(o) is the number of constraints satisfied at
v +6d®. Then

O = {maxM if 4,d” <0 and 3s > 0: N(0) < N(s),

(1.4) minM  otherwise.

We assume that c; U ¢ is precisely the set of all constraints satisfied at v
The search direction d® is an admissible descent direction, that is,

ad? <0 and 35> 0: vP4+sdPew.

In the case where N(s”)) > N(0) we proceed to the next, (k+ 1)-st problem with
a new cost vector a(k+1), etc.
Define the relative boundary éw of the admissible set w,

ow={xew: Ve>0 3z¢w: z—x| <e, Aiz=>b, Viec,},

where ¢, =czu{iec;: Axx =b; Vxew}, and the relative interior of w is
w® = w\ow. OW and W° are defined in an analogous way. The idea of inner
search results from an obvious observation regarding the well-known simplex
and reduced gradient methods which also are methods of admissible directions.
In simplex methods, every x is a vertex and [x®, x* D] is an edge of w. In
reduced gradient methods, every d is a projection of a descent direction, e.g.»
—a” on w at v, In both methods, v = x~? for every i. An important
property of both these classes is that the search path, that is, the broken line
whose successive vertices are x, i =0, 1, ..., lies entirely on dw (possibly,
without its first segment in reduced gradient). Now, suppose that v € dw. If we
admit d® pointing to w°, that is,

s > 0: v+ sdPewe,

then generally a greater improvement of the cost can be achieved in the i-th
iteration than if the ray {x: x = v +sd®, s > 0} lies on dw and, in particular, if
d® is chosen according to simplex or reduced gradient rules. This suggests that
methods of admissible directions with search paths which systematically cross
w® may have better convergence. To implement this idea it is necessary to
impose additional conditions on search directions d® and starting points ¢
which guarantee finite convergence and prevent zigzagging. Recall that
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Zigzagging is likely to occur in methods of admissible directions even if
finiteness is assured. It then manifests itself in the fact that the steps |x®* 1 — x|
are very small. The reason for this phenomenon is in the shape of the
admissible set. Let P be the linear subspace of all vectors orthogonal to every
4;, iec,. In large real-life problems the dimensions of admissible sets along
Orthogonal directions from P normally differ by orders of magnitude. In other
Words, the admissible set resembles a razor blade or a pin rather than a ball. In
Consequence, the rate of convergence is extremely sensitive to the right choice
of search directions. Note also that the most effective search directions are
almost parallel to dw and very close to the search directions of simplex or
Teduced gradient.

~ Among other linear programming algorithms based on admissible search
directions which may point to w°, the recent versions of the “adaptive method”
of Gabasov and Kirillova ([1], [2]) seem to be most promising. Kallio’s
method ([4], [5]), which originates from the same idea, is characteristic of
e?lrlier attempts in that the measures taken to guarantee finiteness and prevent
Zigzagping are so severe that practically most of the search directions lie on the
relative boundary. This is why its performance is hardly better than that of
reduced gradient.

The aim of this paper is to formulate unrestrictive and easily computable
Conditions on d® and v* which ensure finite convergence, and on this basis to
Propose a family of algorithms where inner search directions (i.e., pointing to
the relative interior) are systematically used.

2. Auxiliary results. For any x,, de R" we put
P(xy, d) = {xeR":x = xo+sd, seR', s> 0}.
We shall need the following existence result:
LeMMA 1. LP has an optimal solution if and only if W # @ and

P(x, d) W is bounded for any x,deR" such that A,d < 0.

Proof. Assume that an optimal solution exists. Then W # &. Suppose
thﬁt P (x,d) n W is not bounded for some x, d such that A,d < 0. Then there
Xists s, such that

x+sdeW Vs=s and Ay(x+sd)— —oo as s— 0,

m

Which is a contradiction, and so the “only if” part is true. Assume now that
W s @ and P(x, d)n W is bounded for all x, de R" such that A,d < 0. Let
Ty =R" and {x{"}2, « Wnmn, be a sequence such that
Aox{V — inf Agx, i— o0.
xeW
We distinguish between three cases:

(@) {x{"} is bounded. Then it contains a convergent subsequence whose
it ijs an optimal solution. : '
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(b) {x{"} is unbounded and x{" is optimal.
(c) {x{"} is unbounded and

Aox{t > inf Ayx.
xeW
Without loss of generality we assume that x{! # x{ Vi> 1. For each
sufficiently large i, P(x{", x{"'—x{") intersects dW at some point z, such that
Agz; < Apx!V. Hence
Agz; - inf Agx, i— 0.
xeW
There is at least one (n—1)-dimensional hyperplane n, in the family of
hyperplanes n; N {xeR" A;x =b;}, ieC,, which contains an infinite sub-
sequence {z,,} < {z;}. Write {x{»} = {z, }. Since
{(x}cWnn, and Aex® - inf A,x, i- 0,
xeW
we can apply the same argument as before to the sequence {x{®} to show that
either -an optimal solution exists or there exists a sequence {x{*} c W
contained in an (n-—2)-dimensional hyperplane m, such that
Agx$® > inf Agx, i— 0.
ng
This procedure is continued until case (a) or (b) occurs. Since after the k-th step
of the procedure we obtain a sequence {x{**!},
Agx¥*D o inf 4)x  as i— o0,
xeW
contained in a hyperplane of dimension not greater than n—k, we conclude
that the maximum number of steps in which case () occurs is n— 1. After less
than n steps the procedure therefore yields case (a) (this may happen in the first
step) or case (b), which completes the proof.
We say that the j-th constraint is intersected by P(x, d) if A X #b; and

Aj(x+sd) = b; for some s > 0. Then Lemma 1 may be alternanvely stated as
follows

LP has an opt:mal solution if and only if W # @ and every ray P(x, y—X)
such that Ay(y—x) <0, x,yeW, intersects some inequality constraint.

For any matrix H we denote its i-th row by H, and its j-th column by H'.

LEMMA 2. Assume that B is a nonsingular (nx n)-matrix with the inverse
D=B7' Let feR", Aj, AjeR, be given vectors, re{l, ..., n} and

Jor some given reals b;, b,. Define an (n x n)-matrix B,

Bi=B,i=1,..,ni#r, B =4,
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and a vector feR",

Bi=B,i=1,...ni#r, B =b,

() B is nonsingular if and only if y’# 0. ~
(i) Assume that B is nonsingular with the inverse D,

. fBEIjB-, -J_’t'_—Azﬁs J_’?=Azi5_bl-

Then

@1) 75 = iy,

22 Ji=yi—yig, i=0,1,..,n, i#r,
(2.3) D =Dy,

(24) D=D—yiD, i=1,..,n,i#r,
29) Xp=xp—yjD".

Proof. (i) is obvious. (i) By virtue of the definition,
J_/tB = ftB—ﬂBr‘*'ﬂij-
(_:romparing the coefficients of B, on both sides of the equality y,B = y,B we get
Yiyi = y}. Hence we obtain (2.1). Comparing the coefficients of B;, i # r, we get

(2%) for i > 0. Formulae (2.3) and (2.4) are similarly derived from the equalities
DB=pB, i=1,... n Further,

Xp=Df =}, (Di_ﬁryj)ﬁi—I_ﬁrbj = xB_D—'(.Vjﬂ—bj),
i=1

Whence (2.5), Lastly,
J_’? = A;fs—bj = ,V?_.V?Alﬁr = y?—y_?j’_;'

. Let4,=B and b,=p, in Lemma 2. Since y; =1, yi=0,i=0,1,....n,
}# 7, we obtain from (2.1) and (2.2) the following

CoroLLary 3. yi=1y5, yi=—yipl, i=0,1,..,n, i#r.

The following generalization of the Farkas theorem belongs to G. F.

Oronyi (see [3]). We give it in a different formulation and with a different
Proof,

.. LEMMA 4. Consider a set of vectors {Y;},cs = R,, where S is a finite set of
indices, | ot '

§=8,0u8,uS,;,, S§,#0, §,nS,=85n8,=5,n5;=0.
The system of inequalities and equations
2.6) Y,d <0 VjeS,,
@7) Y,d <0 Vjes,,
2.8) Y,d =0 VjeS,
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has a solution deR" if and only if there exist no reals {A;},s such that

2.9) Y 4,Y, =0,
jes

(2.10) 4,20 VjeS, uS,,

(2.11) Y A>0.

JjeSy
Proof. Assume that system (2.6)«2.8) has a solution d. Then
Y A4Yd<0
Jjes
for every set of reals {4} ,.s which satisfy (2.10) and (2.11). Hence (2.9) does not
hold. Assume in turn that system (2.6)+2.8) has no solution. Notice that

P,={deR" Y,d <0 VjeS,}
is an open convex cone and
P,={deR" Y,d <0 VjeS,, Y;d =0 VjeS,}

is a nonempty closed convex cone. By definition, P, = R"if S, U S, = @. There
exists at least ome vector o,eR, supporting with respect to Pj»
o,d <0 VdeP,. Every such vector has the form

(2.12) o,= Y AY,

JjeS2u83
for some {4;},s,,s, such that 1;> 0 VjeS,. Assume P, # @. Then P, has
a supporting vector ¢,, g,d <0 VdeP,. Every such vector has the form

(2.13) o= 4Y, 1;20VjeS,;, ¥ 4,>0.
jeSt ) Jjes

It is easy to see that a necessary and sufficient condition for P, n P, =@ is that
there exist supporting vectors ¢, of the form (2.13) and o, of the form (2.12)
such that ¢, 40, =0, which gives (2.9)+2.11). If P, = @, then there exists
a linear combination (2.13) of the vectors Y, je§,, such that o, = 0. We take
0, =0 and again have ¢, +0, = 0, that is, (2.9)«2.11).

A concept of dual admissibility plays an important role in inner search
methods. For the problem LLP, we call a set of constraints E < ¢, U ¢ dually
admissible if there exist reals A, icE, such that

(2.14) a=Y LA, A4,<0VieEncg.
icE

Putting a = 4,, ¢, = C; and ¢; = C, we obtain an analogous definition for LP-
To characterize this concept in terms more directly connected with search
directions we define the cone of descent directions



Linear programming 313

(2.15) Ky ={deR": ad <0}

?nd the cone of directions which are adrmsmble with respect to every constraint
rom E,

Kp;={deR" Ad<0VieEnc,, Ad=0VieEncg}.

LemMA 5. Kon K, =@ if and only if E is dually admissible.
Proof K,nK; =0 if and only if the system

(2.16) ad <0, Ad<O0VieEnc, Ad=0VieEnc
has no solution d. Let -
S;={0}, S,=Enc, S;=Encg,.
Y, =a, Y, =A, VieS,uS,, S=8,US,US,.

By virtue of Lemma 4, (2.16) has no solution if and only if there are reals 4,,
i€§, such that

loat+ Y AA;=0, ig>0,4 >0 Vie§,,
ieS,uS3
Which is equivalent to the dual admissibility of E:

A set of constraints E C,u Cy is called independent if the vectors A4,
i€E, are linearly independerit.

The next lemma describes relationships between dually admissible sets of
“onstraints and optimal solutions.

LEMMA 6. (i) Assume that E is a dually admissible set of constraints in the
Problem LP and xg€R" satisfies Axz=>b; VieE. Then

Agxpg < Agx VxeW.
(i) Assume that % is an optimal solution of LP. Then
E={ieC,uCy AZ=Db}

s dually admissible.
(ii) Assume that W+ @. Then LP has an optimal solution if and only if
Cruc, is dually admissible.

Proof. (i) For every xe W we have
Ai(xp—x) > 0VieENnC; and A,(xz—x)=0VieEnC;.
Moreover, ' '
Ay=Y KA;, A4 <0VieEnC,.

icE

1
!~ Zastos. Mat, 20,2
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Thus
ieE
(i) is evident, since if E is not dually admissible, then there exists
deKyn Kg (Lemma 5) such that x+sd e W for some s > 0, which is a con-
tradiction,

(iii) Let C; U Cg be dually admissible. It thus contains a dually admissible
and independent subset E. Let x, satisfy A;x; = b, Vie E. By virtue of (i),

Agxp < Agx VxeW.

Then every ray P(x,d), de K, has a bounded intersection’with W, and so an
optimal solution exists (see Lemma 1). The “only if” part follows from (ii).

To characterize more fully the situation in Lemma 6 (i) we state the
following obvious lemma:

Lemma 7. Let Ec {1, ..., m}. Assume that
Axg=>b;, Axp=>b,VicE and Ay,=) AA,.
ieE
Then Agxg =AyX3.

3. General characterization of inner search algorithms. In this section we
formulate the principles of inner search which together with the features
described in Section 1 will enable us to discuss convergence in the next section.
Since the upper level algorithm is not specific for inner search and can be
constructed as in other methods of admissible directions, we only recall that
the initial starting point v'") of LLP(k+ 1) is the last point x@ of LLP(k) and
the cost vector in LLP(k) is given by

ieP
where

P = {03 1’ ey m}\(cIUCE)’
% >0 and o(4pV—b) >0 Vie P\{0}.

Moreover, adf # 0 for at least one ie P\{0} if P # {0}.

The lower level algorithm is the basic one; it includes the distinctive
features of inner search. In every iteration of this algorithm a set of constraints
E® c ¢;ucg is determined, which contains (among others) all constraints
active at v”. Together with E® we determine the basic set Ef = E®. It is
independent and contains (among others) the maximum number of constraints
active at v for which this property holds. Any vector x{? which satisfies
AxY =b, VjeEJ is called a basic solution. K denotes the cone of all
directions admissible with respect to the constraints in E®,

(3.1) K ={deR" 4d <0 VjeEY n¢,, Ad =0 VjeEP neg},

and K, is the cone of descent directions (2.15).
The lower level algorithm is divided into two parts, 4 and B. Part 4 may



Linear programming 315

be briefly characterized as the search for a dually admissible basic set of
Constraints, and Part B as the search for optimum by means of admissible
directions combined with dual simplex. The algorithm of Part A has the
f0110wing properties, fundamental for finite convergence. By J, we denote the
S¢t of all iteration numbers of Part A.

HL 3¢ <0 V{i,i+1} o J: a(x8D—x®)  c|x+D— x|,
If the simplest rule for the construction of starting points is at work,

WD =xO i it1} < J,,
then Hi results from the following:
3¢ <0 Vied: ad? < c|d?)].

H2. In every k successive iterations, say i,i+1,...,i+k—1, where k is
& predetermined positive integer, a constraint which does not belong to EV
Must be intersected, that is,

V{,it1, ..., itk—1} cJ, Fjeli,i+1, ..., i+k—1} Aec,\E®:

To obtain this intersection it is sufficient that d%¢K,n K.
H3. If 4.x0 = b; for some jec,ucy and {i,i+1} < J,, then je E¢*Y,

_ Denote by «” the number of constraints from the set ¢,\E® which are
active gt x

H4. 1fj¢ E¢- and je E? for some {i—1,i} < J,, then je E® VleJ , such
that > and
-1
Y o <r;

t=i
" IS a positive constant independent of i.

Part 4 ends in the following situations.

() Kon K = @; this is the basic stopping condition. It means that
3 dually admissible set of constraints E has been found. The algorithm passes
OVer to Part B.

(i) The ray P(v®, d”) does not intersect any constraint, that is, rules
(L.2)1.9) yield no point x. This may happen only if w = W & and LP has
10 optimal solution.

(iii) Rules (1.2)(1.4) give a point x admissible with respect to some
c0nst.raint which is not satisfied at v, that is, N(s®) > N(0). The upper level
algorithm is then activated.

Note that E® is dually admissible if and only if it contains a dually
ad‘m!?‘sible basic set E. Typically, in computational realizations of the
Algorithms of Part 4 we have E© = EP®. As will be shown, in this case it is

relatively easy to verify the stopping condition (i).
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In every iteration of Part B the condition of dual admissibility
oN K = @-is satisfied. The sets E{ are dually admissible. The search
du‘ectlons are admissible descent directions defined by

(3.2) d® = x — v,

where the starting point v’ ew is not an optimal solution. Apart from the
sequence of admissible solutions x? e w, Part B produces a sequence of basic
solutions x§ such that the corresponding cost values ax{) monotonically
increase. The algorithm ends in one of the following situations:

(i) The basic solution is admissible, x§’ew. Then x{ is an optimal
solution of the lower level problem LLP. If w = W, then it is also an optimal
solution of LP. In the case where w # W, further procedure depends on
whether every constraint satisfied at x§ is satisfied at v, If so, and a, = 0 in
the formula for a, then W= @. Otherwise, the algorithm passes over to the
upper level. :

(i) As (iii) for Part A.

If neither of these situations occurs, the constraint -(or constraints)
intersected at x is introduced into the basic set E, usually in place of one (or
more, respectively) of its elements. The exchange is performed in such a way

that the dual admissibility of the next basic set Ef*1) is maintained (for details
and proofs see Section 35).

4. Convergence of Part A. It will be shiown that properties H1-H4
formulated in Section 3 implicate finite convergence of Part A provided an
optimal solution exists. It will also be shown how to guarantee ﬁmteness
without this assumption.

LEMMA 8. Assume that LLP has an optimal solution and a sequence
{x} < w satisfies H1. Then {x"’} is either finite or convergent to some element

of w.
Proof. Assume that {x®} is infinite. By virtue of H1,

axtt ) < gx® Vi,

Since an optimal solution exists, the sequence {ax®} is lower bounded, and so
it is convergent. From H1 we obtain

. , 1 , .
|xD —x9) E(ax‘ﬁ—ax“)) Vi,j, i<j.

As {ax®} is convergent, {x®} is a Cauchy sequence in a closed set w. Thus it is -
convergent in w, which completes the proof,

Below we give an estimate on the number of constraints active at the limit
point of the sequence {x} produced by a Part A4 algorithm. The theorem is
formulated in terms of the lower level problem LLP.



Linear programming 317

THEOREM 9. -Let {x®} c w be an infinite sequence convergent to some z and
let {Eﬁ’} be an infinite sequence of subsets of ¢, U cg. Assume H2, H3, H4 with J
€qual to the set of all positive integers. Then the fumber of constraints from c;\c,,
active at z is greater than r.

Proof. Suppose that the j-th constraint is active at x® and jec,\E®.
Such i and j exist by virtue of H2. Thus je E¢*Y (by H3) and may not leave the
Sets E®, 1 > i+ 1, until r constraints different from j have been active (by H4).

18 happens not later than after kr iterations (by H2). Since this reasoning
ay be repeated for every constraint, these r constraints are also different from
®ach other. Thus, the number of constraints from c \¢, with the property

Vidj> i AxY = b,
1 greater than r. To complete the proof let us notice that if a constraint is
aCtive at an infinite number of points x®, then it is active at z.

The next theorem gives sufficient conditions of finite convergence of
algorithms of Part A under the assumption that an optimum exists. Notice that
the requirement d®eK, is not directly engaged in the proof. By p we denote

the maximum number of constraints from ¢ r\¢, simultaneously active at some
Point of w

(l_; TheoREM 10. Let {x", E™} be a sequence of pairs such that xPew and
EO < C; U cg for every i. Assume that LLP has an optimal solution and H1-H4
ld with r > p. Then the sequence {x®) is finite. '

. Proof. Suppose that {x"} is infinite. It follows from Lemma 8 that {x®}
I8 convergent to some zew. By Theorem 9 the number of constraints from
°r\c, active at z is greater than r, which is a contradiction.

_ We call a linear problem nondegenerate if the number of simultaneously
active constraints, both of equality and inequality type, does not exceed n. In
Such problems it is sufficient to keep n constraints in the sets E? to assure

Diteness of Part 4, provided an optimal solution exists.

Let {x® E®}{_| be a sequence such that x?ew and E® c ¢, u c; for
GVery i, satisfying H1-H4. We say that this sequence is continuable if there exist
X, E@*d j—1, ..., k, such that the sequence {x®, E“"}f: ¥ fulfils the same
aSsumptions, |

TheOREM 11. Let LLP have an optimal solution and the Sequence
{x@, E™M3_, satisfy all the assumptions in the definition of continuability. If this
Sequence, is not continuable, then every set E9*V < ¢, U ¢, such that {E®O}et!
Satisfies H3 and H4 is dually admissible.

Proof. Every constraint active at x@ belongs to E4*V). If x@ is optimal,

0 E4* 1) j5 dually admissible by Lemma 6 (ii). Assume that x is not optimal

a‘?‘i EY*D js not dually admissible. Then there exists a search direction

ey €Ky K¥"Y such that the ray P(x@, d9* D) intersects a constraint from

S\E4D ot some point xX9*Vegw (by Lemma 1). Hence the sequence
x0, E™}_, is continuable. This contradiction completes the proof.
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The converse is not true: a sequence {x® E™{_, such that x?ew,
E® < ¢; U ¢ for every i may be in accordance with H1-H4, even if E© is dually
admissible. However, in the case where K, K% = @ Part A4 is stopped by
condition (i) of Section 3. This is justified by the fact that in this situation it
may be difficult to find a search direction, if one exists, which would make the
continuation of Part A possible. Recall that as long as K, n K # @ we may
always choose d? e K, n K and obtain x e dw such that 4,x®” = b, for some
lec,\EY. Besides, a more effective procedure of Part B may then be begun. T0
end this discussion let us note that it is possible to construct a sequence
{x®, E®}4_, satisfying all the above assumptions, where E@ is dually admiss-
ible and exclusively consists of constraints which were active in previous
iterations.

We shall now consider the case where w = W# &, a = 4, and no optimal
solution exists. This is equivalent to

“4.1) 3x,deR" ad <0 and Vs> 0, x+sdew.

Under this assumption it is evident that even if a sequence of pairs {x®, E@}
satisfies all the assumptions of Theorem 10, it may be infinite. Moreover, if it 15
infinite, then it does not converge and there exists more than one constraint
lec; such that

4.2) Vi3dj>idk>i AxY = b, and 4,x® # b,.

The finiteness of Part 4 in the general case where one does not know
whether an optimal solution exists is guaranteed by a special reduced-gradient
subalgorithm, called the checking algorithm. The checking algorithm can be
started after any iteration of Part 4; its starting point v is the last point x*¢
obtained in Part 4. For every iteration number i > 1 we have v® = x(~ 1, the
search direction d” is an admissible descent direction and

4.3) Ad® =0 Viec,ucg, such that Ap® = b,

x? is computed according to (1.2)«(1.4). Notice that in the case where w = W
we have

s® = max{s > 0: v®+sd e W}.

The stopping conditions of Part A remain valid, although condition (i) of
Section 3 may be omitted and condition (iii) is necessary only if the checking
algorithm is used in the case w # W. The checking algorithm is also terminated
if system (4.3) has no solution d? which is an admissible descent direction. In
this case we return to the main algorithm of Part A. It can be restarted from the
last point x9 obtained in the checking algorithm, v¥) = x@, with the set E®
consisting of all constraints active at v‘b,

The checking algorithm is finite and the number of its iterations is less
than n. This follows from the fact that the number of linearly independent
equations (4.3) strictly increases in every iteration.
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We say that the checking algorithm is successful if in one of its iterations
P®, g¥) — w. To formulate sufficient conditions for that we define

Z(s)={xew: ax <s and A;x =b;} Vlec,ucg.

It is evident that under assumption (4.1) there exist reals s,, such that, for every
§<s, and every I, Z,(s) is unbounded if it is nonempty. Let s* be the
Supremum of all such reals s,,. A sufficient condition for the checking algorithm
to be successful, provided (4.1) is fulfilled, is

(4.4) ®Wew and av'V < s*.

For the finiteness of Part A4 in the general case it suffices that the checking
algorithm is repeated after every K iterations of Part A, where K is an arbitrary
Predetermined constant. The criterion for starting the checking algorithm may
also be based on property (4.2). To see that this also guarantees finiteness,
Consider an algorithm of Part A producing a sequence {x®, E®} for which all
the assumptions of Theorem 10 are satisfied (of course, except for the existence
of optimal solution). By virtue of (4.2) we may suspect that there is no optimal
Solution if we observe that a constraint re-enters the set E®. The more
Te-entries of the same constraints, the more chances that no optimal solution
Xists and the sufficient condition (4.4) is fulfilled.

S. Continuability and finiteness of Part B. Let us begin with a few simple
Consequences of the basic definitions given in Section 3. First, Part B may be
applied to an LLP only if this problem has an optimal solution. This follows
from the assumption K, n K{ = @ for every i and Lemma 6 (iii). By Lemma
6 (_i) the search directions (3.2) satisfy ad®® < 0. By Lemma 1, for every i there
€Xists a unique point x determined by rules (1.2)-(1.4). We shall consider the
Constraints active at x in more detail. An arbitrary constraint je E® n¢,

Ilhonactive at v, is active at x® if and only if x® is an optimal basic solution,
that jg
b}

Ax® =b, VieEf, xPew and ax® <ax Vxew.

T!;is follows evidently from the fact that if a constraint from E{ is nonactive at
U7, then P(y, d®) intersects it at the basic solution x§. Furthermore, we have
the following lemma, essential for the continuability of algorithms of Part B.

LEMMA 12. Assume that, in the i-th iteration of Part B, Ax® =b; and

400 < b; for some jec;. Let

A= 3 A4,
. _ 1eES _
Then AP > 0 for some le EY, nonactive at v®.
Proof. Evidently, 4,d® > 0. Hence
Y 94,49 > 0.

leEWD
B
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Since A,x§ = b, and Ap” < b, we obtain 4,d? >0 VIeEY. This completes
the proof.

In every iteration of Part B a dually admissible and independent set of
constraints EY is needed. We shall now discuss the conditions of dual
admissibility of E§™ ¥ provided Ef is dually admissible. Assume first that A is
linearly independent of the vectors A4,, [eEY, EY is dually admissible and
E§*Y = Ef U {j}. Then, of course, E§* Y is also dually admissible. In the more
typical case where the vector A; of the constraint which enters E§* Y is linearly
dependent on the vectors 4,, [€ EY, there must be a constraint k simultaneous-
ly leaving this set:

EG*Y = E\{k} u {j}, keEP.
For our purposes it is sufficient to consider these two cases.
LEMMA 13. Assume that EY is dually admissible and independent and

E§™D = E\{k} U {j} for some keEY.

Let also
(5.1) Ay= Y a94,, 19 0.
leE(B‘)
Put .
(5.2) a= Z lﬁi’Alz Z }.}"“’Al.
IeE(D leﬁg“’

@) If p? =0, then
l}i+1) =0, MH 1 — /1%"’ VleEg”)\{j}

and E§*Y is dually admissible.

(i) Assume A < 0, j,kec,. Then E§*Y is dually admissible if and only if
A2 >0 and

(5.3) MR = AP1P YIeEY ne, such that A9 >0.
(ii) Assume AP <0, jecy, kec;. Then E$*V is dually admissible if and
only if
PP > A9/29 VIEEY Ae,.

Proof. From Lemma 2 we obtain, after an appropriate change of
notation, ‘

/1(1+1) A(I)/A,(l) ASH- 1) _ A§i)_[’lﬁ)l§_i+ 1) VlEEg+ 1)\{j}_
() is obv1ous '

(i) AP > 0is necessary and sufficient for AY*" < 0. Under the assump-
tion A >0, (5.3) is a necessary and sufficient condition for

MV <0 VIEES Y A,
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(1ii) is proved by a similar argument with the difference that A{* Y <0 is
hot required.

Normally, only cases (i) and (ii) of the above lemma may occur in
algorithms of Part B; case (iii) is useful for some modifications where the set
€1V cg is not constant throughout the algorithm. Let us note that, due to

Lem}nas 12 and 13, Part B can be continued until the stopping conditions of
Section 3 are fulfilled.

LEMMA 14. Assume that Ef is dually admissible and independent,
EGHY = EQ\{k} U {j} for some ke EY
and assumptions (5.1} and (5.2) hold. Let
Ax® =b, VIEY and Ax§TD = b, VIgESHD.

() If A9 =0, then ax§*? = ax.
(il) Assume that A <0, j,kec; and E§*Y is dually admissible. Let also
A > b;. Then

axfitV = ax.

Moreover, ax§*V = ax§? if and only if A P =b;.
Proof. From (2.2) of Lemma 2 we obtain, after the substitution 4, = a,

(5.4) ax§* P = ax + AV (b, — AxP).

This and Lemma 13 easily yield the assertion.

The assumption A x§ > b, is obviously satisfied in every iteration of Part
B, since jec; and v is admissible with respect to every constraint from c;.

In every iteration of Part B we obtain an upper and a lower estimate for
the optimal cost aX in a natural way:
ax{ < ax < min ax®?,

I<i

W!lere x§ is the current basic solution, x"” is the intersection point of P(v™?, d¥)
With dw. If there are many basic solutions x§, all of them yield the same value
of cost, as can be seen from Lemma 7. Due to Lemma 14, both estimates
Monotonically improve in the course of Part B, though ax® monotonically
€Creases only under special assumptions on the choice of o, for example, if
R every I.

In order to formulate the theorem on finite convergence of the algorithm
of Part B we need the definition of dual nondegeneracy. We call LLP dually

";,""degenerate if for every dually admissible and independent set E; < c; U ¢
¢ have :

v

i, <0 VieEgng.
The reals 4, are defined as in (2.14)
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THEOREM 15. Assume that the problem LLP is dually nondegenerate and
{x§'} is the sequence of all basic solutions produced by the algorithm of Part B.
Then this sequence is finite. Moreover, if w = W, then its last element is an
optimal solution of LP.

Proof. The number of dually admissible sets E; = ¢, U ¢ is finite. Due to
Lemma 13 and the assumption of dual nondegeneracy we have 1§*" < 0 in
formula (5.4) for every i. Hence the lower estimate of the optimal cost ax{
strictly increases, which completes the proof.

Let us note that this theorem is valid irrespective of the particular choice
of v®. Tt is difficult to give a good upper estimate of the number of iterations of
Part B which are needed to obtain an optimal solution. Of course, it is not
greater than the number of all dually admissible and independent sets of
constraints. Notice that the assumption of dual nondegeneracy in Theorem 15
is not crucial for the finiteness of Part B. However, if this assumption is
removed, more complicated rules of exchange of the sets Ef are necessary to
guarantee it. The tools which can be used in order to overcome degeneracy are
analogous to those in simplex methods (like lexicographic ordering).

6. Connections between Part B and dual simplex. The algorithm of Part
B has strong connections with dual simplex algorithms. Due to this fact it is
possible in each iteration to switch from Part B to dual simplex. Let us recall
the principles of the latter using a formulation appropriate for LLP. Assume
that in the i-th iteration we have a dually admissible, independent set of
constraints Ef < ¢;Ucg and a basic solution x{ defined by

AXY =b, VIeED.

If x§ e w, then it is optimal (see Lemma 6 (1)). Assume that this is not the case.
A new dually admissible, independent set E¢*? is then created together with
the corresponding basic solution x§*' in such a way that ax{*? > ax.
A constraint je(c; U cg)\EY enters E§* V. If 4 j is linearly independent of A,
leEY, then :

E§*V = ED o {j}.
Otherwise,

EE*V = EP\{k} U {j} for some keE{.

The condition of linear independence of the vectors A, le E§* Y, is given in
Lemma 2 (i) and the conditions for Ef* ! to be dually admissible are in Lemma
13. Lemma 14 gives the relationships between the cost values axii*V and ax§-
In consequence, a dual simplex iteration can be performed if and only if one of
the following situations occurs:
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(i) There exists a constraint jec; U cg such that A ;is linearly independent
of A, IcE{). Then EG*V = E{ U {/} is dually admissible and ax§*" = ax¥.
(i) There exist je(c,ucy\EY and kec,nEY such that A% # 0 and
4 = 0. Then EGTD = EQ\[k} U {j} is dually admissible and independent, and
axgith = gyt ,
_ (iii) There exist jec,\EY and pec; n Ef such that Ax{ > b, i) > 0 and
A4 <0 Viec,nEf such that A9 > 0. Then

Eg* D = ER\{k} U {j},

}Vhere k is chosen according to Lemma 13 (ii), is dually admissible and
Independent. Moreover, axfi*? > ax® if AxP>b;, and ax§*V =ax§ if
Ax = p 5

(iv) There exist je c;\Ef and pec,nEf such that A{) #0 and A’ <0
Viec,nEY such that AQ is of the same sign as A{). Then

E*Y = E\{k} u {j},

Where k is chosen according to Lemma 13 (iii), is dually admissible and
Independent.

If none of these situations takes place, then w = @. It is important that for
®¥ery constraint which is not satisfied at x§ we have the following alternative:
Sither this constraint can enter the set E§*? in the (i+ 1)-st iteration or w = @.
Of Course, in one iteration there may be many possible exchanges of the set
EP as the situations (i}{iv) do not exclude each other. To improve conver-
gence, the following list of priorities is recommended:

L. (i) and (iv);

2. (ii) with Ax§ > b;;

3. (i) and (iii) with A4 X8 = b;.

If LLP is dually nondegenerate, then any dual simplex algorithm based on
the above principles is finite. In the case where A’ = 0 (dual degeneracy) there
18 a possibility of cycling which may lead to the lack of convergence. There are

Owever well-known tools, like lexicographic ordering, to overcome this

fficulty and assure finiteness.
. It is now evident that an iteration of Part B may be regarded as an
lteration of dual simplex with a particular method of determining j, the
COnstraint entering the basic set EY. Notice that almost every dual simplex rule
for the determination of j is equivalent to some choice of starting points v in

art B, which means that the effect is identical. On the other hand, Part B is an
digorithm of admissible directions and in each iteration gives more information
than dyal simplex. In particular, it yields an admissible solution x€dw and
4 two-sided, monotonically improving estimate of the optimal cost. Of course,

an iteration of Part B requires more computations than an iteration of dual
Simplex,
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7. Some computational questions, The previous sections are devoted to the
presentation of inner search principles. Below we give a brief discussion of
several more detailed questions, vital for computational efficiency.

7.1. Variable system of coordinates and recursive formulae. Let E{ be the
basic set of constraints in the i-th iteration of an inner search algorithm. By BY
we denote the basic matrix. This is any nonsingular matrix which has all
vectors A4,, [e EY, as its rows. By u(l), le E¥, we denote the position of the
vector A4, in BY, that is, B, = 4,. We also determine the vector f®e R" such
that

The remaining elements of B are arbitrary. Denote the inverse of B® by D®.
Basic solutions are defined by x{ = DWgD,
Let us apply the following transformation of the system of coordinates:

(7.1) R'sx+—x = BYxecR"
to LLP. Row vectors are transformed as linear functionals on R",
(7.2) R, a3x+—x=xDYeR,

We obtain ax = aD®”BP = yx for the cost function and Ax = A, D®B¥x
=y{¥x for the left-hand side of the j-th constraint. The transformed problem
thus has the form:
Minimize x—y“x subject to xew = B®w, where the admissible set w is
determined by

Wx<b,lec, yx=»b, lec.

Similarly as in simplex, the vectors y* and y{?,le ¢, U ¢, can be calculated
by means of recursive formulae, which considerably reduces computational
effort. For details see Lemma 2 where recursive formulae are also given for the
inverse of the basic matrix D® and the basic solution x{. It should be
remembered that these formulae are numerically unstable, and so, for large
problems, matrix factorization techniques analoguous to those of revised
simplex are recommended [7].

The reason for the use of variable system of coordinates, determined in
each iteration by the current basic matrix B?, is that in this system the
computations both of Part 4 and Part B take a much simpler form. This
results from the fact that y{’,/e Ef, are unit vectors. In consequence, we have,
for example, x§ = B@x) = p¥. The simplification is most clearly seen in the
typical case where E® = E{. As has been pointed out, in iterations of Part A it
is essential to have an easy way of determining a search direction

dYeKonKP or dWeKPnKP,

where &9 = B9, K = BYK_ and K = BOK{). The variable system of
coordinates offers such a p0381b111ty. deK§ n KP if and only if
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dyyy <OVIEED N, 4

=0 VIeEEY A¢,, and y9d<0.

This is simpler than the corresponding formulation in the original system of
Coordinates, as can be seen in (3.1). Let us mention that a contrary effect is
observed for some relationships. For example, the simplest rule for starting

Points p¢+1 — x® corresponds to
gith = B+ 1) pz)

0 the variable system of coordinates.

1.2. Elimination of equality constraints. The problem LP can be reduced to
4 problem with inequality constraints only by means of the Gauss elimination
of variables applied to system (L.1). A similar effect is achieved if Cr = E® for
Svery i in all subproblems LLP(k) or, equivalently, C; = E® for k = 1. The
OTmer method reduces the dimension of the linear programming problem and
allows us 10 yse a simplified form of the algorithm but requires a considerable
dmount of computations for the elimination and for the transformation of the
final sofution back to the original system of coordinates. In the latter method

We avoid these, but in every iteration deal with the vector of variables of full
Imension.

1.3. Determination of d®, v' and E® in Part A. In the general framework
of inner search methods there is a considerable freedom of choice for d®, E®
and v, Restrictions only result from the general features of methods of
admissible directions and conditions of finite convergence. Below we give a few
More detailed rules which have already been tested to an extent.

Typically, in Part A, v =x¢~V, E® has n elements and E§ = E®,
.oreover, E® consists of constraints which were active in one of the previous
Uerations. An exchange of E® occurs if A X0 = b, for some je E; j then enters
E¢+u place of the oldest element of E® such that E/* Y is independent. To
avoid zigzagging, we may put E¥*V = E® U {j} if A ; is linearly dependent on
L <n vectors A, 1€ EP, or is close to it, and j was active in some previous
lterations, Alternatively, the checking algorithm is then activated. As an
“Xample, consider a two-sided constraint b; < Ax <bj, bj <bj. If the
UPper and lower constraints are alternately active in several successive
lterations, then both enter the current set E® and remain there for a fixed
Qumber of jterations. The starting point v is then shifted into the relative
Mterior of the admissible set.

Search directions d” in Part 4 are linear combinations of a vector
¥ Pointing into the relative interior of the cone K and a descent direction 1,

d® = ly+(1—-2A)n, Ai20.

BelOW, vectors with bars have the meaning as in (7.1) and (7.2). For example, we
Can take :

F=(=1,-1,..., =1)T if E® = E®.
This choice for 7 gives the best results if the vectors A,, le E®, have
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» - (] T "
approximately equal norms. For # we can take —a” (then 7 = — BOB® y@")
or, in the variable system of coordinates, a vector 7, 7; = —J,, for every i,
where J;, is the Kronecker symbol and p is determined by

[y®]? = max [y“7,
l

[y is the I-th element of . The coefficient A may be determined by means of
a rough optimization. )

7.4. Starting points in Part B. The algorithm of Part B has a better rate of
convergence if the starting points v® are situated in w° not far from the axis
connecting the optimal solution with the centre of w. In testing computations
a constant starting point was used, v = const, constructed as a linear
combination of the points x obtained in the preceding algorithm of Part A.

8. Conclusions. The conditions of finiteness of algorithms of Part A (Sec-
tion 4) are the main theoretical result of this paper. The theorems on finite
convergence of algorithms of Part 4 and Part B (Sections 3-5) create
a framework for the construction of various practical inner search methods.
A few suggestions in this direction have been given in Section 7. Although the
computational experience with inner search is fragmentary by now, the results
show that it works better than simplex in linear problems in which the search
paths of simplex have many vertices per unit of length, especially if the
difference ¥—n is large, where V'is the number of vertices. This is normal if the
number of inequality constraints M is much greater than n. Simplex methods
prevail for large n and small M —n, especially when the size of the admissible
set varies by many orders of magnitude along different axes of any smallest
basis which spans the admissible set. A thorough comparison of inner search
with simplex and related methods requires more computational experience and
will be the subject of a future work.
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