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Abstract

In this paper, we consider the intersection graph IΓ(Zn) of gamma sets
in the total graph on Zn. We characterize the values of n for which IΓ(Zn)
is complete, bipartite, cycle, chordal and planar. Further, we prove that
IΓ(Zn) is an Eulerian, Hamiltonian and as well as a pancyclic graph. Also
we obtain the value of the independent number, the clique number, the
chromatic number, the connectivity and some domination parameters of
IΓ(Zn).
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1. Introduction

In recent years, the interplay between ring structure and graph structure are
studied by many researchers. For such kind of study, researchers define a graph
whose vertices are set of elements of a ring or set of ideals in a ring and edges are
defined with respect to a condition on the elements of the vertex set. A graph is
defined out of non-zero zero divisors of a ring and is called zero-divisor graph of a
ring [3]. Interesting variations are also defined like total graphs [2], unit graphs [4]
and comaximal graphs [11] associated with rings. Also graphs are defined out
of ideals of a ring, namely annihilating-ideal graph of a ring, intersection graph
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of ideals of rings [6, 7] etc. The graphs constructed from rings help us to study
the algebraic properties of rings using graph theoretical tools. We can translate
some algebraic properties of a ring to graph theoretic language and then the
geometric properties of graphs help us to explore some interesting results related
to algebraic structures of rings. Now, in this paper, we construct a graph called
intersection graph of gamma sets in the total graph of a commutative ring R
with vertex set as collection of all γ-sets of the total graph of R and two distinct
vertices A and B are adjacent if and only if A ∩ B 6= ∅. This graph is denoted
by IΓ(R). We investigate the interplay between the graph-theoretic properties of
IΓ(Zn) and the ring-theoretic properties of Zn.

Let A be a set and let S be a collection of nonempty subsets of A. The
intersection graph of S is the graph whose vertices are the elements of S and where
two vertices are adjacent if the subsets have a nonempty intersection [12]. Let R
be a commutative ring, Z(R) be its set of zero-divisors. Anderson, Badawi [2]
introduced the concept of the total graph corresponding to a commutative ring.
For futher research on total graphs, one can refer [1, 13]. The total graph of
R, denoted by TΓ(R), is the undirected graph with vertices R, and for distinct
x, y ∈ R, the vertices x and y are adjacent if x + y ∈ Z(R). In this paper, we
consider the intersection graph IΓ(R) of gamma sets in TΓ(R), where R = Zn.

Let G = (V,E) be a graph. We say that G is connected if there is a path
between any two distinct vertices of G. Let G1 and G2 be two graphs. The
union of G1 and G2, which is denoted by G1 ∪ G2, is a graph with vertex set
V (G1) ∪ V (G2) and edge-set E(G1) ∪ E(G2). A graph G of order m ≥ 3 is
pancyclic if G contains cycles of all lengths from 3 to m. A set of vertices in
G is independent if no two vertices in the set are adjacent. The independent

number β0(G), is the maximum cardinality of an independent set in G. The
clique number ω(G), is the number of vertices in a largest complete subgraph of
G. For basic graph theory parameters, we refer to reader [5, 8, 9].

A subset S of V is called a dominating set if every vertex in V −S is adjacent
to at least one vertex in S. A dominating set S is called a perfect domination set

if every vertex in V − S is adjacent to exactly one vertex in S. The domination

number γ(G) is defined to be the minimum cardinality of a dominating set in
G and the corresponding dominating set is called as a γ-set of G. In a similar
way, we define the perfect domination number γp(G), independent dominating

number i(G), total domination number γt(G), connected domination number

γc(G) and clique domination number γcl(G). A graph G is called excellent if for
every vertex v ∈ V (G) there is a γ-set S containing v. A domatic partition of G
is a partition of V (G), all of whose class are dominating sets in G. The maximum
number of classes of a domatic partition of G is called the domatic number of G
and is denoted by d(G). A graph G is called domatically full if d(G) = δ(G) + 1
and G is called well-covered if β0(G) = i(G). For basic domination parameters,
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we refer to reader [10].

The purpose of this article is to study the basic graph theoretical properties
of the new graph IΓ(Zn). In Section 2, we obtain the degree of each vertex,
diameter and girth of IΓ(Zn). Also we characterize the values of n for which
IΓ(Zn) is complete, bipartite, cycle, chordal and planar. In Section 3, we prove
that IΓ(Zn) is an Eulerian, Hamiltonian and pancyclic graph. In Section 4,
we obtain the values of independent number and clique number of IΓ(Zn). In
Section 5, we obtain the values of chromatic numbers of IΓ(Zn) and characterize
the values of n for which IΓ(Zn) is a perfect graph. Also the intersection graph
of gamma sets in TΓ(Zn) represent very reliable networks, which means that the
vertex connectivity k(IΓ(Zn)) equals the degree of regularity of IΓ(Zn). In Section
6, we find several domination parameters of IΓ(Zn).

Throughout this paper, we denote the intersection graph of gamma sets in
TΓ(Zn) as IΓ(Zn) for a positive integer n. Also p1 denotes the smallest prime
divisor of n, |S| denotes number of elements in S, 〈S〉 denotes the subgraph
induced by S, Z+ denotes the set of all positive integers and Km denotes the
complete graph with m vertices. For convenience, we use the notation x or y to
denote an element of Zn and u, v or w for the vertices of IΓ(Zn). (i.e, u, v and w
represent the γ-sets of TΓ(Zn)).

The following results are part of a paper submitted for publication [14]. In
order to understand them, they are presented along with the proof.

Lemma 1. Let n > 1 be an integer. Then

(i) TΓ(Zn) is regular if and only if n is even. Moreover deg(v) = n− φ(n)− 1,
for every v ∈ TΓ(Zn).

(ii) ∆[TΓ(Zn)] = δ[TΓ(Zn)]+1 if and only if n is odd and in this case ∆[TΓ(Zn)] =
n−φ(n). In particular deg(v) = δ if v ∈ Z(Zn) and deg(v) = ∆ if v /∈ Z(Zn).

Theorem 2. Let n be a composite integer and p1 be the smallest prime divisor

of n. Then γ(TΓ(Zn)) = p1.

Proof. Let G = TΓ(Zn). Assume that n = pα1

1 pα2

2 · · · pαm
m , where pi’s are primes

with 2 ≤ p1 < · · · < pm and αi ≥ 1 for 1 ≤ i ≤ m.

Case 1. Let n be even and so p1 = 2. Let x be an even number and y
be an odd number in Zn. Since Z(Zn) contains all the even numbers in Zn,
{x, y} is a dominating set in TΓ(Zn). Since no vertex in TΓ(Zn) has degree n− 1,
γ(TΓ(Zn)) = p1 = 2.

Case 2. Let n be odd. Take r = n−p1
p1

. Note that 0 is adjacent to p1, . . . , rp1
in G and 1 is adjacent to p1 − 1, 2p1 − 1, . . . , rp1 − 1, n− 1. Inductively p1 − 2 is
adjacent to 2, p1 + 2, 2p1 + 2, . . . , (r − 1)p1 + 2, n− p1 + 2 and p1 − 1 is adjacent
to 1, p1 + 1, 2p1 + 1, . . . , (r − 1)p1 + 1, n − p1 + 1. Therefore {0, 1, . . . , p1 − 1} is
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a dominating set in G. Suppose S = {x1, x2, . . . , xp1−1} is a dominating set of
G with p1 − 1 elements. Let ri ≡ xi (mod p1) and R = {r1, r2, . . . , rp1−1}. We
claim that |N [S]| ≤ |N [R]|.

(a) If rj 6= rk for all j 6= k, then |S| = |R|. As mentioned in Lemma 1,
deg(0) = δ and deg(rt) = ∆ for all 0 6= rt ∈ R. If 0 ∈ R, then there exists an
xℓ ∈ S such that deg(xℓ) = δ. In view these remarks, one can conclude that
R contains exactly one vertex of minimum degree and all other vertices are of
maximum degree, where as S may contain more than one vertex with minimum
degree. Thus

(1)
∑

xj∈S

deg(xj) ≤
∑

rj∈R

deg(rj).

We show that |N [rj ] ∩ N [rk]| ≤ |N [xj ] ∩ N [xk]| for all j, k with j 6= k. Let
Ai = {0, pi, 2pi, . . . , n − pi}, for i = 1, . . . ,m. For a ∈ Zn, define NAi

[a] =
−a+Ai, for 1 ≤ i ≤ m. Clearly N [a] = NA1

[a] ∪NA2
[a] ∪ · · · ∪NAm

[a]. Further
N [rj ] ∩ N [rk] = {x : x ∈ NAr

[rj ] ∩ NAs
[rk], r 6= s} and N [xj ] ∩ N [xk] = {x :

x ∈ NAr
[xj ] ∩ NAs

[xk], r 6= s} ∪ {x : x ∈ NAr
[xj ] ∩ NAr

[xk], r 6= 1}. Now we
claim that |NAr

[rj ] ∩NAs
[rk]| = |NAr

[xj ] ∩NAs
[xk]|. Without loss of generality,

assume that r < s. Clearly |NAs
[x]| = | − x + As| =

n
ps
. One may note that for

every consecutive pr elements in the set {−x+As} one element is common with
NAr

[x] and so |NAr
[rj ] ∩ NAs

[rk]| =
n

prps
. Similarly |NAr

[xj ] ∩ NAs
[xk]| =

n
prps

.
Therefore |NAr

[rj ] ∩NAs
[rk]| = |NAr

[xj ] ∩NAs
[xk]| and hence

(2) |N [rj ] ∩N [rk]| ≤ |N [xj ] ∩N [xj ]|.

Thus from |S| = |R| and from equations (1) and (2), we get |N [S]| ≤ |N [R]|.
(b) Now assume that rj = rk for some j, k and j 6= k. Then N [xj ]∩N [xk] =

{x : x ∈ NAr
[xj ] ∩NAs

[xk], r 6= s}∪{x : x ∈ NAr
[xj ]∩NAr

[xk], for all r}. There-
fore |N [S]| ≤ |N [R]|. From this to conclude that S is not a dominating set it is
enough to prove that R is not a dominating set. Note that all elements of R are
less than p1 and there exists one i such that 0 ≤ i ≤ p1 − 1 and i /∈ R. Note that
i /∈ R and N [n − i] = {. . . , i− p1, i, i+ p1, . . .} and so n − i /∈ N [R], i.e., n − i
is not dominated by any of the vertices in R. Thus R is not a dominating set.
Hence γ(TΓ(Zn)) = p1.

The results given below identify all γ-sets in TΓ(Zn) for all values of n.

Theorem 3. Let n be a composite integer and p1 be the smallest prime divisor

of n. A set S = {x1, x2, . . . , xp1} ⊂ V (TΓ(Zn)) is a γ-set of TΓ(Zn) if and only if

xi + lp1 /∈ S for all i = 1, . . . , p1 and l ∈ Z
+.

Proof. Let S = {x1, x2, . . . , xp1} with xi + lp1 /∈ S for all 1 ≤ i ≤ p1. Let
A = {0, p1, 2p1, . . . , n− p1}. Since xj 6= xi + lp1 for all i 6= j, 1 ≤ i, j ≤ p1, the
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cosets xi + A and xj + A are distinct. Note that | − xi + A| = n
p1
. Since each xi

is adjacent to all the elements of the coset −xi +A and |S| = p1, |N [S]| = n and
so S is a dominating set of TΓ(Zn). By Theorem 2, S is a γ-set of TΓ(Zn).

Conversely, assume that S = {x1, x2, . . . , xp1} is a γ-set. Suppose there
exist i 6= j such that xj = xi + lp1 where l ∈ Z

+. From this there exist some
k (0 ≤ k ≤ p1 − 1) such that xm 6≡ k (mod p1) for all xm ∈ S. Then as in the
proof of Theorem 2, S is not a dominating set, which is a contradiction.

Lemma 4. Let p be a prime number. Then the following are true:

(i) γ(TΓ(Zp)) =
p+1
2 .

(ii) Every γ-set of TΓ(Zp) contains 0. Further S = {0, x1, . . . , x p−1

2

}⊂V (TΓ(Zp))

is a γ-set of H if and only if xi 6= 0 and xi 6= −xj for all i 6= j.

2. Basic Properties of IΓ(Zn)

In this section, we study some basic properties of the intersection graph of gamma
sets in TΓ(Zn) and the same is denoted by IΓ(Zn). Actually we characterize, when
IΓ(Zn) is complete, bipartite, cycle, chordal and planar. Also we find the diameter
and girth of IΓ(Zn). Note that if n = 1 or 2, then IΓ(Zn) = K1 and so hereafter
we assume that n > 2. Also note that by Theorem 13, IΓ(Zn) is a connected
graph. First we start the section with the cardinality of the vertex set and the
degree of each vertex of the new graph IΓ(Zn).

Lemma 5. Let n > 2 be any positive integer and p1 be the smallest prime divisor

of n. Then

(i) the number of gamma sets in TΓ(Zn) is given by

|V (IΓ(Zn))| =

{

2
p−1

2 if n = p, where p is a prime number,
( n
p1
)p1 otherwise.

(ii) For any composite integer n, deg(v) = ( n
p1
)p1−1 + ( n

p1
− 1)( n

p1
)p1−2 + ( n

p1
−

1)2( n
p1
)p1−3 + · · ·+ ( n

p1
− 1)p1−1 − 1 for all v ∈ V (IΓ(Zn)). In particular if n

is even, then deg(v) = n− 2 for all v.

(iii) For any prime integer p, the graph IΓ(Zp) = K
2
p−1

2

.

Proof. (i) Suppose n = p for some prime p. By Theorem 3 and Lemma 4, each
element xi 6= 0 in any γ-set of TΓ(Zp) has 2 choices and hence the number of

γ-sets in TΓ(Zn) is equal to 2
p−1

2 . If n 6= p for any prime p, then any γ-set of
TΓ(Zn) contains p1 elements. Note that by Theorem 2, each element xi in any
γ-set of TΓ(Zn) has

n
p1

choices and so the number of γ-sets in TΓ(Zn) is (
n
p1
)p1 .

(ii) Let v = {x1, x2, . . . , xp1} ∈ V (IΓ(Zn)). By the definition of the inter-
section graph, v is adjacent to all the vertices in IΓ(Zn) containing xi for some
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i = 1, . . . , p1. By part (i), there are ( n
p1

− 1)p1−1 vertices in IΓ(Zn) containing x1.

Since there are ( n
p1

− 1)p1−2 vertices in IΓ(Zn) containing both x1 and x2, v is

adjacent to ( n
p1

− 1)p1−1− ( n
p1

− 1)p1−2 = ( n
p1

− 1)( n
p1
)p1−2 new vertices in IΓ(Zn).

Continuing in this way and since IΓ(Zn) is simple, we get required result. If n is
even, then p1 = 2 and so deg(v) = n− 2.

(iii) By Lemma 4, 0 is an element in every γ-set of TΓ(Zp) and so from (i),
the result follows.

Remark 6. Let n be any composite integer, G = IΓ(Zn) and v ∈ V (G). Then
2 ≤ deg(v) ≤ ( n

p1
)p1 − 2.

Proof. Since each vertex v = {x1, . . . , xp1} ∈ V (G) is adjacent to distinct ver-
tices {x1, . . . , xp1−1, xp1 + p1}, {x1 + p1, x2, . . . , xp1}, deg(v) ≥ 2. Also any vertex
v = {x1, . . . , xp1} ∈ V (G) is not adjacent to a vertex u = {x1+p1, . . . , xp1+p1} ∈
V (G) and so deg(v) ≤ |V (IΓ(Zn))| − 2 = ( n

p1
)p1 − 2.

Note that the bounds obtained in the above remark are sharp. For example, the
lower and upper bounds are same in case of n = 4. In the next proposition we
show that, this is the only case where lower and upper bounds are equal.

Proposition 7. For any composite integer n > 2, deg(v) attains either lower or

upper bound of Remark 6 if and only if n = 4.

Proof. When n = 4, 2 = deg(v) = ( n
p1
)p1 − 2 and hence only if part is trivial.

Conversely, assume that deg(v) attains either lower or upper bound of text
Remark 6.

Case 1. Let deg(v) = 2. If n is even, by Lemma 5(ii), deg(v) = n−2 = 2 and
so n = 4. If n is odd, then n ≥ 3p1 where p1 is the smallest odd prime divisor of
n. Since deg(v) = 2, ( n

p1
)p1−1 +( n

p1
− 1)( n

p1
)p1−2 + ( n

p1
− 1)2( n

p1
)p1−3 + · · ·+ ( n

p1
−

1)p1−1 = 3. Note that each term in this expression is positive and ( n
p1
)p1−1 ≥ 9.

Thus there exists no odd positive integer n satisfying this equation.

Case 2. Let deg(v) = ( n
p1
)p1 − 2. If n is even, then deg(v) = n− 2 = (n2 )

2− 2
and so n = 4. If n is odd, then n ≥ 3p1. Since deg(v) = ( n

p1
)p1 − 2,

( n
p1
)p1−1 + ( n

p1
− 1)( n

p1
)p1−2 + ( n

p1
− 1)2( n

p1
)p1−3 + · · ·+ ( n

p1
− 1)p1−1 + 1 = ( n

p1
)p1 .

Note that ( n
p1

− 1)( n
p1
)p1−2 < ( n

p1
)p1−1 − 1, ( n

p1
− 1)p1−1 < ( n

p1
)p1−1 − 1 and each

of the other terms of left hand side is ≤ ( n
p1
)p1−1. Thus ( n

p1
)p1 < p1(

n
p1
)p1−1−1 ≤

( n
p1
)p1 − 1, a contradiction.

Lemma 8. Let n ≥ 4 be any composite integer. Then

(i) IΓ(Zn) is a regular graph.
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(ii) IΓ(Zn) is not a complete graph. In particular, IΓ(Zn) has no vertex of degree

|V (IΓ(Zn))| − 1.

(iii) IΓ(Zn) is a bipartite graph if and only if n = 4.

(iv) IΓ(Zn) is a cycle if and only if n = 4.

Proof. (i) Follows from the fact ascertained in Lemma 5(ii).
(ii) Follows from Remark 6.
(iii) If n = 4, then IΓ(Zn) = K2,2.
Conversely, assume that IΓ(Zn) is complete bipartite and suppose n > 4.

Then n ≥ 3p1 where p1 is the smallest prime divisor of n and so the dis-
tinct vertices v1 = {0, 1, . . . , p1 − 1}, v2 = {0, 1, . . . , p1 − 2, 2p1 − 1} and v3 =
{0, 1, . . . , p1 − 2, 3p1 − 1} form an odd cycle, a contradiction. Therefore n = 4.

(iv) If n = 4, then IΓ(Zn) = C4.
Conversely, if IΓ(Zn) is a cycle, then deg(v) = 2 for all v. Now n = 4 follows

from Proposition 7.

Corollary 9. IΓ(Zn) is a complete graph if and only if n = p for some prime.

Theorem 10. IΓ(Zn) is a chordal graph if and only if n = p for some prime.

Proof. If n = p for some prime, then IΓ(Zn) is complete and so IΓ(Zn) is a
chordal graph.

Conversely, IΓ(Zn) is a chordal graph. Suppose n is a composite integer and
p1 is the smallest prime divisor of n. Then n ≥ 2p1. Clearly the subgraph induced
by the set {{0, 1, . . . , p1−1}, {1, 2, . . . , p1}, {p1, p1+1, . . . , 2p1−1}, {0, p1+1, p1+
2 . . . , 2p1 − 1}} is C4, which is a contradiction.

The following result characterizes the values of n for which IΓ(Zn) is planar. Let
Sk denote the sphere with k handles, where k is a non-negative integer, that is,
Sk is an oriented surface of genus k. The genus of any graph G, denoted g(G),
is the minimal integer ℓ such that the graph can be embedded in Sℓ. A genus 0
graph is called a planar graph and a genus 1 graph is called a toroidal graph. For
details on embedding a graph in a surface, see [15].

Theorem 11. IΓ(Zn) is planar if and only if n ≤ 5.

Proof. If n = 2, 3 or 5, then by Lemma 5(iii), IΓ(Zn) is planar. If n = 4, then
IΓ(Zn) = K2,2 and so planar.

Conversely, assume that IΓ(Zn) is planar. Suppose n > 5. If n is prime,
then clearly IΓ(Zn) is not planar. Suppose n is a composite integer and p1 is the
smallest prime divisor of n. If n is odd, then n ≥ 3p1 and so ( n

p1
)p1−1 ≥ 32 =

9. Now, by Theorem 20 (next section), K5 ⊆ IΓ(Zn) and so, by Kuratowski’s
Theorem, IΓ(Zn) is non-planar. If n is even and n ≥ 10, then ( n

p1
)p1−1 ≥ 5 and

so by Theorem 20, IΓ(Zn) is non-planar. Therefore n is either 6 or 8. In both of
these cases, one can check using the Remark 12 that, IΓ(Zn) is non-planar.
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Remark 12. If n = 6, then we can draw IΓ(Zn) on the surface of a torus and
the same is given in Figure 1. Therefore g(IΓ(Zn)) = 1.

{0, 3} {1, 4}

{1, 2}{0, 5}

{0, 1}

{2, 5}

{3, 4}

{2, 3}

{4, 5}

{0, 3} {1, 4}

{2, 3}

{4, 5}

Figure 1. Embedding of IΓ(Z6) in torus

Theorem 13. For any integer n > 2, the following holds.

(i) gr(IΓ(Zn)) =

{

4 if n = 4,

3 otherwise.

(ii) diam(IΓ(Zn)) ≤ 2. In particular, IΓ(Zn) is connected.

(iii) IΓ(Zn) is self-centered.

Proof. Let p be a prime integer.

(i) Follows from the facts that, IΓ(Zp) is complete and by the proof of (iii)
in Lemma 8.

(ii) If n = p for some prime p, then diam(IΓ(Zn)) = 1. On the other hand,
let u = {x1, . . . , xp1} and v = {y1, . . . , yp1} be two vertices in IΓ(Zn). If xi = yj
for some 1 ≤ i, j ≤ p1, then u and v are adjacent. If xi 6= yj for all 1 ≤ i, j ≤ p1.
Assume that y1 ≡ k (mod p1). By Theorem 3, there is a xi for 1 ≤ i ≤ p1 such
that xi ≡ k (mod p1). Then w = {x1, . . . , xi−1, y1, xi+1, . . . , xp1} ∈ V (IΓ(Zn))
and so u− w − v is a path in IΓ(Zn). Hence diam(G) = 2.

(iii) From the proof of (ii), we have for all v ∈ V (IΓ(Zn)),

e(v) =

{

1 if n is a prime number,
2 otherwise.

Hence IΓ(Zn) is self-centered.
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3. Eulerian and Hamiltonian Nature of IΓ(Zn)

In this section, we are interested in the Eulerian and Hamiltonian nature of
IΓ(Zn). We begin this section with a lemma, which is used frequently in next
two sections. Unless otherwise specified, we assume that every vertex in IΓ(Zn)
is of the form {x1, . . . , xp1} with x1 < · · · < xp1 .

Lemma 14. Let n be a composite integer, p1 be the smallest prime divisor of n
and Ai = {{i, x2, . . . , xp1} ∈ V (IΓ(Zn))} for 0 ≤ i ≤ n− p1. Then 〈Ai〉 ⊆ IΓ(Zn)
is complete and 〈Ai ∪Aj〉 is connected for all i 6= j.

Proof. Clearly 〈Ai〉 ⊆ IΓ(Zn) is complete. Let u = {i, x2, . . . , xp1} ∈ Ai, i < j
and j ≡ k (mod p1). By Theorem 3, there is an element x ∈ u such that
x ≡ k (mod p1). If x > i, replace x by j in u and rearrange elements in ascending
order. Let the new vertex be u′. Note that u′ ∈ Ai and j ∈ u′ and so u′ is adjacent
to all the vertices of Aj . If x = i, then the set {i, j+1, j+2, . . . , j+(p1−1)} ∈ Ai

and is adjacent to {j, j + 1, . . . , j + (p1 − 1)} ∈ Aj . Thus 〈Ai ∪Aj〉 is connected.

Theorem 15. For any positive integer n, IΓ(Zn) is Eulerian if and only if n is

a composite integer.

Proof. If n is prime, then IΓ(Zn) is a complete graph with even number of
vertices and so is not Eulerian. If n is even, then deg(v) = n − 2 for all v ∈
V (IΓ(Zn)) and so every vertex is an even vertex. When n is odd, ( n

p1
)p1−1 is odd

and ( n
p1

− 1) is even. From this, in view of Lemma 5(ii), we have deg(v) is even
for all v ∈ V (IΓ(Zn)). Hence in both the cases IΓ(Zn) is Eulerian.

Theorem 16. For any positive integer n, IΓ(Zn) is Hamiltonian.

Proof. When n is a prime, IΓ(Zn) is complete and so trivially Hamiltonian. Let n
be a composite integer. Arrange every vertex in IΓ(Zn) in the form {x1, . . . , xp1}
with x1 < · · · < xp1 and Ai = {v ∈ V (IΓ(Zn)) : x1 = i}, 0 ≤ i ≤ n − p1.
By Theorem 14, 〈Ai〉 is complete and 〈Ai ∪ Aj〉 is connected in IΓ(Zn) for all
i 6= j. Also note that the vertex u = {i, i + 1, . . . , i + p1 − 1} ∈ Ai is adjacent
to all the vertices in Ai+1. Start with the vertex {0, n− p1 + 1, . . . , n− 1} ∈ A0,
traverse the vertices in 〈A0〉 through a spanning path in 〈A0〉, pass on to 〈A1〉.
Continue this through 〈A2〉, 〈A3〉,. . .,〈An−p1〉 to get a Hamiltonian path ending
at {n − p1, . . . , n − 1} ∈ An−p1 . This Hamiltonian path together with the edge
joining {n−p1, n−p1+1, . . . , n−1} and {0, n−p1+1, . . . , n−1} gives a required
Hamiltonian cycle in IΓ(Zn).

Corollary 17. For any positive integer n, IΓ(Zn) is pancyclic if and only if

n 6= 4.
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Proof. Let IΓ(Zn) be pancyclic. Suppose n = 4, then G = K2,2 does not contain
C3, which is contradiction to our assumption.

Conversely, let n 6= 4. Let |V (IΓ(Zn))| = m and p1 be the smallest prime
divisor of n. By Theorem 16, IΓ(Zn) is Hamiltonian and so IΓ(Zn) contains
Cm. Remove the vertex {n − p1, . . . , n − 1} from the cycle Cm and note that
{n − p1, . . . , n − 1} ∈ An−p1 . Observe that the vertex {n − p1 − 1, . . . , n − 2} ∈
An−p1−1 is adjacent to {0, n − p1 − 1, n − p1, . . . , n − 1} ∈ A0 and so we have
Cm−1 as a subgraph of IΓ(Zn). Let 0 ≤ i < j < k ≤ n − p1. If i 6≡ j (mod p1),
then by Theorem 3, there exists a vertex u ∈ Ai which contains j and so u is
adjacent to all the vertices in Aj . From this, leaving the vertices in Cm−1 one by
one from A1, A2, . . . , Ap1−1, Ap1+1, . . . , A2p1−1, . . . , An−p1−1. Now the remaining
cycle contains vertices from A0, Ap1 , . . . , An−2p1 . Note that if i ≡ j ≡ k (mod p1),
then the subgraph induced by the vertices {i, j+1, k+2, k+3, . . . , k+ p1− 1} ∈
Ai, {j, j + 1, . . . , j + p1 − 1} ∈ Aj and {k, k + 1, . . . , j + p1 − 1} ∈ Ak forms K3.
From this and |A0| = ( n

p1
)p1−1 ≥ 3, we get cycles of all lengths as subgraphs of

IΓ(Zn). Hence IΓ(Zn) is pancyclic.

4. Independent and Clique numbers of IΓ(Zn)

In this section, we obtain the values of independent number and clique number
of IΓ(Zn). First we start with vertex and edge independent numbers of IΓ(Zn).

Lemma 18. Let n be a composite integer and p1 be the smallest prime divisor

of n. Then the independence number β0(IΓ(Zn)) =
n
p1
.

Proof. Since 〈S〉 = 〈{0, 1, . . . , p1 − 1}, {p1, . . . , 2p1 − 1}, . . . , {n− p1, . . . , n− 1}〉
includes all elements of Zn only once, S is a maximal independent set in IΓ(Zn).

Lemma 19. Let n be a composite integer and p1 be the smallest prime divisor of

n. Then the edge independent number α′(IΓ(Zn)) =
⌊

1
2(

n
p1
)p1

⌋

. Moreover IΓ(Zn)

has a perfect matching if and only if n = 4k for some k ∈ Z
+.

Proof. Let |V (IΓ(Zn))| be even, every vertex in IΓ(Zn)is of the form {x1, . . . , xp1}
with x1 < · · · < xp1 and Ai = {{i,X2, . . . , xp1} ∈ V (IΓ(Zn))}. If |Ai| is even for
all i = 0, 1, . . . , n − p1, then 〈Ai〉 has a perfect matching. If |Ai| and |Aj | are
odd for some j 6= i, by Lemma 14, 〈Ai ∪ Aj〉 is connected for all i 6= j and so
there exists u ∈ Ai and v ∈ Aj such that uv ∈ E(IΓ(Zn)). Consider a maximum
matching Mi of Ai not containing u and a maximum matching Mj of 〈Aj〉 not
containing v, thenMi∪Mj∪{uv} is a perfect matching of 〈Ai∪Aj〉. Proceeding in

this way, one can get a perfect matching of IΓ(Zn) and so α′(IΓ(Zn)) =
|V (IΓ(Zn))|

2 .
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If |V (IΓ(Zn))| is odd, then as proved above, we have α′(IΓ(Zn)) =
|V (IΓ(Zn))|−1

2 .
From these, IΓ(Zn) has a perfect matching if and only if |V (IΓ(Zn))| is even.
Since n is composite, by Lemma 5, |V (IΓ(Zn))| = ( n

p1
)p1 is even if and only if

n = 4k for some k ∈ Z
+.

Theorem 20. Let n be a composite integer and p1 be the smallest prime divisor

of n. Then the clique number

ω(IΓ(Zn)) =

{

2
p−1

2 if n = p, where p is a prime number,

( n
p1
)p1−1 otherwise.

Proof. First case follows from Lemma 5(iii). Hence assume that n is a composite
number. Let Bi = {v ∈ V (IΓ(Zn)) : v contains i}. Note that 〈Bi〉 is complete.
Next we claim that no vertex in V (IΓ(Zn))−Bi is adjacent to all the vertices in
Bi. For, let u = {y1, . . . , yp1} ∈ V (IΓ(Zn)) − Bi and so yj 6= i for all j. Then,
by Theorem 3, there exists j such that yj ≡ i (mod p1). From this w = {y1 +
p1, . . . , yj−1+p1, i, yj+1+p1, . . . , yp1+p1} ∈ Bi and w is not adjacent to u. Hence
ω(IΓ(Zn)) = |{v = {x1, . . . , xp1} ∈ V (IΓ(Zn)) : v contains i, for some i, 1 ≤ i ≤
p1}| = ( n

p1
)p1−1.

For any t with 1 ≤ t ≤ ⌊ω(G)
2 ⌋, Kt,t is a subgraph of IΓ(Zn). However, for some t

out of this range, Kt,t may be a subgraph of IΓ(Zn). The theorem proved below
identifies an upper bound for such a number t, when n is even.

Theorem 21. Let n > 2 be even.

(i) If n > 6, then Kt,t is a subgraph of IΓ(Zn) if and only if 1 ≤ t ≤
⌊

n
4

⌋

.

(ii) If n = 4 or 6, then Kt,t is a subgraph of IΓ(Z6) if and only if t = 1 or 2.

Proof. (i) Let n 6= 6 be even. Then by Theorem 20, K⌊n
4
⌋,⌊n

4
⌋ is a subgraph of

IΓ(Zn).

Let n 6= 4k for any k ∈ Z
+. Suppose K⌈n

4
⌉,⌈n

4
⌉ is a subgraph of IΓ(Zn). Assume

that X = {u1, . . . , u⌈n
4
⌉} and Y = {v1, . . . , v⌈n

4
⌉} are partition sets of K⌈n

4
⌉,⌈n

4
⌉.

Since n 6= 6 and n 6= 4k,
⌈

n
4

⌉

≥ 3. Note that each vertex in X as well as Y
are two elements subsets of Zn. Suppose there is a x ∈ u1 ∩ · · · ∩ u⌈n

4
⌉. Since

|Y | ≥ 3, x must be in all the vertices of Y . Since each γ-set contains one odd and
one even element in Zn, there are only n

2 γ-sets containing x and so vertices in
IΓ(Zn). With such n

2 vertices, one cannot have K⌈n
4
⌉,⌈n

4
⌉ as a subgraph. Suppose

there is x ∈ Zn is common to some of the vertices in X and y ∈ Zn is common
to some vertices in X. Now, there is at most only one vertex {x, y} ∈ V (IΓ(Zn))
which is adjacent to all the vertices of X. That is, {x, y} is the only vertex in
Y , a contradiction to |Y | ≥ 3. Therefore K⌈n

4
⌉,⌈n

4
⌉ is not a subgraph of IΓ(Zn).
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Similarly if n = 4k, then one can prove that K⌈n
4
⌉+1,⌈n

4
⌉+1 is not a subgraph of

IΓ(Zn).

(ii) If n = 4, then IΓ(Zn) = K2,2 and if n = 6, then the subgraph induced by
{0, 1}, {2, 3}, {0, 3} and {1, 2} is a maximal complete bi-partite graph of IΓ(Zn).

5. Coloring and Connectivity of IΓ(Zn)

In this section, we study the connectivity and coloring of the intersection graph of
gamma sets in TΓ(Zn). In particular, we give a necessary and sufficient condition
for IΓ(Zn) to be Class one. First we obtain the chromatic number of IΓ(Zn). Note
that the chromatic number of the intersection graph G is the minimum number
of sets into which the elements of V (G) can be partitioned so that in each set,
every two elements of V (G) are disjoint.

Theorem 22. For any integer n, χ(IΓ(Zn)) = ω(IΓ(Zn)).

Proof. Clearly if n is prime, then χ(IΓ(Zn)) = ω(IΓ(Zn)). Let n be a com-
posite integer, p1 be the smallest prime divisor of n and v = {x1, . . . , xp1} ∈
V (IΓ(Zn)). Clearly the set X = {{x1, . . . , xp1}, {x1+ p1, . . . , xp1 + p1}, . . . , {x1+
(n − p1), . . . , xp1 + (n − p1)}} is an independent set and so we can assign a
single color to all the vertices of X. Since v ∈ V (IΓ(Zn)) is arbitrary and

|X| = n
p1
, χ(IΓ(Zn)) ≤ |V (IΓ(Zn))|

n/p1
= ( n

p1
)p1−1. Since χ(IΓ(Zn)) ≥ ω(IΓ(Zn)),

χ(IΓ(Zn)) = ( n
p1
)p1−1.

Theorem 23. Let n be an integer. Then IΓ(Zn) is perfect if and only if n = p
for some prime p or n = 4 or 6.

Proof. If n = p for some prime p, then IΓ(Zn) is complete and so is perfect. If
n = 4 or 6, then one can verify that IΓ(Zn) is perfect.

Conversely, suppose n ≥ 8 is a composite integer, then n ≥ 3p1 where p1 is the
smallest prime divisor of n. Note that the subgraph induced by {{0, 1, . . . , p1 −
1}, {1, 2, . . . , p1}, {0, p1 + 1, p1 + 2, . . . , 2p1 − 1}, {p1, 2p1 + 1, 2p1 + 2, . . . , 3p1 −
1}, {p1 +1, 2p1 +1, 2p1 +2, . . . , 3p1 − 1}} is C5 and is a subgraph of both IΓ(Zn)
and IΓ(Zn). Thus, by the strong perfect graph theorem, IΓ(Zn) is not a perfect
graph.

By Vizing’s theorem, for any graph G, ∆ ≤ χ′(G) ≤ ∆ + 1, where χ′(G) is the
edge chromatic number of G. A graph G is said to be of Class one if χ′(G) = ∆,
where as G is said to be of Class two if χ′(G) = ∆ + 1. In this regard, one can
note the following results.
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Result 1 (Theorem 10.6, [9]). A regular graph G is of Class one if and only if

G is 1-factorable.

Result 2 (Corollary 10.7, [9]). Every regular graph of odd order is of Class two.

Theorem 24. For any integer n > 2, IΓ(Zn) is of Class one if and only if n = p
for some prime p or n = 4k for some k ∈ Z

+.

Proof. Let G = IΓ(Zn). If n = p for some prime p, then by Theroem 5(i), G
is an even order complete graph and so G is of Class one. Assume that n is a
composite integer. If n is odd or n = 2k for some odd integer k, then by Lemma 5,
|V (G)| is odd and so by Result 2, G is of Class two. Hence, if G is of Class one,
then n = 4k.

Conversely, let n = 4k for some integer k and Gi = 〈{i, i + j} ∈ V (G) : j ∈
Zn j is odd〉 ⊂ G. If {x1, y1} and {x2, y2} are adjacent in G, then either x1 = x2
or y1 = y2. Suppose x1 = x2, then {x1, y1} and {x2, y2} are adjacent in Gx1

and
so G =

⋃n−1
i=0 Gi. Since V (Gi) ∩ V (Gj) = {i, j} for all i 6= j, G can be written as

union of edge disjoint Kn
2

. From this and by the fact that n
2 is even, IΓ(Zn) is

(n− 2)-factorable and hence G is of Class one.

Remark 25. Theorem 10.5 in [9], tells that almost every graph is of Class one,
whereas in the domain of intersection graphs of gamma sets in TΓ(Zn) corre-
sponding to various n, Class two graphs are more than Class one. In fact, for
various n, if Gi denotes the set of all IΓ(Zn) and of Class i, then lim

n→∞

|G2|
|G1|

≥ 2.

Next, we obtain the vertex connectivity of the intersection graph of gamma sets
in the total graph on Zn.

Theorem 26. For any composite integer n, k(IΓ(Zn)) = deg(v) for any v ∈
V (IΓ(Zn)).

Proof. Let G = IΓ(Zn), p1 is the smallest prime divisor of n and v ∈ V (G). If
n = 4, then G = K2,2 and so k(G) = 2 = deg(v). Hence we assume that n ≥ 6.
Suppose S = {v1, . . . , vdeg(v)−1} ∈ V (G) is a cut-set of IΓ(Zn).

Case 1. Assume that S ⊂ N(u) for some u ∈ V (G)−S. Since |S| = deg(v)−1
and IΓ(Zn) is regular, there exists exactly one u1 ∈ V (G) − S such that u1 is
adjacent to u. Let w1 = {y1, . . . , yp1}, w2 = {z1, . . . , zp1} ∈ V (G) − N [u]. Let
y1 ≡ k (mod p1). By Theorem 3, there exists zi ∈ w2 such that zi ≡ k (mod p1)
and so w3 = {zi, y2, y3, . . . , yp1} ∈ V (G) − N [v] is adjacent to both w1 and w2.
From this 〈V (G) − N [u]〉 is connected. Note that NG[u] = NG[v] if and only if
u = v. From this, u1 is adjacent to at least one vertex in V (G) − N [u] and so
〈V (G)− S〉 is connected, which is a contradiction to S is a cut-set.

Case 2. Suppose that S ⊂ N(u) ∪ N(v) for some u, v ∈ V (G)−S. As argued
above, one can see that 〈V (G)−{N [u]∪N [v]}〉 is connected. Note that n ≥ 3p1.
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Let u1 = {z1, . . . , zp1} ∈ {N(u) ∪N(v)} − S and zi ≡ hi (mod p1). Without loss
of generality one can assume that, there exists a k such that zi ∈ u ∪ v for i ≥ k
and zi /∈ u ∪ v for i < k. Suppose k ≥ 2. Since n ≥ 3p1, |Zn − {u ∪ v}| ≥ p1
and by Theorem 3, there exists ai ∈ Zn − {u ∪ v} such that ai ≡ hi (mod p1).
Now {z1, . . . , zk−1, ak, . . . , ap1} ∈ V (G)−{N [u]∪N [v]} is adjacent to u1. Hence,
there exists at least two vertices u2 ∈ N [u] − S and u3 ∈ N [v] − S such that u2
and u3 are adjacent to some vertex in V (G)− {N [u] ∪N [v]} and so 〈V (G)− S〉
is connected. If k = 1, then u1 is adjacent to both u and v. Let A = {w =
{y1, . . . , yp1} ∈ N(u) ∪ N(v) : w ⊆ u ∪ v} . Now assume that for each w ∈ A,
there exists an integer r such that yj ∈ u for j ≤ r and yj ∈ v for j > r. Let ℓr =
max{

(

p1
r

)

,
(

p1
p1−r

)

}. Note that |A| ≤
∑p1

i=1 ℓi and for 1 ≤ r ≤ p1 − 1, ℓr ≤ ( n
p1
)r.

Since n ≥ 6, ℓp1 = 1 ≤ ( n
p1

− 1)p1−1 − 1. From this we have, |A| ≤
∑p1

i=1 ℓi ≤

( n
p1
)( n

p1
)p1−2+( n

p1
)2( n

p1
− 1)p1−3+ · · ·+( n

p1
)p1−1+( n

p1
− 1)p1−1− 1 = δ(G). Since

|N(u)∪N(v)−S| = δ(G)+1, there exists a vertex u4 ∈ {N(u)∪N(v)−S} such
that u4 /∈ A and so by discussed above 〈V (G)−S〉 is connected, a contradiction.

Similarly, one can prove the fact in the remaining cases also. Since k(G) ≤
δ(G), we have k(IΓ(Zn)) = deg(v).

If G is a graph of diameter 2, then edge connectivity k′(G) = δ(G) [8, p.77]. Since
IΓ(Zn) is of diameter 2, we have the following:

Remark 27. For any composite integer n and v ∈ V (IΓ(Zn)), k′(IΓ(Zn)) =
deg(v) = k(IΓ(Zn)).

6. Domination Parameters of IΓ(Zn)

In this section, we are interested in certain domination related properties. Note
that, for any prime number p, IΓ(Zn) = K

2
p−1

2

. Therefore, throughout this

section, we assume that n is a composite integer.

Theorem 28. Let n be a composite integer and p1 be the smallest prime divisor

of n. Then γ(IΓ(Zn)) =
n
p1
.

Proof. Let G = IΓ(Zn). Clearly 〈{0, 1, . . . , p1 − 1}, {p1, . . . , 2p1 − 1}, . . . , {n −
p1, . . . , n − 1}〉 is a dominating set in G and so γ(G) ≤ n

p1
. Suppose S =

{v1, . . . , v n
p1

−1} ∈ V (G) is a dominating set of G. But S not contains at least

p1 elements of Zn say, x1, . . . , xk where k ≥ p1. By Theorem 3, from these k
elements, there exists at least p1 elements form a γ-set of TΓ(Zn) and so S is not
dominating at least a vertex of G. Thus γ(G) = n

p1
.

As discussed above one can verify the following results.



Intersection Graph of Gamma Sets in the Total Graph 355

Corollary 29. Let n be a composite integer and p1 be the smallest prime divisor

of n. Then

(i) i(IΓ(Zn)) =
n
p1
.

(ii) γc(IΓ(Zn)) =
n
p1
.

(iii) γt(IΓ(Zn)) = γcl(IΓ(Zn)) =
n
p1
.

(iv) IΓ(Zn) is well-covered and excellent.

(v) d(IΓ(Zn)) = di(IΓ(Zn)) = dt(IΓ(Zn)) = ( n
p1
)p1 and so IΓ(Zn) is not domati-

cally full.

Proof. (ii) Let S = {{0, 1, . . . , p1 − 1}, {0, p1 + 1, . . . , 2p1 − 1}, . . . , {0, n − p1 +
1, . . . , n−1}}. Then all subsets in S cover all the elements of Zn−{p1, 2p1, . . . , n−
p1}. Let Y = {p1, 2p1, . . . , n− p1}. By Theorem 3, any vertex of IΓ(Zn) contains
an element of Y must contains at least an element from Zn − Y and so S is a
γc-set of IΓ(Zn).

Theorem 30. Let n be a composite integer and p1 be the smallest prime divisor

of n. Then γp(IΓ(Zn)) exists if and only if n is even. Moreover if n is even, then

γp(IΓ(Zn)) =
n
p1
.

Proof. If n is even, then S = {{0, 1}, {0, 3}, . . . , {0, n − 1}} is a γp-set and so
γp(IΓ(Zn)) =

n
p1
.

Conversely assume that γp(IΓ(Zn)) exists and n is odd. Let γp(IΓ(Zn)) = k
and S = {v1, . . . , vk} ⊂ V (IΓ(Zn)) be a γp-set of IΓ(Zn).

Case 1. Assume that vi ∩ vj = ∅ for all 1 ≤ i < j ≤ k. Since γp ≥ γ = n
p1
, all

subsets in S cover all the elements of Zn. Thus every vertex v ∈ V (IΓ(Zn)) − S
is adjacent to at least two vertices of S, otherwise v = vℓ for some ℓ = 1, . . . , k.
Therefore S is not a γp-set of IΓ(Zn).

Case 2. Suppose there exists an x ∈ Zn such that x ∈ vi ∩ vj for some
i, j ∈ {1, . . . , k}. Then all vertices containing x must be in S in order to have
S as a perfect dominating set. Thus, by Theorem 3, all subsets in S must
covers all the elements of Zn − {x + p1, x + 2p1, . . . , x + (n − p1)}. Let X =
{x+p1, x+2p1, . . . , x+(n−p1)}. Since p1 ≥ 3 and by Theorem 3, every element
of Zn − X must belong to at least two vertices of S. Note that elements of X
alone cannot form a γ-set of TΓ(Zn) and so S is not γp-set of IΓ(Zn).
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