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Abstract

A graph property is any nonempty isomorphism-closed class of sim-
ple (finite or infinite) graphs. A graph property P is of finite character

if a graph G has a property P if and only if every finite induced sub-
graph of G has a property P . Let P1,P2, . . . ,Pn be graph properties
of finite character, a graph G is said to be (uniquely) (P1,P2, . . . ,Pn)-
partitionable if there is an (exactly one) partition {V1, V2, . . . , Vn}
of V (G) such that G[Vi] ∈ Pi for i = 1, 2, . . . , n. Let us denote
by R = P1◦P2◦ · · · ◦Pn the class of all (P1,P2, . . . ,Pn)-partitionable
graphs. A property R = P1◦P2◦ · · · ◦Pn, n ≥ 2 is said to be reducible.
We prove that any reducible additive graph property R of finite charac-
ter has a uniquely (P1,P2, . . . ,Pn)-partitionable countable generating
graph. We also prove that for a reducible additive hereditary graph
property R of finite character there exists a weakly universal countable
graph if and only if each property Pi has a weakly universal graph.
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1. Introduction

In this paper we deal with the generators of reducible graph properties of fi-
nite character and their relations to uniquely partitionable countable graphs.
In general, we follow standard graph terminology (see e.g. [9]). Let us denote
by Iω, I and Iconn the class of simple countable graphs, simple finite graphs
and simple finite connected graphs, respectively. All our considerations can
be done for arbitrary infinite graphs, however, in order to avoid formal set-
theoretical problems, we shall consider only countable infinite graphs. More-
over, we assume that the vertex set V (G) of a graph G is a subset of a given
countable set. A graph property P is any isomorphism-closed nonempty sub-
class of Iω. It means that investigating graph properties, in principle, we
restrict our considerations to unlabeled graphs. We also say that a graph G

has the property P if G ∈ P. Let P1,P2, . . . ,Pn be graph properties, a (ver-
tex) (P1,P2, . . . ,Pn)-partition (colouring) of a graph G = (V,E) is a par-
tition {V1, V2, . . . , Vn} of V such that each partition class Vi induces a sub-
graph G[Vi] having property Pi. If a graph G possesses a (P1,P2, . . . ,Pn)-
partition, we say that G is (P1,P2, . . . ,Pn)-partitionable. Let us denote
by R = P1◦P2◦ · · · ◦Pn the class of all (P1,P2, . . . ,Pn)-partitionable graphs.
A property R = P1◦P2◦ · · · ◦Pn, n ≥ 2 is said to be reducible, a property
P which cannot be expressed in the form P = P1◦P2◦ · · · ◦Pn, n ≥ 2 is
said to be irreducible. For convenience, we allow empty partition classes
in {V1, V2, . . . , Vn}. An empty partition class induces the null graph K0 =
(∅, ∅) ∈ I. If for each i = 1, 2, . . . , n, the property Pi is the property O of
being edgeless, we have a proper n-colouring, thus reducibility can be con-
sidered as generalization of n-colourability. Many other examples, references
and results on generalized colourings of finite graphs may be found e.g. in
the survey [1].

In 1951, de Bruijn and Erdős proved that an infinite graph G is k-
colourable if and only if every finite subgraph of G is k-colourable. An
analogous compactness theorem for generalized colourings was proved in [6].
The key concept for the Vertex Colouring Compactness Theorem VCCT [6]
is that properties are of finite character. Let P be a graph property, P is of
finite character if a graph in Iω has the property P if and only if each its
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finite vertex-induced subgraph has the property P. It is easy to see that if
P is of finite character and a graph has the property P then so does every
induced subgraph. A property P is said to be induced-hereditary if G ∈ P
and H ≤ G imply H ∈ P, that is P is closed under taking induced sub-
graphs. Thus properties of finite character are induced-hereditary. However
not all induced-hereditary properties are of finite character; for example the
graph property Q of not containing a vertex of infinite degree is induced-
hereditary but not of finite character. Let us also remark that every property
which is hereditary with respect to every subgraph (we say simply heredi-

tary) is induced-hereditary as well. A property P is said to be additive if
it is closed under taking disjoint union of graphs.The properties of being
edgeless, of maximum degree at most k, Kn-free, acyclic, complete, perfect,
etc. are additive properties of finite character. Let us denote by M

af the
class of all additive graph properties of finite character. Throughout this
paper all graph properties, which are considered, are additive graph prop-
erties of finite character, all such properties can be characterized by finite
connected minimal forbidden subgraphs (see [6, 11]. The compactness theo-
rem for (P1,P2, . . . ,Pn)-partitions (colourings), where the Pi’s are of finite
character, have been proved using Rado’s Selection Lemma in [6]:

Theorem 1 (VCCT) [6]. Let G be a graph in Iω and let P1,P2, . . . ,Pn be

graph properties of finite character. Then G is (P1,P2, . . . ,Pn)-partitionable

if every finite induced subgraph of G is (P1,P2, . . . ,Pn)-partitionable.

This theorem implies that if the graph properties P1,P2, . . . ,Pn are of finite
character, then also the reducible property R = P1◦P2◦ · · · ◦Pn, n ≥ 2 is
of finite character. A graph G of order at least n is said to be uniquely

(P1,P2, . . . ,Pn)-partitionable if there is exactly one (unordered) P1,P2, . . . ,

Pn-partition. The class of all uniquely (P1,P2, . . . ,Pn)-partitionable graphs
will be denoted by U(P1◦P2◦ · · · ◦Pn). The binary operation “◦” of additive
and hereditary properties of finite graphs have been considered in details in
[2, 3]. For technical reasons we consider also the property Θ = {K0} being
the smallest graph property in the lattice (M af ,⊆) of all additive induced-
hereditary properties of finite character partially ordered by set-inclusion
(see [1, 14]). More details on the lattices of hereditary properties may be
found in [1] and in Section 3. The properties Iω and Θ of finite character
are said to be trivial, since for every property P ∈ M

af , Θ◦P = P◦Θ = P
and Iω

◦P = P◦Iω = Iω.
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Some basic properties of infinite countable uniquely partitionable graphs
with respect to additive graph properties of finite character, based on The-
orem 1, are presented in Section 2.

As it have been proved in [15], if R = P1◦P2◦ · · · ◦Pn is the unique fac-
torization of the additive property R of finite character, then there exists
a countable uniquely (P1,P2, . . . ,Pn)-partitionable graph G, which ”‘gen-
erates”’ R. We will present more details and apply this result to show the
existence of weakly universal graphs for reducible graph properties of finite
character in Section 3. We conclude this paper with an open problem on
universal graphs.

2. Preliminary Results

We will need some more notions and preliminary results.

The following proposition summarises the basic properties of infinite
uniquely partitionable graphs. We omit here the simple proofs, which are
the same as the proofs for finite uniquely colourable graphs (see [10] and
[4, 12]).

Proposition 1. Let P1,P2, . . . ,Pn, n ≥ 2, be any nontrivial additive graph

properties of finite character, let G be a uniquely (P1,P2, . . . ,Pn)-partitio-
nable graph and let {V1, V2, . . . , Vn} be the unique (P1,P2, . . . ,Pn)-partition
of G, n ≥ 2. Then

1. G 6∈ P1◦P2◦ · · · ◦Pj−1◦Pj+1◦ · · · ◦Pn, for every j = 1, 2, . . . , n,

2. for {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n} the set Vi1 ∪ Vi2 ∪ · · · ∪ Vik induces

a uniquely (Pi1◦Pi2◦ · · · ◦Pik)-partitionable subgraph of G,

3. for every j = 1, 2, . . . , n the graph Gj
w obtained from G by adding a

vertex w and edges joining w to vertices of the set Vi, i 6= j, such

that G[Vi ∪ {w}] 6∈ Pi for i = 1, 2, . . . , j − 1, j + 1, . . . , n, is uniquely

(P1,P2, . . . ,Pn)-partitionable and {V1, . . . , Vj∪{w}, . . . , Vn} is its unique

(P1,P2, . . . ,Pn)-partition,

4. let H ∈ P1◦P2◦ · · · ◦Pn, V (H) ∩ V (G) = ∅ and {W1,W2, . . . ,Wn} be

a (P1,P2, . . . ,Pn)-partition of V (H). Let the graph GH = (V (G) ∪
V (H), E(G)∪E(H)∪E∗) be obtained from G ∪H by adding edges so that

for every j = 1, 2, . . . , n and for each w ∈ Wj GH [V (G) ∪ {w}] = Gj
w,

then GH is uniquely (P1,P2, . . . ,Pn)-partitionable and {V1 ∪ W1, V2 ∪
W2, . . . , Vn ∪ Wn} is its unique (P1,P2, . . . ,Pn)-partition.
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To characterize the existence of uniquely partitionable graphs the notion of
divisibility for the binary operation “◦” on M

af is used in a natural way.

Given any two graph properties R,P ∈ M
af , we say that P is a divisor

of R, if R = P◦Q for some property Q ∈ M
af , we can also say that P

divides R and that R is divisible by P.

Let P,Q ∈ M
af . We say that the additive induced-hereditary property

D of finite character is a greatest common divisor of P and Q, D = gcd(P,Q)
if

(1) D divides P and D divides Q;

(2) if D
′

∈ M
af divides P and D

′

divides Q, then D
′

divides D.

Obviousely, a non-trivial additive induced-hereditary property P of finite
character is irreducible, if the only additive induced-hereditary properties
which divide P are Θ and P itself and reducible otherwise.

The introduced notions are well-defined since any additive graph prop-
erty of finite character can be expressed as a product of irreducible additive
induced-hereditary properties of finite character in a unique way.

Theorem 2 [11]. Every nontrivial additive property of finite character is

uniquely (up to the order of factors ) factorizable into finite number of irre-

ducible graph properties belonging to M
af .

Hence any reducible property R ∈ M
af can be written as R = P1

e1
◦P2

e2

◦ · · · ◦Pn
en , where P1,P2, . . . ,Pn are distinct irreducible properties from M

af

and e1, e2, . . . , er are positive integers. Using the symbol P0 to denote the
property Θ, one can clearly use this type of factorization to describe the
greatest common divisor of any two properties similar to the way it is done
in Number Theory.

The following result is a classical corollary of the proof of Unique Fac-
torization Theorem for finite graphs. It have been presented in [11].

Theorem 3 [11]. Let R = P1◦P2◦ · · · ◦Pn, n ≥ 2 be a factorization of a

reducible property R ∈ M
af into irreducible factors. Then U(P1◦P2◦ · · · ◦Pn)

6= ∅ and moreover if H ∈ P1◦P2◦ · · · ◦Pn ∩I, then H is an induced subgraph

of some uniquely (P1,P2, . . . ,Pn)-partitionable graph G.

Based on the results presented in [3] and [11] the following theorem holds.
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Theorem 4. Let P1,P2, . . . ,Pn, n ≥ 2, be any non-trivial additive graph

properties of finite character. Then there exists a uniquely (P1,P2, . . . ,Pn)-
partitionable graph if and only if for each i, j ∈ {1, 2, . . . , n} with i 6= j we

have that gcd(Pi,Pj) = Θ or Pi = Pj is an irreducible property.

Proof. The proof is going in the same way as in [3]. We recall here
the main parts. It is enough to consider n = 2 only, since the presented
arguments can be repeated in the case n ≥ 3, analogously.

Suppose that G is a uniquely (P1,P2)-partitionable graph and there
exists an irreducible property Q such that P1 = Q◦P

′

1 and P2 = Q◦P
′

2 and
at least P

′

1 6= Θ. Let {V1, V2} be any (P1,P2)-partition of the graph G.
Since P1 = Q◦P

′

1 and P2 = Q◦P
′

2 let {V11, V12} ({V21, V22}) be the (Q,P
′

1)-
partition ((Q,P

′

2)-partition) of G[V1] (G[V2]). Then we have at least the
following two different (P1,P2)-partitions {V11 ∪ V12, V21 ∪ V22} and {V21 ∪
V12, V11 ∪ V22} of G because we can assume that V11, V21 and V12 are not
empty.

To prove the converse, Theorem 3 can be applied if P1 = P2 is an
irreducible property. Suppose that gcd(P1,P2) = Θ. By Theorem 2 let P1 =
P11◦P12◦ · · · ◦P1n and P2 = P21◦P22◦ · · · ◦P2m be the unique factorizations of
P1 and P2 into irreducible factors. From our assumption that gcd(P1,P2) =
Θ it follows that for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m} P1i 6= P2j .

Let us take a uniquely (P11, . . . ,P1n,P21, . . . ,P2m)-partitionable graph
G, which exists by Theorem 3. Let {V11, . . . , V1n, V22, . . . , V2m} be the
unique vertex (P11, . . . ,P1n,P21, . . . ,P2m)-partition of G. Following [3] we
can construct a (P11, . . . ,P1n,P21, . . . ,P2m)-partitionable graph H with an
appropriate vertex partition {W11,W12 . . . ,W1n,W21,W22, . . . ,W2m} with
H[Wki] ∈ Pki such that the graph GH constructed by 4 of Proposition 1 is
uniquely (P1,P2)-partitionable.

3. Generators and Universal Graphs of Reducible Properties

Given a graph property P, a graph U ∈ P is called universal in P if each
member of P is isomorphic to an induced subgraph of U . R. Rado first
remarked that among the countable graphs there exists a universal one,
often called ”‘the Rado graph”’ R. However there are properties of finite
character which do not possess a universal graph. For example the class of
graphs which do not contain a subgraph isomorphic to C4 do not contain
any universal graph. For more details see e.g. [5].
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For hereditary graph properties of finite character, a graph W ∈ P is called
weakly universal in P if each member of P is isomorphic to a subgraph
of W . In practice the two notions of universality for hereditary properties
behave similarly. A universal graph is evidently weakly universal, and in
practice proofs of the nonexistence of a universal graph can often be made
by excluding weakly universal graphs (see [5]).

To prove the Unique Factorization Theorem in [15] the Formal Concept
Analysis (briefly FCA) was used. FCA was introduced by R. Wille in 1982
and since then has grown rapidly (for a comprehensive overview see [8]).
It is quite easy to prove that the sets M

af of all additive graph proper-
ties of finite character) partially ordered by set inclusion, forms a complete
distributive lattice. The lattices of hereditary graph properties have been
studied intensively, references may be found in [1, 14]. In order to proceed
we need to recall some formal concepts of FCA according to a fundamental
book of B. Ganter and R. Wille [8].

Definition 1. A formal context K := (O,M, I) consists of two sets O and
M and a relation I on the product O × M . The elements of O are called
the objects and the elements of M are called the attributes of the context.

For a set A ⊆ O we define

A′ := {m ∈ M : gIm for all g ∈ A}.

Analogously, for a set B ⊆ M we define

B′ := {g ∈ O : gIm for all m ∈ B}.

A formal concept of the context (O,M, I) is a pair (A,B) with A ⊆ O,B ⊆
M,A′ = B and B′ = A.

We call A the extent and B the intent of a formal concept (A,B).
L(O,M, I) denotes the set of all formal concepts of the context (O,M, I).

If (A1, B1) and (A2, B2) are formal concepts of a given context and
A1 ⊆ A2 (which is equivalent to B2 ⊆ B1), we write (A1, B1) ≤ (A2, B2).

For an object g ∈ O we write g′ = {m ∈ M : gIm} and γg for the object

concept (g′′, g′), where g′′ = {{g}′}′.

Let us mention that by the Basic Theorem on Concept Lattices [8] the set
L(O,M, I) of all formal concepts of the context K = (O,M, I) partially
ordered by the relation ≤ (see Definition 1) is a complete lattice, called the
concept lattice of the context K.
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Let us present additive graph properties of finite character as formal concepts
in a given formal context. Using FCA we can proceed in the following way.
Let us define a formal context K = (Iω, Iconn, I) by setting objects to be
the class of countable simple graphs and for each connected finite simple
graph F ∈ Iconn let GIF if nad only if the graph G ∈ Iω does not contain
any induced subgraph isomorphic to F . We can immediately observe the
following:

The formal concepts of the formal context K = (O = Iω,M = Iconn, I)
are additive graph properties of finite character and the concept lattice
(L(O,M, I),≤) is isomorphic to the lattice (M af ,⊆). Moreover, for each
formal concept P = (A,B) there is an object - a countable graph G ∈ Iω

such that P = γG = (G′′, G′).
For example: let us denote by D1 the property ”‘to be a forest”’ and by

Tω the infinite ω-regular tree, then D1 = γTω, obviously if U is a universal
graph in P, then P = γU .

It is easy to verify that the extent of any formal concept (A,B) of K =
(Iω, Iconn, I) forms an additive graph property P = A of finite character.
Obviously, each countable graph G = (V,E) in the context K leads to an
“object concept” γG = (G′′, G′). On the other hand, because of additivity,
the disjoint union of all finite graphs having a given additive property P ∈
M

af is a countable infinite graph K satisfying γK = (P, I conn −P).
In order to describe additive induced-hereditary properties contained in

I, mainly two different approaches were used: a characterization by gener-
ating sets and/or by minimal forbidden subgraphs (see [1] and [7]). While
the extent A of a formal concept (A,B) ∈ L(O,M, I) is related to a graph
property P, the intent B consists of forbidden connected subgraphs of P.
For a given countable graph G ∈ Iω let us denote by age(G) the class of all
finite graphs isomorphic to finite induced-subgraph of G (see e.g. [16]). The
following result was proved in [15]:

Theorem 5. Let R ∈ M
af be a nontrivial reducible graph property of fi-

nite character and P1◦P2◦ · · · ◦Pn be its unique factorization into irreducible

properties. Then there exists a uniquely (P1,P2, . . . ,Pn)-partitionable infi-

nite countable graph G such that γG = (R, I conn −R) and age(G) = R∩I.

The proof is based on the following facts. Following E. Scheinerman [17],
a composition sequence of a class P of finite graphs is a sequence of finite
graphs H1,H2, . . . ,Hn, . . . such that Hi ∈ P,Hi < Hi+1 for all positive
integers i and for all G ∈ P there exists a j such that G ≤ Gj . We can
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easily find a composition sequence H1,H2, . . . ,Hn, . . . of R ∩ I consisting
of finite uniquely R-decomposable graphs. Without loss of generality, we
may assume that if i < j, then V (Hi) ⊂ V (Hj). Let V (H) =

⋃
i V (Hi)

and {u, v} ∈ E(H) if and only if {u, v} ∈ E(Hj) for some j. It is easy to
see that age(H) = R ∩ I, implying γH = (R,H ′). Let us remark that,
according to the Theorem 1, H is uniquely (P1,P2, . . . ,Pn)-partitionable
since if {Vj1 , Vj2 , . . . , Vjn

}, Vji
6= ∅ is the unique (P1,P2, . . . ,Pn)-partition

of Hj, then {U1, U2, . . . , Un}, where Uk =
⋃

j Vjk
, k = 1, 2, . . . , n, is the

unique (P1,P2, . . . ,Pn)-partition of H. Indeed, this is because the existence
of other (P1,P2, . . . ,Pn)-partition of H would imply the existence of other
(P1,P2, . . . ,Pn) partition of some Hi and it provides a contradiction.

Based on Theorem 5 we are ready to prove our main result:

Theorem 6. Let R ∈ M
af be a nontrivial reducible hereditary graph prop-

erty of finite character and P1◦P2◦ · · · ◦Pn be its unique factorization into

irreducible properties. Then there exists a weakly universal uniquely (P1,

P2, . . . ,Pn)-partitionable infinite countable graph H in R if and only if for

each i ∈ {1, 2, . . . , n} there is a weakly universal graph Hi in Pi.

Proof. Let G be a uniquely (P1,P2, . . . ,Pn)-partitionable infinite count-
able graph such that γG = (R, Iconn −R), which exists by Theorem 5 and
let {V1, V2, . . . , Vn} be the unique (P1,P2, . . . ,Pn)-partition of V (G), n ≥ 2.
Let H be the weakly universal graph in R. Since H ∈ P1◦P2◦ · · · ◦Pn take
V (G)∩ V (H) = ∅ and let {W1,W2, . . . ,Wn} be a (P1,P2, . . . ,Pn)-partition
of V (H). Then the graph GH defined in 4 of Proposition 1 is uniquely
(P1,P2, . . . ,Pn)-partitionable and weakly universal in R. Moreover, it is
obvious, that the graphs Hi = GH [Vi ∪ Wi] are weakly universal graphs in
Pi, i = 1, 2, . . . , n, since otherwise H would be not universal in R.

On the other hand, let the graphs Hi be weakly universal graphs in
Pi, i = 1, 2, . . . , n and let H ′ = H1 + H2 + · · · + Hn be the join (the graph
obtained from disjoint union of Hi’s adding all possible edges between its
different components) of these weakly universal graphs. Let us apply the
construction given in 4 of Proposition 1 for Wi = V (Hi). Then the graph
H = GH′ is a weakly universal uniquely (P1,P2, . . . ,Pn)-partitionable infi-
nite countable graph in R, since each graph in R is a subgraph of H ′.
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4. Conclusion

It is worth to mention that γH = (P,H ′) does not imply, in general, that
H is a universal graph for P. Let us define a binary relation ∼= on Iω

by G1
∼= G2 whenever γG1 = γG2 in the context K. Obviously, ∼= is an

equivalence relation on Iω. An additive graph property of finite character
P has a universal graph in P if the corresponding equivalence class {Gi :
γGi = (P, Iconn − P) with respect to the equivalence relation ∼= has a
maximal element with respect to the partial order ≤ - ”‘to be an induced
subgraph”’. As it is known, to answer this question is very difficult (see [5]).
Based on Theorem 6 we have the following conjecture:

Conjecture 1. Let R ∈ M
af be a reducible graph property of finite charac-

ter and P1◦P2◦ · · · ◦Pn be its unique factorization into irreducible properties.
Then there exists a universal uniquely (P1,P2, . . . ,Pn)-partitionable infinite
countable graph H in R if and only if for each i ∈ {1, 2, . . . , n} there is a
universal graph Hi in Pi.
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hereditary graph properties, Discuss. Math. Graph Theory 17 (1997) 5–50.

[2] I. Broere and J. Bucko, Divisibility in additive hereditary graph properties and

uniquely partitionable graphs, Tatra Mt. Math. Publ. 18 (1999) 79–87.
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characterizations of induced-hereditary and compositive properties, J. Graph
Theory 49 (2005) 11–27.

[8] B. Ganter and R. Wille, Formal Concept Analysis - Mathematical Foundation
(Springer-Verlag Berlin Heidelberg, 1999).

[9] R.L. Graham, M. Grotschel and L. Lovasz, Handbook of Combinatorics (El-
sevier Science B.V., Amsterdam, 1995).

[10] F. Harary, S.T. Hedetniemi and R.W. Robinson, Uniquely colourable graphs,
J. Combin. Theory 6 (1969) 264–270.
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