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A GENERALIZATION OF BRANCH WEIGHT CENTROIDS*

Abstract. The weight of a point p in a finite aligned space (X, %) is defined as
wt(p) = ax{|K| p¢K and Ke ¥}

and the centroid of (X, %) is the set of points with the minimum weight. Wc prove that every
Centroid is convex and it is a free set in a convex geometry. We define the centroid of a graph G
as the centroid of the monophonic alignment of G and we show that the centroid of a connected
chordal graph induces a complete subgraph.

1. Introduction. In a simple connected graph G =(V, E), the distance
!?etween vertices u and v, denoted by d(u, v), is the smallest number of edges
In a path connecting u and v. Then the distance of vertex u is defined by

d(u) =) d(u, v),
veV
‘and the median of G is the set of those vertices v for which d(v) is minimal.
If T is a tree and ue V(T), then the branch weight of u, denoted by
bw (u), is the largest number of vertices in a component of T\ {u}. Evidently,

1) bw(u) = max {|K|: u¢K and Ke ¥4},

Where % is the family of subsets K < V(T) such that the induced subgraph
T[K] is connected. The branch weight centroid of T is the set of vertices for
Which the function bw has the minimal possible value.

- The concept of a branch weight centroid has been extended by Slater in
two different ways so that it can be defined for arbitrary graphs. The
definition of security center [7] is based upon the idea that “vertex u is more
Central than vertex v if u is closer to more vertices than v is”. The accretion
Center [8] is defined using the notion of a sequential labelling. For a tree,
these two centers coincide with the branch weight centroid.

The above notions are closely related to the problem of optimal location
°f facilities in a graph, where an optimal Iocatlon is assumed to be in a sense
“central”.
\‘*—-n
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In this paper we introduce yet another measure of centrality in a very
general case. Namely, we define a centroid for an arbitrary finite set X with a
distinguished family % of “convex” subsets of X. Then we consider the
centroid for the chordless path convexity in any graph and show that, for a
connected chordal graph G, the centroid induces a complete, subgraph of G.
This generalizes the well-known Jordan’s theorem [6].

2. Centroids of aligned spaces. An alignment on a finite set X is a family
%€ of subsets of X, which is closed under intersections and which contains
both X and the empty set. The pair (X, %) is called an aligned space and
members of € are regarded as convex subsets of X. The smallest convex set
containing a set § = X is denoted by c(S) and called a (convex) hull of S.

The weight of a point p in an aligned space (X, %) is defined as

) wt(p) = max {|K|: p¢K and Ke ¥}, |
and then the centroid of (X, €) consists of all points with the smallest weight.
Let us put 4, = {xeX: wt(x) <m} for all meN.
LemMmA 1. The set A,, is convex for all meN.

Proof. Let xec(4,) and suppose that K is a convex set such that x¢ K
and |[K|=wt(x). The set A, is not a subset of K, since otherwise
xec(A,) < c(K) =K. So, there is an element ac A4,,\K and we have

m 2 wt(a) 2 |K| = wt(x).

Thus xe A,,, which completes the proof.

An element p of a set Ye & is an extreme point of Y if Y\{p} is convex.
The set of all extreme points of Y is denoted by ext Y. A set Se % is free if S
=extS (or, equivalently, every subset of S is convex). A convex geometry
(antimatroid [1], extremalily detachable space [4]) is an aligned space sat-
isfying the following additional property:

KREIN-MILMAN PROPERTY. Every convex set is the hull of its extreme
points, :

LemMma 2. If (X, ¥) is a convex geometry, then Ap,\A,-, SextA,.

Proof. Let xeA,\A,.; and suppose on the contrary that
xec(Ay\{x}). If K is a convex set such that x¢ K and |K| = wt(x), thes
there exists an element a # x such that ae 4,,\K, since otherwise

xec(An\{x}) =c(K) =

It is a simple observation (cf. [3]) that, in a convex geometry, if S is a
maximal convex set not containing an element u, then the set Su {u} 18
convex. Using this observation we obtain

S mzwi(a) 2 KU {x} = K|+1=wt()+1,
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which contradicts the assumption wt(x) = m. Therefore x¢c(A,\{x}) and,
Consequently, x is an extreme point of A,,.

THEOREM 1. The centroid of an aligned space (X, %) is always convex.
Moreover, if (X, €) is a convex geometry, then its centroid is a free set.

. Proof. If my = min {wt (p): pe X}, then the centroid of (X, ) coincides
with the set Ap,- By Lemma 1, A4, is convex.

If (X, %) is a convex geometry, then, according to Lemma 2,
Ao\ Amy-1 _extA

Smce Apy-1 =@, we have A
true. .

3. Centroids of graphs. Let G be a simple graph (undirected without
loops and multiple edges). A path P in G is chordless if the only pairs of
vertices in P that are adjacent in G- are consecutive along P. A set K of
vertices is monophonically convex if K contains every vertex on every
chordless path between vertices in K. A graph G is chordal if it contains no
Cycle of length: greater than 3 as an induced subgraph.

TuEOREM 2 (Jamison [2]). The monophonic alignment of a graph G is a
Convex geometry if and only if G is chordal.

A vertex v is called simplicial if its neighborhood induces a complete
Subgraph. It is not difficult to see that v is an extreme point of a monopho-
nically convex set K if and only if v is simplicial in G [K] (the graph induced
by K). We now define a centroid of a graph G to be the centroid of the
Mmonophonic alignment of G. Note that if G is a ‘tree, then the centroid
defined above coincides with the branch weight centroid. This follows from
the fact that in trees monophonically convex sets are exactly connected
Subgraphs.

THEOREM 3. The centroid of a graph G is a monophonically convex set.
Moreover, if G is a connected chordal graph, then the centroid of G is a
Complete subgraph.

Proof. By Theorems 1 and 2, the centroid of G is monophonically
Convex, and if G is chordal, it is a free set in the monophonic alignment of G.
Moreover, it is easy to see that a connected graph, whose every vertex is
Simplicial, must be complete.

CoroLLARY (Jordan [6]). The branch weight centroid of a tree consists of
One pertex or two adjacent vertices. '

Zelinka proved in [9] that branch weight centroids and medians coincide

1 trees. The graph in Fig. 1 shows that, in general, centroids and medians
May be different.

mg < €Xt Ay,. The converse inclusion is always
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Fig. 1. A graph with the median {v,, v,} and the centroid {v,}

4. Conclusions. If in the above definition of convexity on graphs we
replace “chordless” by “shortest”, we get the geodesic alignment, which may
appear to be a more natural notion of convexity. However, the one we prefer
is often more useful. For example, if the geodesic alignment of G is a convex
geometry, then it coincides with the monophonic alignment of G (cf. [2])
Moreover, it was shown [5] that, for the monophonic alignment in any
graph G, the Helly number equals the size of a maximum clique of G, while
even bipartite graphs can have arbitrarily large Helly numbers in the geodesic
alignment. ' '

Although we concentrated our attention on graphs, discussion in Section
2 leads to an easy description of centroids in other convex geometries such
as order and semilattice alignments or finite subsets of Euclidean space.

We conclude this paper with three standard problems in the area of
investigation of “central” subgraphs of a graph:

1. Which graphs may occur as centroids?

2, Which graphs are selfcentroidal?

3. Describe centroids in particular classes of graphs.

Some answers to these problems will appear elsewhere.

Remark. The author is indebted to the referee for his improvements-
The referee has suggested the following interesting problem:

In a convex geometry X, define recursively

J"H(X) = JYX)\ext (J"(X)), where J°(X)=X.

The set J"(X), non-empty for the largest n, is a free set and also consists of
very “central” points. How does this compare with the branch weight
centroid?

Fig. 2. A tree with the centroid {v;} and the set JE(V(T) = {v,}
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. It is not hard to see that in general the above notion of centrality is
different from the one we have introduced. Moreover, the example in Fig. 2
shows that even in trees these two concepts do not coincide.
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