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Abstract

By h(G, x) and P (G, λ) we denote the adjoint polynomial and
the chromatic polynomial of graph G, respectively. A new invari-
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1. Introduction

All graphs considered here are finite and simple. Notations and terminology
not defined here will conform to those in [1]. For a graph G, let V (G), E(G),
p(G), q(G) and G, respectively, be the set of vertices the set of edges, the
order, the size and the complement of G.

For a graph G, we denote by P (G,λ) the chromatic polynomial of G. A
partition {A1, A2, . . . , Ar} of V (G), where r is a positive integer, is called an
r-independent partition of a graph G if every Ai is a nonempty independent
set of G. We denote by α(G, r) the number of r-independent partitions of G.
Thus the chromatic polynomial of G is P (G,λ) =

∑

r≥1 α(G, r)(λ)r , where
(λ)r = λ(λ− 1) · · · (λ− r+ 1) for all r ≥ 1. The readers can turn to [13] for
details on chromatic polynomials.

Two graphs G and H are said to be chromatically equivalent, denoted
by G ∼ H, if P (G,λ) = P (H,λ). By [G] we denote the equivalence class
determined by G under “ ∼ ”. It is obvious that “ ∼ ” is an equivalence
relation on the family of all graphs. A graph G is called chromatically unique
(or simply χ-unique) if H ∼= G whenever H ∼ G. See [6, 7] for many results
on this field.

Definition 1.1 ([11]). Let G be a graph with p vertices, the polynomial

h(G, x) =
p
∑

i=1

α(G, i)xi

is called its adjoint polynomial.

Definition 1.2 ([11]). Let G be a graph and h1(G, x) the polynomial with
a nonzero constant term such that h(G, x) = xρ(G)h1(G, x). If h1(G, x) is
an irreducible polynomial over the rational number field, then G is called
irreducible graph.

Two graphs G and H are said to be adjointly equivalent, denoted by G
h∼ H,

if h(G, x) = h(H,x). Evidently, “
h∼ ” is an equivalence relation on the

family of all graphs. Let [G]h = {H |H h∼ G}. A graph G is said to be

adjointly unique (or simply h-unique) if H ∼= G whenever H
h∼ G.

Theorem 1.1 ([3]). (1) G
h∼ H if and only if G ∼ H.
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(2) [G]h = {H |H ∈ [ G ]}.
(3) G is χ-unique if and only if G h-unique.

The graphs with orders n used in the paper are drawn as follows:
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Now we define some classes of graphs, which will be used throughout the
paper.

(1) Cn (resp. Pn) denotes the cycle (resp. the path) of order n, and write
C = {Cn |n ≥ 3}, P = {Pn |n ≥ 2} and U = {U(1, 1, t, 1, 1) | t ≥ 1}.

(2) Dn (n ≥ 4) denotes the graph obtained from C3 and Pn−2 by identifying
a vertex C3 with a pendant vertex of Pn−2.

(3) Tl1,l2,l3 is a tree with a vertex v of degree 3 such that Tl1,l2,l3 − v =
Pl1 ∪ Pl2 ∪ Pl3 and l3 ≥ l2 ≥ l1, write T 0 = {T1,1,l3 | (l3 ≥ 1)} and
T = {Tl1,l2,l3 | (l1, l2, l3) 6= (1, 1, 1)}.

(4) By B5 we denote the graph obtained from C3 by identifying a vertex
of C3 with the vertex of degree 2 of the path P3.
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(5) ϑ = {Cn, Dn,K1, Tl1 ,l2,l3 |n ≥ 4}.
(6) ξ = {Cr(Ps), Qr,s, Br,s,t, Fn, Ur,s,t,a,b,K

−
4 }.

(7) ψ = {ψ1
n, ψ

2
n, ψ

3
n(r, s), ψ4

n(r, s), ψ5
n(r, s, t), ψ6

5}.

For convenience, we simply denote h(G, x) by h(G) and h1(G, x) by h1(G).
By β(G) and γ(G) we denote the smallest and the second smallest real root
of h(G), respectively. Let dG(v), simply denoted by d(v), be the degree of
vertex v. For two graphs G andH, G∪H denotes the disjoint union of G and
H, and mH stands for the disjoint union of m copies. By Kn we denote the
complete graph with order n. Let nG(K3) and nG(K4) denote the number
of subgraphs isomorphic to K3 and K4, respectively. On the real field, let
g(x) | f(x) (resp. g(x) 6 | f(x)) denote g(x) divides f(x) (resp. g(x) does
not divide f(x)) and ∂(f(x)) denote the degree of f(x). By (f(x), g(x)) we
denote the largest common factor of f(x) and g(x).

It is an interesting problem to determine [G] for a given graph G. From
Theorem 1.1, it is not difficult to see that the goal of determining [G] can
be realized by determining [ G ]h. The related topics have been partially
discussed in this respect by Dong et al. in [3]. In this paper, using the
properties of adjoint polynomials, we determine the [Bn−6,1,2]h for graph
Bn−6,1,2, simultaneously, [ Bn−6,,1,2 ] is also determined, where n ≥ 8.

2. Preliminaries

For a polynomial f(x) = xn + b1x
n−1 + b2x

n−2 + · · · + bn, we define

R1(f(x)) =







− (b12
)

+ 1 if n = 1,

b2 −
(b1−1

2

)

+ 1 if n ≥ 2.

For a graph G, we write R1(G) instead of R1(h(G)).

Definition 2.1 ([2, 11]). Let G be a graph with q edges. The first character
of a graph G is defined as

R1(G) =







0 if q = 0,

b2(G) − (b1(G)−1
2

)

+ 1 if q > 0.
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The second character of a graph is defined as

R2(G) = b3(G) −
(

b1(G)

3

)

− (b1(G) − 2)

(

b2(G) −
(

b1(G)

2

))

− b1(G),

where bi(G)(0 ≤ i ≤ 3) is the first four coefficients of h(G).

Lemma 2.1 ([2, 11]). Let G be a graph with k components of G1, G2, . . . , Gk.

Then

h(G) =
k
∏

i=1

h(Gi) and Rj(G) =
k
∑

i=1

Rj(Gi) for j = 1, 2.

It is obvious that Rj(G) is an invariant of graphs. So, for any two graphs
G and H, we have Rj(G) = Rj(H) for j = 1, 2 if h(G) = h(H) or h1(G) =
h1(H).

Lemma 2.2 ([8, 11]). Let G be a graph with p vertices and q edges. Denote

by M the set of vertices of the triangles in G and by M(i) the number

of triangles which cover the vertex i in G. If the degree sequence of G is

(d1, d2, . . . , dp), then

(1) b0(G) = 1, b1(G) = q.

(2) b2(G) =
(q+1

2

)− 1
2

p
∑

i=1
d2

i + nG(K3).

(3) b3(G) = q
6 (q2 +3q+4)− q+2

2

p
∑

i=1
d2

i + 1
3

p
∑

i=1
d3

i +
∑

ij∈E(G)
didj −

∑

i∈M

M(i)di

+(q + 2)nG(K3) + nG(K4).

For an edge e = v1v2 of a graph G, the graph G ∗ e is defined as follows: the
vertex set of G∗e is (V (G)−{v1, v2})∪{v}(v /∈ G), and the edge set of G∗e is
{e′ | e′ ∈ E(G), e

′

is not incident with v1 or v2}∪{uv |u ∈ NG(v1)∩NG(v2)},
where NG(v) is the set of vertices of G which are adjacent to v.

Lemma 2.3 ([11]). Let G be a graph with e ∈ E(G). Then

h(G, x) = h(G− e, x) + h(G ∗ e, x),

where G− e denotes the graph obtained by deleting the edge e from G.

Lemma 2.4 ([11]). (1) For n ≥ 2, h(Pn) =
∑

k≤n

( k
n−k

)

xk.
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(2) For n ≥ 4, h(Dn) =
∑

k≤n

(

n
k

( k
n−k

)

+
( k−2
n−k−3

)

)

xk, h(K1 ∪ Dn) =

h(T1,2,n−3).

(3) For n ≥ 4,m ≥ 6, h(Pn) = x(h(Pn−1)+h(Pn−2)), h(Dm) = x(h(Dm−1)
+h(Dm−2)).

Lemma 2.5 ([17]). Let {g
i
(x)}, simply denoted by {g

i
}, be a polynomial

sequence with integer coefficients and gn(x) = x(gn(x) + gn−1(x)). Then

(1) gn(x) = h(Pk)g
n−k

(x) + xh(P
k−1

)g
n−k−1

(x).

(2) h1(Pn) | g
k(n+1)+i

(x) if and only if h1(Pn) | g
i
(x), where 0 ≤ i ≤ n, n ≥ 2

and k ≥ 1.

Lemma 2.6 ([4, 10]). Let G be a nontrivial connected graph with n vertices.

Then

(1) R1(G) ≤ 1, and the equality holds if and only if G ∼= Pn(n ≥ 2) or

G ∼= K3.

(2) R1(G) = 0 if and only if G ∈ ϑ.
(3) R1(G) = −1 if and only if G ∈ ξ, especially, q(G) = p(G) + 1 if and

only if G ∈ {Fn |n ≥ 6} ∪ {K−
4 }.

(4) R1(G) = −2 if and only if G ∼= B5 for q(G) = p(G) = 5, G ∈ ψ for

q(G) = p(G) and G ∼= K−
4 for q(G) = p(G) + 2.

Lemma 2.7 ([5]). For k ≥ 0, let G(−k) denote the union of the compo-

nents of G whose the first characters are −k and s
k

denote the number of

components of G(−k). Then

(1) If k = 0, or 1, or 2, then q(G(−k)) − p(G(−k)) ≤ ks
k

and the equal-

ity holds if and only if each component Gi of G(−k) satisfies q(Gi)−
p(Gi) = k, where 1 ≤ i ≤ s

k
.

(2) If k = 3, then q(G(−k)) − p(G(−k)) ≤ 2s3 and the equality holds if and

only if each component Gi of G(−3) verifies q(Gi) − p(Gi) = 2, where

1 ≤ i ≤ s3.

Lemma 2.8 ([17]). Let G be a connected graph and H a proper subgraph

of G, then

β(G) < β(H).

Lemma 2.9 ([17]). Let G be a connected graph. Then
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(1) β(G) = −4 if and only if

G ∈ {T (1, 2, 5), T (2, 2, 2), T (1, 3, 3), K1,4 , C4(P2), Q(2, 2),K−
4 , D8} ∪ U .

(2) β(G) > −4 if and only if

G ∈ {K1, T (1, 2, i)(2 ≤ i ≤ 4), Di(4 ≤ i ≤ 7)} ∪ P ∪ C ∪ T 0.

Lemma 2.10 ([17]). Let G be a connected graph. Then −(2+
√

5) ≤ β(G) <
−4 if and only if G is one of the following graphs:

(1) Tl1,l2,l3 for l1 = 1, l2 = 2, l3 > 5 or l1 = 1, l2 > 2, l3 > 3, or l1 = l2 =
2, l3 > 2, or l1 = 2, l1 = l2 = 3.

(2) Ur,s,t,a,b for r = a = 1, (r, s, t) ∈ {(1, 1, 2), (2, 4, 2), (2, 5, 3), (3, 7, 3),
(3, 8, 4)}, or r = a = 1, s ≥ 1, t ≥ t∗(s, b), b ≥ 1, where (s, b) 6= (1, 1)
and

t∗ =















s+ b+ 2, if s ≥ 3,

b+ 3, if s = 2,

b, if s = 1.

(3) Dn for n ≥ 9.

(4) Cn(P2) for n ≥ 5.

(5) Fn for n ≥ 9.

(6) Br,s,t for r = 5, s = 1 and t = 3, or r ≥ 1, s = 1 if t = 1, or r ≥ 4,
s = 1 if t = 2, or b ≥ c+ 3, s = 1 if t ≥ 3.

(7) G ∼= C4(P3), or G ∼= Q1,2.

Lemma 2.11 ([14]). Let graph Gn ∈ ξ\{Fn, Ur,s,t,a,b,K
−
4 }, then

(1) b3(Gn) = b3(Dn) − n+ 5 if and only if

Gn ∈ {Cr(Ps) | r ≥ 4, s ≥ 3}∪{Q1,n−4 |n ≥ 6}∪{Br,1,t, B1,1,1 | r, t ≥ 2}.

(2) b3(Gn) = b3(Dn) − n+ 6 if and only if

Gn ∈ {Qr,s | r, s ≥ 2} ∪ {B1,1,t, Br,s,t | r, s, t ≥ 2}.

Lemma 2.12 ([14]). Let graph Gn ∈ ψ, then b3(Gn) = b3(Dn+1)− 2(n+ 1)
+ t, where 10 ≤ t ≤ 13.
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3. The Algebraic Properties of Adjoint Polynomials

3.1. The divisibility of adjoint polynomials and the fourth

character of graph

Lemma 3.1.1 ([17]). For n,m ≥ 2, h(Pn) |h(Pm) if and only if n+1 |m+1.

Theorem 3.1.1.

(1) For n ≥ 7, ρ(Bn−6,1,2) =

{

n
2 , if n is even,

n−1
2 , otherwise.

(2) For n ≥ 7, ∂(h1(Bn−6,1,2)) =

{

n
2 , if n is even,

n+1
2 , otherwise.

(3) For n ≥ 9, h(Bn−6,1,2) = x(h(Bn−7,1,2) + h(Bn−8,1,2)).

Proof. (1) Choosing a pendant edge e = uv ∈ E(Bn−6,1,2) such that
d(u) = 1, d(v) = 3, by Lemma 2.3 we have h(Bn−6,1,2) = xh(Dn−1) +
xh(P2)h(Dn−4). We have, from Lemma 2.4, that

ρ(K1 ∪Dn−1) = 1 +

⌊

n− 1

2

⌋

and ρ(K1 ∪ P2 ∪Dn−4) = 2 +

⌊

n− 4

2

⌋

.

If n is even, then ρ(K1 ∪ Dn−1) = ρ(K1 ∪ P2 ∪ Dn−4) = n
2 , which implies

that ρ(Bn−6,1,2) = n
2 . If n is odd, then we arrive at ρ(K1 ∪Dn−1) = n+1

2 >
n−1

2 = ρ(K1 ∪ P2 ∪Dn−4), which indicates that ρ(Bn−6,1,2) = n−1
2 . Hence

the result holds.

(2) obviously follows from (1).

(3) Choosing a pendant edge e = uv ∈ E(Bn−6,1,2) such that d(u) = 1,
d(v) = 3, we have, by Lemma 2.4, that

h(Bn−7,1,3) = xh(Dn−1) + xh(P2)h(Dn−4)

= x(xh(Dn−2) + xh(Dn−3)) + xh(P2)(xh(Dn−5) + xh(Dn−6))

= x(xh(Dn−2) + xh(P2)h(Dn−5)) + x(xh(Dn−3) + xh(P2)h(Dn−6))

= x(h(Bn−7,1,2) + h(Bn−8,1,2)).

Theorem 3.1.2. For n ≥ 2 and m ≥ 7, h(Pn) |h(Bm−6,1,2) if and only if

n = 2 and m = 3k + 6 or n = 4 and m = 5k + 3, where k ≥ 1.
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Proof. Let g0(x) = −x4−6x3−10x2−6x−1, g1(x) = x4+5x3+6x2+4x+1
and gm(x) = x(gm−1(x) + gm−2(x)). We can deduce that

(3.1)

g0(x) = −x4 − 6x3 − 10x2 − 6x− 1,

g1(x) = x4 + 5x3 + 6x2 + 4x+ 1,

g2(x) = −x4 − 4x3 − 2x2,

g3(x) = x4 + 4x3 + 4x2 + x,

g4(x) = 2x3 + x2,

g5(x) = x5 + 6x4 + 5x3 + x2,

g6(x) = x6 + 6x5 + 7x4 + 2x3,

gm(x) = h(Bm−7,1,3) if m ≥ 7.

Let m = (n+1)k+i, where 0 ≤ i ≤ n. It is obvious that h1(Pn) |h(Bm−6,1,2)
if and only if h1(Pn) | gm(x). From Lemma 2.5, it follows that h1(Pn) | gm(x)
if and only if h1(Pn) | gi(x), where 0 ≤ i ≤ n. We distinguish the following
two cases:

Case 1. n ≥ 7.

If 0 ≤ i ≤ 6, from (3.1), it is not difficult to verify that h1(Pn) 6 | gi(x). If
i ≥ 7, from i ≤ n, Lemma 2.4 and Theorem 3.1.1, we have that

(3.2) ∂(h1(Pn)) =

⌊

n

2

⌋

and ∂(h1(Bi−6,1,2) =

⌊

i+ 1

2

⌋

.

The following cases are taken into account:

Subcase 1.1. i = n.

It follows from (3.2) that ∂(h1(Bi−6,1,2) = ∂(h1(Pn)) = n
2 if n is even and

∂(h1(Bi−6,1,2) = ∂(h1(Pn)) + 1 = n+1
2 if n is odd.

Subcase 1.1.1. ∂(h1(Bi−6,1,2) = ∂(h1(Pn)).

Suppose that h1(Pn) |h1(Bi−6,1,2), we have h1(Pn) = h1(Bi−6,1,2), which
implies R1(Pn) = R1(Bi−6,1,2). By Lemma 2.6 we know it is impossible.
Hence h1(Pn) 6 |h1(Bi−6,1,2), together with (h1(Pn), xα(Bi−6,1,2)) = 1, we have
h1(Pn) 6 |h(Bi−6,1,2).
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Subcase 1.1.2. ∂(h1(Bi−6,1,2) = ∂(h1(Pn)) + 1.

Assume that h1(Pn) |h1(Bi−6,1,2), it follows that h1(Bi−6,1,2) = (x+a)h1(Pn).
Note that R1(Bi−6,1,2) = −1 and R1(Pn) = 1, so R1(x + a) = −2, which
brings about a = 4. This implies that β(Bi−6,1,2) = −4, which contra-
dicts to (6) of Lemma 2.10. Hence h1(Pn) 6 | h1(Bi−6,1,2), together with
(h1(Pn), xα(Bi−6,1,2)) = 1, we have h1(Pn) 6 | h(Bi−6,1,2).

Case 1.2. i ≤ n− 1.

It follows by (3.2) that ∂(Bi−6,1,2) ≤ ∂(h1(Pn)). Assume that h1(Pn) |
h1(Bi−6,1,2), we have that ∂(Bi−6,1,2) = ∂(h1(Pn)) and h1(Pn) = h1(Bi−6,1,2).
So we can turn to Subcase 1.1.1 for the same contradiction.

Case 2. 2 ≤ n ≤ 6.

From (1) of Lemma 2.4 and (3.1), we can verify h1(Pn) | gi(x) if and only if
n = 2 and i = 6 or n = 4 and i = 3 for 0 ≤ i ≤ n ≤ 7. From Lemma 2.5,
we have h1(Pn) |h(Bm−6,1,2) if and only if n = 2 and m = 3k + 6 or n = 4
and m = 5k + 3. From α(P3) = 2, α(P6) = 3 and α(Bm−6,1,2) = bm

2 c ≥ 3
for m ≥ 7, we obtain that the result holds.

Theorem 3.1.3. For m ≥ 7, h2(P2) 6 | h(Bm−6,1,2) and h2(P4) 6 | h(Bm−6,1,2).

Proof. Suppose that h2(P2) |h(Bm−6,1,2), from Theorem 3.1.2 we have
m = 3k + 6, where k ≥ 1. Let gm(x) = h(Bm−6,1,2) for m ≥ 7. By (3) of
Theorem 3.1.1, (1) of Lemma 2.5, it follows that

gm(x) = h(P2)gm−2(x) + x2gm−3(x)

= h2(P2)gm−4(x) + 2x2h(P2)gm−5(x) + x4gm−6(x)

= h2(P2)(gm−4(x) + 2x2gm−7(x)) + 3x4h(P2)gm−8(x) + x6gm−9(x)

= h2(P2)(gm−4(x) + 2x2gm−7(x) + 3x4gm−10(x))

+ 4x6h(P2)gm−11(x) + x8gm−12(x)

= · · ·

= h2(P2)
k−2
∑

s=1

gm−3s−1(x) + (k − 1)x2k−4h(P2)gm+1−3(k−1)(x)

+ x2k−2gm−3(k−1)(x).
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According to the assumption and m = 3k + 6, we arrive at, by (3.1), that

h2(P2)
∣

∣

∣((k − 1)x2k−4h(P2)g10(x) + x2k−1g9(x)),

that is,

h(P2)
∣

∣

∣(kx2k+8 + (11k − 2)x2k+7 + (44k − 18)x2k+6 + (80k − 53)x2k+5

+ (70k − 60)x2k+4 + (28k − 27)x2k+3 + (4k + 4)x2k+2).

By direct calculation, we obtain that k = −6, which contradicts k ≥ 1.
Using the similar methods, we can also prove h2(P4)6 | h(Bm−6,1,3).

Lemma 3.1.2 ([12]). For t ≥ 13 and 1 ≤ t1 ≤ 11, we have that

γ(U(1, 2, t, 2, 1)) < γ(U(1, 2, 12, 2, 1)) = −4 < γ(U(1, 2, t1, 2, 1)).

Lemma 3.1.3. (1) For r, t ≥ 1, h(U(1, 2, r, 1, t)) = h(K1 ∪Br,1,t).

(2) For n ≥ 13 and 7 ≤ n1 ≤ 11, γ(Bn−6,1,2) < γ(B12,1,2) = −4 <
γ(Bn1−6,1,2).

Proof. (1) From Lemma 2.3 and by calculation, we can get that the
equality holds. Here the details are omitted.

(2) From Lemma 3.1.2 and (1) of the lemma, the result obviously holds.

Theorem 3.1.4. For n ≥ 7, h(K−
4 ) |h(Bn−6,1,2) if and only if n = 18.

Proof. According to Theorem 3.1.2, we arrive at h1(P2) |h(B12,1,2), that
is, (x + 1) |h(B12,1,2). From Lemma 2.10, we obtain γ(Bn−6,1,2) < −4.
In terms of (2) of Lemma 3.1.3, we get (x + 4)|h(Bn−6,1,2) if and only if
n = 18. Noting that (x + 1, x + 4) = 1 and h1(K

−
4 ) = (x + 1)(x + 4), we

obtain h1(K
−
4 ) |h(Bn−6,1,2) if and only if n = 18, together with α(K−

4 ) = 2
and α(B12,1,2) = 9, we know that the theorem holds.

3.2. The smallest real roots and the fourth characters of graphs

An internal x1xk-path of a graph G is a path x1x2x3 · · · xk (possibly x1 = xk)
of G such that d(x1) and d(xk) are at least 3 and d(x2) = d(x3) = · · · =
d(xk−1) (unless k = 2).
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Lemma 3.2.1 ([17]). Let T be a tree. If uv is an edge on an internal path

of T and T 6∼= U(1, 1, t, 1, 1) for t ≥ 1, then β(T ) < β(Txy), where Txy is the

graph obtained from T by inserting a new vertex on the edge xy of T .

Lemma 3.2.2 ([17]). (1) For m ≥ 9, β(Cm−1(P2)) ≤ β(Fm), with the

equality holds if and only if m = 9.

(2) For n,m ≥ 5, β(Cn(P2)) < β(Cn−1(P2)) ≤ β(Dm) < β(Dm−1).

(3) For m ≥ 6 and n ≥ 4, β(Fm) < β(Fm+1) < β(Dn).

(4) For m ≥ 6 and n ≥ 4, β(Bm−5,1,1) < β(Bm−4,1,1) < β(Dn).

From Lemma 2.3, by calculation we have the following lemma.

Lemma 3.2.3. (1) B4,1,2 ∪ K1,4
h∼ 2K1 ∪ D4 ∪ C8(P2), B12,1,2

h∼ D4 ∪
D8 ∪ C5(P2), B6,1,2

h∼ D5 ∪ C6(P2), B4,1,2
h∼ C4 ∪Q1,2

h∼ D4 ∪ C4(P3).

(2) B2n−6,1,2
h∼ Dn−1 ∪Bn−4,1,1, Bn−6,1,2

h∼ K1 ∪ Fn−1.

Proof. We only give the proof of B2n−6,1,2
h∼ Dn−1 ∪ Bn−4,1,1, the others

can be proved similarly. We choose the edge e ∈ E(B2n−6,1,2) such that
B2n−6,1,2 = Dn−1 ∪ T1,2,n−3. In the light of Lemmas 2.3 and 2.4, we obtain
that

(3.3)

h(B2n−6,1,2) = h(Dn−1)h(T1,2,n−3) + xh(Dn−2)h(T1,2,n−4)

= xh(Dn−1)h(Dn) + x2h(Dn−2)h(Dn−1)

= h(Dn−1)(xh(Dn−1) + x2h(Dn−2)).

Choosing one of the pendant edges in Bn−4,1,1, we conclude, from Lemma
2.3, that

(3.4) h(Bn−4,1,1) = xh(Dn) + x2h(Dn−2).

Combining (3.3) with (3.4), we have that the result holds.

Theorem 3.2.1. (1) β(B4,1,2) = β(C8(P2)) = β(C4(P3)) = β(Q1,2),
β(B6,1,2) = β(C6(P2)), β(B12,1,2) = β(C5(P2)).

(2) β(B2n−5,1,2) = β(Bn−4,1,1), β(Bn−6,1,2) = β(Fn−1).

(3) For n ≥ 7, β(Bn−6,1,2) < β(Bn−5,1,2).
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(4) For n1 ≥ 9, 7 ≤ n2 ≤ 11 and n3 ≥ 13, β(B1,1,2) < β(B2,1,2) <
β(B3,1,2) < β(Cn1(P2)) < β(C8(P2)) = β(B4,1,2) < β(C7(P2)) <
β(C6(P2)) = β(B6,1,2) < β(Bn2,1,2) < β(B12,1,2) = β(C5(P2)) <
β(Bn3,1,2) < β(C4(P2)).

(5) For n ≥ 7 and m ≥ 6, β(Bn−6,1,2) = β(Fm) if and only if m = n− 1.

(6) For n ≥ 7, β(Q1,2) = β(C4(P3)) = β(Bn−6,1,2) if and only if n = 10.

(7) For n ≥ 7 and m ≥ 4, β(Bn−6,1,2) < β(Dm).

(8) For n ≥ 7 and m ≥ 6, β(Bn−6,1,2) = β(Bm−5,1,1) if and only if n = 2k
and m = k + 1.

(9) For t ≥ 3 and n ≥ m, β(Bm−t−4,1,t) < β(Bn−6,1,2).

(10) If a graph G satisfies R1(G) ≤ −2, then β(G) < −2 −
√

5.

Proof. The first two results follow from Lemma 3.2.2.

(3) From (2) of Lemma 3.2.3 and (3) of Lemma 3.2.2, we obtain the result.

(4) The result follows from Lemmas 2.9 and 2.10, (2) of Lemma 3.2.2 and
(1),(3) of the theorem.

(5) The result follows from (2) and (3) of the theorem and (3) of Lemma
3.2.2.

(6) The result follows from (1) and (3) of the theorem.

(7) In terms of (2) of the theorem and (3) of Lemma 3.2.2, we arrive at the
result.

(8) In view of (2) of the theorem and (4) of Lemma 3.2.2, we arrive at the
result.

(9) From (1) of Lemma 3.1.3 and Lemma 3.2.1, we have that

β(Bm−t−4,1,t) < β(Bn−t−4,1,t) ≤ β(Bn−7,1,t) < β(Bn−6,1,t) < β(Bn−6,1,2).

(10) In terms of Lemmas 2.6 and 2.10, we arrive at the result.

Definition 3.2.1. Let G be a graph with p vertices and q edges. The fourth
character of a graph is defined as follows:

R4(G) = R2(G) + p(G) − q(G).

From Lemmas 2.1 and 2.2, we obtain the following two theorems:
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Theorem 3.2.2. Let G be a graph with k components G1, G2, . . . , Gk. Then

R4(G) =
k
∑

i=1

R4(Gk).

Theorem 3.2.3. If graphs G and H such that h(G) = h(H) and h1(G) =
h1(H), then

R4(G) = R4(H).

From Definitions 3.1.2 and 2.1, we have the following theorem.

Theorem 3.2.4. (1) R4(Cn) = 0 for n ≥ 4 and R4(C3) = −2; R4(K1) = 1.

(2) R4(Br,1,1) = 3 for r ≥ 1 and R4(Br,1,t) = 4 for r, t > 1.

(3) R4(F6) = 4, R4(Fn) = 3 for n ≥ 7 and R4(K
−
4 ) = 2.

(4) R4(D4) = 0 and R4(Dn) = 1 for n ≥ 5, R4(T1,1,1) = 0.

(5) R4(T1,1,l3) = 1, R4(T1,l2,l3) = 2 and R4(Tl1,l2,l3) = 3 for l3 ≥ l2 ≥
l1 ≥ 2.

(6) R4(Cr(P2)) = 3 for m ≥ 4 and R4(C4(P3)) = R4(Q1,2) = 4.

(7) R4(P2) = 0 and R4(Pn) = −1 for n ≥ 3.

4. The Chromaticity of Graph Bn−6,1,2

Lemma 4.1 ([16]). For n ≥ 4, Dn is adjointly unique if and only if n 6= 4, 8.

Lemma 4.2 ([9]). Let f(x) be a monadic polynomial in x having integral

coefficients. If all the roots of f(x) are non-negative and there exists a

positive integer k such that f(k) is a prime number, then f(x) is a irreducible

polynomial over the rational number field.

Lemma 4.3. [Q1,1]h = [C4(P3)]h = {Q1,1, C4(P3),K1 ∪K−
4 }.

Proof. The most understandable proof is that we list all the graphs with
orders 5 and sizes 5, then we obtain the lemma. We can also prove the
lemma by the method used in Theorem 4.3. Here the details are omitted.
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Theorem 4.1. Let G be a graph such that G
h∼ Bn−6,1,2, where n ≥ 7.

Then G contains at most two components whose first characters are 1, fur-

thermore, one of both is P2 and the other is P4, or one of both is P2 and the

other is C3.

Proof. Let G1 be one of the components of G such that R1(G) = 1. From
Lemma 2.6, it follows, from Theorem 3.1.2, that h(G1) |h(Bn−6,1,2) if and
only if G1

∼= P2 and n = 3k + 6, or G1
∼= P4 and n = 5k + 3. According to

(1) of Lemma 2.5, we obtain the following equality:

(4.1) h(B15k+12,1,2) = h(P15)h(B15(k−1)+12,1,2)+xh(P14)h(B15(k−1)+11,1,2).

Noting that {n |n = 3k + 6, k ≥ 1} ∩ {n |n = 5k + 3, k ≥ 1} = {n |n =
15k + 18, k ≥ 0}, we have that

(4.2) h(P2)h(P4) |h(B15(k−1)+12,1,2).

By Lemma 3.1.1, we get h(P2) |h(P14) and h(P4) |h(P14), together with
(h1(P2), h1(P4)) = 1, which leads to

(4.3) h(P2)h(P4) |h(P20).

From (4.1) to (4.3), we obtain h(P2)h(P4) |h(B15k+12,1,2). Noting h(P4) =
h(K1∪C3), we also have h(P2)h(C3) |h(B15k+12,1,2), together with Theorem
3.1.3, so the theorem holds.

Theorem 4.2. If graph G with order n satisfies h(G) = h(Bn−6,1,2), then

it contains K−
4 as its component if and only if n = 18.

Proof. From Theorem 3.1.4, we know that the theorem holds.

Theorem 4.3. Let G be a graph such that G
h∼ Bn−6,1,2, where n ≥ 7.

Then

(1) If n = 7, then [G]h = {K1 ∪ F6, B2,1,2, Q2,2}.
(2) If n = 8, then [G]h = {K1 ∪ F7, B2,1,2, C3 ∪B5}.
(3) If n = 10, then [G]h = {K1 ∪ F9, B4,1,2, C4 ∪B1,1,1, D4 ∪B1,1,1,

C4 ∪Q1,2, D4 ∪Q1,2, C4 ∪ C4(P3), D4 ∪C4(P3)}.
(4) If n = 12, then [G]h = {K1 ∪ F11, B6,1,2, D5 ∪B2,1,1, D5 ∪ C6(P2)}.
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(5) If n = 18, then [G]h = {K1 ∪ F17, B12,1,2, K1 ∪ C3 ∪ C4 ∪ K−
4 ∪

C5(P2), K1 ∪ C3 ∪D4 ∪K−
4 ∪ C5(P2),K1 ∪ C3 ∪K−

4 ∪ B5,1,1, C3 ∪ C4

∪Q1,1 ∪ C5(P2), C3 ∪D4 ∪ Q1,1 ∪ C5(P2), C3 ∪ C4 ∪ C4(P2) ∪ C5(P2),
C3 ∪D4 ∪ C4(P2) ∪C5(P2), C3 ∪ C4(P2) ∪ B5,1,1, C3 ∪ Q1,1 ∪ B5,1,1,
P4 ∪ K−

4 ∪ C4 ∪C5(P2), P4 ∪ K−
4 ∪ B5,1,1, P4 ∪ K−

4 ∪D4 ∪ C5(P2),
C4 ∪ D8 ∪ C5(P2), D4 ∪D8 ∪ C5(P2), D8 ∪B5,1,1}.

(6) If n is even such that n ≥ 14 and n 6= 18, then

[G]h = {Bn−6,1,2, K1 ∪ Fn−1, Dn−2
2

∪Bn−8
2

,1,1}.

(7) If n is odd such that n ≥ 9, then [G]h = {Bn−6,1,2,K1 ∪ Fn−1}.

Proof. (1) When n = 7, let graph G satisfy h(G) = h(B1,1,2). From
Lemmas 2.1, 2.2 and 2.6, we obtain that p(G) = q(G) = 7 and R1(G) = −1.
By direct calculation, we arrive at h(G) = h(B1,1,2) = x3(x4 + 7x3 + 13x2 +
7x+ 1). We distinguish the following cases:

Case 1. G is a connected graph.
From b3(G) = b3(B1,1,2) = 7 and (2) of Lemma 2.11, it follows that G ∈
{Q2,2, B1,1,2}. By calculation, we have that Q2,2, B1,1,2 ∈ [G]h.

Case 2. G is not a connected graph.
Noting that h1(B1,1,2, 1) = 29 and from Lemma 4.2, we have that h1(B1,1,2)
is a irreducible polynomial over the rational number field, which leads to
G = aK1 ∪G1, where a ≥ 1 and G1 is a connected graph. It is not difficult
to see that q(G1) − p(G1) ≥ 1. By R1(G1) = −1 and Lemma 2.7, we arrive
at q(G1)− p(G1) ≤ 1. So q(G1) = p(G1) + 1. By Lemma 2.6, it follows that
G1

∼= F6, which leads to G1 = K1 ∪F6. From (2) of Lemma 3.2.3, we arrive
at K1 ∪ F6 ∈ [G]h.

(2) When n = 8, let G be a graph such that h(G) = h(B2,1,2), which
leads to p(G) = q(G) = 8 and R1(G) = −1. We distinguish the following
cases:

Case 1. G is a connected graph.
By b3(G) = b3(B2,1,3) and (1) of Lemma 2.11, we obtain that G ∈ {C4(P5),
C5(P4), C6(P3), Q1,4, B2,1,2}. By calculation, we have that B2,1,2 ∈ [G]h.

Case 2. G is not a connected graph.
By calculation, we have h(G) = h(B2,1,2) = x4f1(x)f2(x),where f1(x) = x2+
3x+1 and f2(x) = x2 +5x+3. By calculation, we have that R1(f1(x)) = 1.
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Noting that b1(f1(x)) = 3, we obtain that f1(x) = h1(P4) or f1(x) = h1(C3)
if f1(x) is a factor of adjoint polynomial of some graph.

Case 2.1. Neither P4 nor C3 is not a component of G.

Since G is not connected, then the expression of G is G = aK1 ∪G1, where
a ≥ 1 and G1 is connected. It is not difficult to obtain that q(G1)−p(G1) ≥
1. We conclude, from Lemma 2.7, that q(G1) − p(G1) ≤ 1. Thus q(G1) =
p(G1) + 1. From Lemma 2.6, it follows that G1

∼= F7 and G = K1 ∪ F7. In
terms of (2) of Lemma 3.2.3, we arrive at G = K1 ∪ F7 ∈ [G]h.

Case 2.2. Either P4 or C3 is a component of G.

Subcase 2.2.1. P4 is a component of G.

Let G = P4∪G1, where h1(G1) = x2 +5x+3. The following cases are taken
into account:

Subcase 2.2.1.1. G1 is a connected graph.

Noting that R1(G1) = −2 and q(G1) = p(G1)+1 = 5, we have, from Lemma
2.6, that G1 ∈ ψ. Nevertheless it contradicts that the order of any graph
belonging to ψ is not less than 5.

Subcase 2.2.1.2. G1 is not connected.

It follows that G = P4 ∪ aK1 ∪G1, where a ≥ 1 and h1(G1) = x2 + 5x+ 3.
It is not difficult to get that q(G1) − p(G1) ≥ 2. Remarking that R1(G1) =
−2, we obtain, from Lemma 2.7, that q(G1) − p(G1) ≤ 2, which results in
q(G1) = p(G1) + 2. Thus we conclude, from Lemma 2.6, that G1

∼= K−
4 ,

which contradicts to q(G1) = 5.

Subcase 2.2.2. C3 is a component of G.

Let G = C3∪G1, where h1(G1) = x2 +5x+3. The following cases are taken
into account:

Subcase 2.2.2.1. G1 is a connected graph.

Noting that R1(G1) = −2 and q(G1) = p(G1) = 5, we have, from Lemma
2.6, that G1

∼= B5. By calculation, we arrive at C3 ∪B5 ∈ [G]h.

Subcase 2.2.2.2. G1 is not connected.
It follows that G = C3∪aK1∪G1, where a ≥ 1 and h1(G1) = x2+5x+3. It is
not difficult to get that q(G1) − p(G1) ≥ 1. Remarking that R1(G1) = −2,
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we conclude, from Lemma 2.6, that 1 ≤ q(G1) − p(G1) ≤ 2. If q(G1) =
p(G1) + 1 or q(G1) = p(G1) + 2, then we can turn to Subcase 2.2.1 for the
same contradiction.

(3) When n = 9, let G be a graph such that h(G) = h(B3,1,2), which
brings p(G) = q(G) = 9 and R1(G) = −1. We distinguish the following
cases:

Case 1. G is a connected graph.

By b3(G) = b3(B3,1,2), we have, from (2) of Lemma 2.11, that G ∈ {C4(P6),
C5(P5), C6(P4), C7(P3), Q1,5, B3,1,2}. By calculation, we have that
B3,1,2 ∈ [G]h.

Case 2. G is not a connected graph.
By calculation, we obtain that h(G) = h(B3,1,2) = x4f1(x)f2(x), where
f1(x) = x + 1 and f2(x) = x4 + 8x3 + 18x2 + 9x + 1. Remarking that
R1(f1(x)) = 1 and b1(f1(x)) = 1, from (1) of Lemma 2.6, we have f1(x) =
h1(P2) if f1(x) is a factor of adjoint polynomial of some graph.

Case 2.1. P2 is not a component of G.

Since G is not connected, then the expression of G is G = aK1 ∪G1, where
a ≥ 1 and G1 is a connected graph. It is not difficult to obtain that q(G1)−
p(G1) ≥ 1. Noting that R1(G1) = −1, we have, from Lemma 2.7, that
q(G1) − p(G1) ≤ 1. Thus q(G1) = 9 = p(G1) + 1, which leads to G1

∼= F8

by Lemma 2.6. By calculation, we arrive at K1 ∪ F8 ∈ [G]h.

Case 2.2. P2 is a component of G.
Let G = P2 ∪G1, where h1(G1) = x4 + 8x3 + 18x2 + 9x+ 1. The following
subcases must be considered:

Subcase 2.2.1. G1 is a connected graph.
From R1(G1) = −2 and q(G1) = p(G1) + 1, we have that G1 ∈ ψ by (4) of
Lemma 2.6. By Lemma 2.12, we obtain that b3(G1) ≥ 11, which contradicts
b1(G1) = 9.

Subcase 2.2.2. G1 is not a connected graph.

From h1(G1, 1) = 37 and Lemma 2.13, we have that h1(G1) is a irreducible
polynomial over the rational number field, which leads to G1 = aK1 ∪ G2

and G = P6 ∪ aK1 ∪G2, where a ≥ 1 and G2 is a connected graph. It is not
difficult to get that q(G2) − p(G2) ≥ 2. From (1) of Lemma 2.7, we have
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that q(G2) − p(G2) ≤ 2. Hence q(G2) − p(G2) = 2, which leads to G2
∼= K4

by (4) of Lemma 2.6. This contradicts q(G2) = 8.

(4) When n ≥ 10, let G =
⋃t

i=1Gi. From Lemma 2.1, we have that

(4.4) h(G) =
t
∏

i=1

h(Gi) = h(Bn−6,1,2),

which results in β(G) = β(Bn−6,1,2) ∈ [−2 −
√

5,−4) by Lemma 2.10. Let
s

i
denote the number of components Gi such that R1(Gi) = −i, where

i ≥ −1. From Theorem 4.1, Lemmas 2.1 and 2.2, it follows that 0 ≤ s
−1 ≤ 2,

R1(G) =
∑t

i=1R1(Gi) = −1 and q(G) = p(G), which results in

(4.5)

−3 ≤ R1(Gi) ≤ 1,

s−1 = s1 + 2s2 + 3s3 − 1,
∑

−3≤R1(Gi)≤0

(q(Gi) − p(Gi)) = s
−1 .

According to (4.5) and Lemma 2.7, we have that

(4.6) −1 + s3 + s1 ≤
∑

R1(Gi)=−1

(q(Gi) − p(Gi)) ≤ s1 ,

We distinguish the following cases by 0 ≤ s
−1 ≤ 2:

Case 1. s
−1 = 0.

It follows, from (4.5) and (4.6), that

(4.7) s3 = 0, s2 = 0, s1 = 1, and 0 ≤ q(G1) − p(G1) ≤ 1

with R1(G1) = −1.

From (4.7), we set

(4.8) G = G1∪
(

⋃

i∈A

Ci

)

∪
(

⋃

j∈B

Di

)

∪fD4∪aK1∪ b T1,1,1∪
(

⋃

T∈T0

Tl1,l2,l3

)

,

where
⋃

T∈T0
Tl1,l2,l3 = (

⋃

T∈T1
T1,1,l3) ∪ (

⋃

T∈T2
T1,l2,l3) ∪ (

⋃

T∈T3
Tl1,l2,l3),

T1 = {T1,1,l3 | l3 ≥ 2}, T2 = {T1,l2,l3 | l3 ≥ l2 ≥ 2}, T3 = {Tl1,l2,l3 | l3 ≥
l2 ≥ l1 ≥ 2}, T0 = T1 ∪ T2 ∪ T3, the tree Tl1,l2,l3 is denoted by T for short,
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A = {i | i ≥ 4} and B = {j | j ≥ 5}. From Theorems 3.2.2, 3.2.3 and 3.2.4,
we arrive at

(4.9)
R4(G) = R4(Bn−6,1,2) = 4 = R4(G1) + |B | + a+ | T1 |

+ 2 | T2 | + 3 | T3 | .

We distinguish the following cases by 0 ≤ q(G1) − p(G1) ≤ 1:

Case 1.1. q(G1) = p(G1) + 1.

From Lemmas 2.6 and 2.10, we have G1 ∈ {Fm,K
−
4 |m ≥ 9}. Recalling that

q(G) = p(G), we obtain the following equality:

(4.10) a+ b+ | T1 | + | T2 | + | T3 | = 1.

Subcase 1.1.1. G1
∼= Fm.

If m ≥ 9, from (3) of Theorem 3.1.6, (4.9) and (4.10), we arrive at |B | +
a + | T1 | + 2 | T2 | + 3 | T3 | = 1, which leads to |B | + a + | T1 | = 1,
| T2 | = | T3 | = 0 and a+ b+ | T1 | = 1. Thus, we have the following three
cases to be considered:

If |B | = 1, then a = | T1 | = 0 and b = 1, which results in

G = Fm ∪ (
⋃

i∈A

Ci) ∪Dj ∪ fD4 ∪ T1,1,1.

If a = 1, then |B | = | T1 | = b = 0, which leads to

G = Fm ∪ (
⋃

i∈A

Ci) ∪ fD4 ∪K1.

If | T1 | = 1, then |B | = a = b = 0, which brings about

G = Fm ∪ (
⋃

i∈A

Ci) ∪ fD4 ∪ T1,1,l3 .

As stated above, we always have, from Lemmas 2.9 and 2.10, that β(G) =
β(Fm). From (5) of Theorem 3.2.1 and β(G) = β(Bn−6,1,2), it follows
that β(Fm) = β(Bn−6,1,2) if and only if m = n − 1. Note that p(G) =
p(Bn−6,1,2) = n, so we arrive at a = 1, A = B = T = ∅, f = b = 0,
which leads to G = K1 ∪ Fn−1. From (2) of Lemma 3.2.3, we know that
K1 ∪ Fn−1 ∈ [G]h.
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Subcase 1.1.2. G1
∼= K−

4 .
From Theorem 4.2, we know that p(G) = 18, that is to say,

(4.11)

h(G) = h(B12,1,2)

= x9(x+ 1)(x+ 4)(x2 + 3x+ 1)(x2 + 4x+ 2)(x3 + 6x2 + 8x+ 1)

= x9h1(C3 ∪D4 ∪ C5(P2)).

Eliminating the common factors h(K−
4 ) and x of h(G) and h(B12,1,2), by

(4.8) and (4.11) we get h1(H1) = h1(H2), where H1 = (
⋃

i∈ACi)∪
(
⋃

j∈B Dj)∪fD4∪aK1∪bT1,1,1∪(
⋃

T0
Tl1,l2,l3) and H2 = C3∪D4∪C5(P2). It

is clear that R1(H1) = 0 and R1(H2) = −1, which contradicts to R1(H1) =
R1(H2).

Case 1.2. q(G1) = p(G1).
Recalling that q(G) = p(G), we arrive at, from (4.8), a = b = | T1 | =
| T2 | = | T3 | = 0, which leads to

(4.12) G = G1 ∪
(

⋃

i∈A

Ci

)

∪
(

⋃

j∈B

Di

)

∪ fD4.

From (3) of Lemma 2.6 and Lemma 2.10, it follows that

(4.13) G1 ∈ {Bm−t−4,1,t, Cm(P2), Q1,2, C4(P3)},

where m− t− 4, t and m satisfy the conditions of Lemma 2.10.

We distinguish the following cases by (4.13):

Subcase 1.2.1. G1
∼= Cm(P2).

From lemma 2.9 and (2) of Lemma 3.2.2, it follows that β(G) = β(Cm(P2)).
Since β(G) = β(Bn−7,1,3), we have, from (4) of Theorem 3.2.1, that
β(Bn−6,1,2) = β(Cm(P2)) if and only if n = 10,m = 8, or n = 12,m = 6, or
n = 18,m = 5. The four subcases will be discussed:

Subcase 1.2.1.1. n = 10,m = 8.
In this subcase, it contradicts to p(G) = p(Bn−6,1,2).

Subcase 1.2.1.2. n = 12,m = 6.
From (4.12) and p(G) = 12, we only have that G = C6(P2) ∪ C5 or G =
C6(P2) ∪D5, By calculation, we arrive at C6(P2) ∪D5 ∈ [G]h.
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Subcase 1.2.1.3. n = 18,m = 5.

By (4.12) and p(G) = 18, we get that G ∈ {3D4 ∪ C5(P2), 3C4 ∪ C5(P2),
2D4 ∪C4 ∪C5(P2), 2C4 ∪D4 ∪C5(P2), C4 ∪C8 ∪C5(P2), C4 ∪D8 ∪C5(P2),
D4 ∪ C8 ∪ C5(P2), D4 ∪D8 ∪ C5(P2), C12 ∪ C5(P2), D12 ∪ C5(P2), C5 ∪ C7

∪C5(P2), C5 ∪ D7 ∪ C5(P2), D5 ∪ C7 ∪ C5(P2), D5 ∪ D7 ∪ C5(P2), 2C6∪
C5(P2), 2D6∪C5(P2), C6∪D6∪C5(P2), }. By Lemma 2.3 and by calculation,
it follows that C4 ∪D8 ∪ C5(P2), D4 ∪D8 ∪ C5(P2) ∈ [G]h.

Subcase 1.2.2. G1
∼= Q1,2 or G1

∼= C4(P3).

From (6) and (7) of Theorem 3.2.1 and Lemma 2.9, we have that β(G) =
β(G1) = β(Bn−7,1,3) if and only if n = 10, which brings about G ∈ G1 =
{Q1,2 ∪ C4, Q1,2 ∪D4, C4(P3) ∪ C4, C4(P3) ∪D4} by (4.12). By calculation,
we have G1 ⊆ [G]h.

Subcase 1.2.3. G1
∼= Bm−t−4,1,t.

We distinguish the following subcases:

Subcase 1.2.3.1. t = 1.

From Lemma 2.9 and (4) of Lemma 3.2.2, it follows that β(G) = β(Bm−5,1,1).
According to (8) of Theorem 3.2.1, we obtain that β(Bm−5,1,1) = β(Bn−7,1,3)
if and only if n = 2k,m = k + 1, where k ≥ 1. By (2) of Lemma 3.2.3 and
eliminating the common factor h(Bk−4,1,1) of h(G) and h(B2k−6,1,2), we
obtain that h((

⋃

i∈ACi) ∪ (
⋃

j∈B Dj) ∪ fD4) = h(Dk−1).

If k = 4, then 4 ∈ A and B = ∅ or f = 1 and B = ∅, which results
in G ∈ G2 = {C4 ∪ B1,1,1, D4 ∪ B1,1,1}. By direct calculation, we have that
G2 ⊆ [G]h.

If k = 9, from Lemma 2.6, we have β(D8) = −4, which leads to A = ∅,
f = 0 and 8 ∈ B. ThusG = D8∪B5,1,1. By calculation, we haveD8∪B5,1,1 ∈
[G]h.

If k 6= 5 and k 6= 9, from Lemma 4.1, we obtain A = ∅, f = 0 and
k − 1 ∈ B. So G = Dk−1 ∪ Bk−4,1,1 = Dn−2

2
∪ Bn−8

2
,1,1, where n ≥ 10 is

even. In terms of Lemma 3.2.3, we arrive at D n−2
2

∪Bn−8
2

,1,1 ∈ [G]h.

Subcase 1.2.3.2. t = 2.

From (3) and (7) of Theorem 3.2.1 and Lemma 2.9, it follows that β(G) =
β(Bm−6,1,2) = β(Bn−6,1,2) if and only if m = n, which leads to G ∼= Bn−6,1,2.
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Subcase 1.2.3.3. t ≥ 3.

From (7) and (9) of Theorem 3.2.1, we arrive at β(G) = β(Bm−t−4,1,t) <
β(Bn−6,1,2), which contradicts to β(G) = β(Bn−6,1,2).

Case 2. s
−1 = 1.

It follows, from (4.5), that s1 + 2s2 + 3s3 = 2, which leads to s3 = 0 and
s1 + 2s2 = 2. Hence

(4.14) s2 = 1, s1 = 0, or s2 = 0, s1 = 2.

We distinguish the following cases by (4.14):

Case 2.1. s2 = 1, s1 = 0.

Without loss of generality, let G1 be the component such that R1(G1) = −2.
From Corollary 2.1, we know that β(G1) < −2 −

√
5, which contradicts

β(Bn−6,1,2) ∈ [−2 −
√

5,−4).

Case 2.2. s2 = 0, s1 = 2.

Without loss of generality, let

G = G1 ∪G2 ∪G3 ∪
(

⋃

i∈A

Ci

)

∪
(

⋃

j∈B

Di

)

∪ fD4 ∪ aK1

(4.15)

∪ b T1,1,1 ∪
(

⋃

T∈T0

Tl1,l2,l3

)

,

where
⋃

T∈T0
Tl1,l2,l3 = (

⋃

T∈T1
T1,1,l3) ∪ (

⋃

T∈T2
T1,l2,l3) ∪ (

⋃

T∈T3
Tl1,l2,l3),

T1 = {T1,1,l3 | l3 ≥ 2}, T2 = {T1,l2,l3 | l3 ≥ l2 ≥ 2}, T3 = {Tl1,l2,l3 | l3 ≥
l2 ≥ l1 ≥ 2}, T0 = T1 ∪ T2 ∪ T3, the tree Tl1,l2,l3 is denoted by T for short,
G1 ∈ {P2, P6}, R1(G2) = R2(G3) = −1, A = {i | i ≥ 4} and B = {j | j ≥ 5}.

Subcase 2.2.1. G1
∼= C3.

From (4.6), we obtain that

(4.16) 1 ≤
3
∑

i=2

(q(Gi) − p(Gi)) ≤ 2.

We distinguish the following cases by (4.16):
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Subcase 2.2.1.1.
∑3

i=2(q(Gi) − p(Gi)) = 1.

From Lemmas 2.6 and 2.10, it follows thatG2∈ {Cm(P2), Br,1,t, C4(P3), Q1,2}
and G3 ∈ {Fm,K

−
4 |m ≥ 9}, where m, r and t satisfy the conditions of

Lemma 2.10. Recalling that q(G) = p(G), we have, from (4.15), that

(4.17) a+ b+ | T1 | + | T2 | + | T3 | = 1.

In terms of Theorem 3.2.4, we have that R4(G) = R4(C3) + R4(G2) +
R4(G3) + |B | + a + | T1 | + 2 | T2 | + 3 | T3 | = 4 if and only if G2 ∈
{Cs(P2), Br,1,1}, G3

∼= Fm and |B | = a = | T1 | = | T2 | = | T3 | = 0,
or G2 ∈ {Br,1,t, C4(P3), Q1,2}, G3 ∈ {K−

4 } and |B | = a = | T1 | = | T2 | =
| T3 | = 0, or G2 ∈ {Cs(P2), Br,1,1}, G3 ∈ {K−

4 }, | T2 | = | T3 | = 0 and
a+ |B | + | T1 | = 1, where s, r and m satisfy the conditions of Lemma 2.10.

Subcase 2.2.1.1.1. G2 ∈ {Cs(P2), Br,1,1}, G3
∼= Fm and |B | = a =

| T1 | = | T2 | = | T3 | = 0.

From (4.17), we arrive at b = 1. If G2
∼= Cs(P2) and m = 9, we have,

from (1) of lemma 3.2.2 and Lemma 2.9, that β(G) = β(G2) = β(C8(P2)) =
β(F9), which contradicts to p(G) = 10. Ifm ≥ 10, then β(G) = β(Cs(P2)) =
β(Bn−6,1,2) if and only if s = 6, n = 12, or s = 5, n = 18, which contradicts
to p(G) = p(Bn−6,1,2).

If G2
∼= Br,1,1, it is clear that β(G) = β(Br,1,1). Or else, if β(G) =

β(Fm) = β(Bn−6,1,2), we obtain, from (5) of Theorem 3.2.1, that m = n−1,
which contradicts to p(Br,1,1) ≥ 6. So β(G) = β(Br,1,1) = β(Bn−6,1,2) iff
n = 2k and r = k − 4. By (2) of Lemma 3.2.3 and eliminating the com-
mon factor h(Bk−4,1,1) of h(G) and h(B2k−6,1,2), we conclude, from (4.4),
(4.15) and Lemma 2.9, that β(Fm) = β(Dk−1), which is impossible by (3)
of Lemma 3.2.2.

Subcase 2.2.1.1.2. G2 ∈ {Br,1,t, C4(P3), Q1,2}, G3 ∈ {K−
4 } and |B | =

a = | T1 | = | T2 | = | T3 | = 0.

From (4.18), it follows that b = 1. Noting that β(Q1,2) = β(C4(P3)) =
β(B4,1,2) and by Lemma 2.9, we have that β(G) = β(Br,1,t). It is clear
that p(Br,1,t) ≤ n − 7, which implies, from (9) of Theorem 3.2.1, that
β(Br,1,t) 6= β(Bn−6,1,2) for r, t ≥ 2.

Subcase 2.2.1.1.3. G2 ∈ {Cs(P2), Br,1,1}, G3 ∈ {K−
4 }, | T2 | = | T3 | = 0

and a+ |B | + | T1 | = 1.
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If a = 1, then |B | = | T1 | = 0. By Theorem 4.2, we have that K−
4 is a

component of G if and only if n = 18. By (4) and (8) of Theorem 3.2.1
and Lemma 2.9, we arrive at β(G) = β(G2) = β(B12,1,2) if and only if
s = 5 or r = 5. We conclude, from (4.11), that G ∈ G3 = {K1 ∪ C3 ∪ C4∪
K−

4 ∪ C5(P2), K1 ∪ C3 ∪D4 ∪K−
4 ∪ C5(P2), K1 ∪ C3 ∪K−

4 ∪B5,1,1}. From
Lemma 4.3, we arrive a G ∈ G4 = {Q1,1 ∪ C3 ∪ C4 ∪ C5(P2), Q1,1 ∪ C3 ∪
D4 ∪ C5(P2), C3 ∪ C4 ∪ C4(P2) ∪ C5(P2), C3 ∪ D4 ∪ C4(P2) ∪ C5(P2),
Q1,1 ∪ C3 ∪ B5,1,1, C4(P2) ∪ C3 ∪ B5,1,1}. By calculation, we arrive at
G3 ∪ G4 ⊆ [G]h.

Subcase 2.2.1.2.
∑3

i=2(q(Gi) − p(Gi)) = 2.
From Lemmas 2.6 and 2.10, we have Gi ∈ {Fm,K

−
4 |m ≥ 9} for i = 2, 3. In

terms of (4.15), we arrive at

(4.18) a+ b+ | T1 | + | T2 | + | T3 | = 2.

In terms of Theorem 3.2.4, we have that

(4.19)
R4(G) = R4(C3) +R4(G2) +R4(G3) + |B | + a+ | T1 |

+ 2 | T2 | + 3 | T3 | = 4.

By (3) of Theorem 3.2.4, it follows that R4(G2)+R4(G3) ≥ 4, which leads to
| T3 | = 0 from (4.19). If | T2 | = 1, then we conclude, from (4.19), that G2

∼=
G3

∼= K−
4 . Since h(K−

4 ) = x3(x + 1)(x + 4), we know that (x + 1)2 |h(G),
that is, h1(P2)

2 |h(Bn−6,1,2), which contradicts to Theorem 3.1.3. Hence
| T2 | = 0. In the light of (4.19) again, we obtain that R4(G) = 4 if and only
if G2

∼= Fm1 , G3
∼= Fm2 and |B | = a = | T1 | = 0, or G2

∼= Fm, G3
∼= K−

4

and |B | + a+ | T1 | = 1.

Subcase 2.2.1.2.1. G2
∼= Fm1 , G3

∼= Fm2 and |B | = a = | T1 | = 0.
From (4.18) we arrive at b = 2. In terms of Lemmas 2.9 and 2.10, we
have that β(G) = min{β(Fm1), β(Fm2 )} = β(Fm1) if m1 ≤ m2. By (5) of
Theorem 3.2.1, it follows that β(G) = β(Fm1) = β(Bn−6,1,2) if and only if
m1 = n− 1, which contradicts to m2 ≥ 9.

Subcase 2.2.1.2.2. G2
∼= Fm, G3

∼= K−
4 and |B | + a+ | T1 | = 1.

If any one in {a, |B | , | T1 | } is equal to 1, then we obtain, from Lemmas 2.9
and (3) of Lemma 3.2.2, that β(G) = β(Fm). Thus we can turn to Subcase
2.2.1.2.1 for the same contradiction.
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Case 2.2.2. G1
∼= P4.

With the same analytic method as that of Case 2.2.1, we conclude, from
Theorem 3.2.4, that R4(G) = R4(P4)+R4(G2)+R4(G3)+ |B | +a+ | T1 | +
2 | T2 |+3 | T3 | = 4 if and only if G2 ∈ {Cs(P2), Br,1,1}, G3

∼= K−
4 and |B | =

a = | T1 | = | T2 | = | T3 | = 0, or G2
∼= G3

∼= K−
4 , |B | + a+ | T1 | = 1 and

| T2 | = | T3 | = 0, where r and s satisfy the conditions of Lemma 2.10.

Subcase 2.2.2.1. G2 ∈ {Cs(P2), Br,1,1}, G3
∼= K−

4 and |B | = a =
| T1 | = | T2 | = | T3 | = 0.

From Theorem 4.2, we know that K−
4 is a component of G if and only

if n = 18. According to (1) and (4) of Lemma 3.2.2, (4) and (8) of Theorem
3.2.1 and Lemma 2.9, we obtain that β(G) = β(G2) = β(B12,1,2) if and only
if s = 5, or r = 5. Thus G ∈ G5 = {P4 ∪K−

4 ∪B5,1,1, P4∪K−
4 ∪C4∪ C5(P2),

P4 ∪K−
4 ∪D4 ∪ C5(P2)}. By calculation, we arrive at G5 ⊆ [G]h.

Subcase 2.2.2.2. G2
∼= G3

∼= K−
4 , |B | + a + | T1 | = 1 and | T2 | =

| T3 | = 0.
If G2

∼= G3
∼= K−

4 , then we can turn to Subcase 2.2.1.2 for the same
contradiction.

Case 2.2.3. G1
∼= P2.

From Lemmas 2.6 and 2.10, it follows thatG2 ∈ {Cm(P2), Br,1,t, C4(P3), Q1,2}
and G3 ∈ {Fm,K

−
4 |m ≥ 9}, where m, r and t satisfy the conditions of

Lemma 2.10. we conclude, from Theorem 3.2.2, that

R4(G) = R4(P2) +R4(G2) +R4(G3) + |B | + a+ | T1 | + 2 | T2 | + 3 | T3 | .

Noting that R4(P2) = 0 and R4(G2) + R4(G3) ≥ 5, we conclude, from the
above equality, that R4(G) ≥ 5, which contradicts R4(G) = 4.

Case 3. s
−1 = 2.

From (4.5), we arrive at s1 +2s2 +3s3 = 3, which brings about the following
cases:

Case 3.1. s3 = 1 and s1 = s2 = 0.
Let the component G1 such that R1(G1) = −3, which contradicts β(G) ∈
[−2 −

√
5,−4) by Corollary 2.1.

Case 3.2. s2 = 1 and s1 = s3 = 0.
According to the same reason as that of case 3.1, we have a contradiction.
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Case 3.3. s1 = 3 and s2 = s3 = 0.

Case 3.3.1. The components of G, with the first characters 1, are P2

and P4.
Without loss of generality, from Theorem 4.1, we set

G = P2 ∪ P6 ∪
( 3
⋃

k=1
Gk

)

∪
(

⋃

i∈A

Ci

)

∪
(

⋃

j∈B

Di

)

∪ fD4

(4.20)

∪ aK1 ∪ b T1,1,1 ∪
(

⋃

T∈T0

Tl1,l2,l3

)

,

where
⋃

T∈T0
Tl1,l2,l3 = (

⋃

T∈T1
T1,1,l3) ∪ (

⋃

T∈T2
T1,l2,l3) ∪ (

⋃

T∈T3
Tl1,l2,l3),

T1 = {T1,1,l3 | l3 ≥ 2}, T2 = {T1,l2,l3 | l3 ≥ l2 ≥ 2}, T3 = {Tl1,l2,l3 | l3 ≥
l2 ≥ l1 ≥ 2}, T0 = T1 ∪ T2 ∪ T3, the tree Tl1,l2,l3 is denoted by T for short,
R1(Gk) = −1 for 1 ≤ k ≤ 3, A = {i | i ≥ 4} and B = {j | j ≥ 5}.

From (4.6), it follows that

(4.21) 2 ≤
3
∑

k=1

(q(Gk) − p(Gk)) ≤ 3.

We distinguish the following cases by (4.21):

Subcase 3.3.1.1.
∑3

k=1(q(Gk) − p(Gk)) = 2.
From β(G) ∈ [−2 −

√
5,−4) and Lemmas 2.6 and 2.10, we have that G1 ∈

{Cr(P2), Br,1,t, C4(P3), Q1,2} and G2, G3 ∈ {Fr,K
−
4 | r ≥ 9}, where r and t

satisfy the conditions of Lemma 2.10. Recalling that q(G) = p(G), we have,
from (4.20), that

a = b = | T1 | = | T2 | = | T3 | = 0,

which leads to

(4.22) R4(G) = 4 = R4(P2) +R4(P6) +
3
∑

k=1

R4(Gk) + |B | .

From Theorem 3.2.4 and (4.22), we obtain that R4(G) = 4 ≥ |B | + 6,
which results in |B | ≤ −2. This is obviously a contradiction.

Subcase 3.3.1.2.
∑3

k=1(q(Gk) − p(Gk)) = 3.
From lemmas 2.6 and 2.10, we have Gk ∈ {Fr,K

−
4 | r ≥ 9}. By (4.20) and

Theorem 3.1.4, we obtain
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R4(G) = 4 = R4(P2)+R4(P6)+
3
∑

k=1

R4(Gk)+a+ |B |+ | T1 |+2 | T2 |+3 | T3 | .

In terms of Theorem 3.2.4, we arrive at R4(G) = 4 ≥ 5 + a+ |B | + | T1 | +
2 | T2 | + 3 | T3 | , which leads to a + |B | + | T1 | + 2 | T2 | + 3 | T3 | ≤ −1.
This is also a contradiction.

Case 3.3.2. The components of G, with the first characters 1, are P2

and C3.
Without loss of generality, from Theorem 4.1, we set

G = P2 ∪ C3 ∪
( 3
⋃

k=1
Gk

)

∪
(

⋃

i∈A

Ci

)

∪
(

⋃

j∈B

Di

)

∪ fD4

(4.23)

∪ aK1 ∪ b T1,1,1 ∪
(

⋃

T∈T0

Tl1,l2,l3

)

,

where
⋃

T∈T0
Tl1,l2,l3 = (

⋃

T∈T1
T1,1,l3) ∪ (

⋃

T∈T2
T1,l2,l3) ∪ (

⋃

T∈T3
Tl1,l2,l3),

T1 = {T1,1,l3 | l3 ≥ 2}, T2 = {T1,l2,l3 | l3 ≥ l2 ≥ 2}, T3 = {Tl1,l2,l3 | l3 ≥
l2 ≥ l1 ≥ 2}, T0 = T1 ∪ T2 ∪ T3, the tree Tl1,l2,l3 is denoted by T for short,
R1(Gk) = −1 for 1 ≤ k ≤ 3, A = {i | i ≥ 4} and B = {j | j ≥ 5}.

From (4.6), it follows that

(4.24) 2 ≤
3
∑

k=1

(q(Gk) − p(Gk)) ≤ 3.

We distinguish the following cases by (4.24):

Subcase 3.3.2.1.
∑3

k=1(q(Gk) − p(Gk)) = 2.
From β(G) ∈ [−2 −

√
5,−4) and Lemmas 2.6 and 2.10, we get that G1 ∈

{Cr(P2), Br,1,t, C4(P3), Q1,2} and G2, G3 ∈ {Fr,K
−
4 | r ≥ 9}, where r and t

satisfy the conditions of Lemma 2.10. Recalling that q(G) = p(G), we have,
from (4.23), that

a+ b+ | T1 | + | T2 | + | T3 | = 1.

Recalling that the number of component K−
4 is 1, we conclude, from The-

orem 3.2.4, that
∑3

k=1R4(Gk) ≥ 8, which lead to R4(G) = 4 ≥ R4(P2) +
R4(C3) +

∑3
k=1R4(Gk) + |B | = 6 + |B | , that is, |B | ≤ −2 which is

impossible.
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Subcase 3.3.2.2.
∑3

k=1(q(Gk) − p(Gk)) = 3.
From β(G) ∈ [−2 −

√
5,−4) and Lemmas 2.6 and 2.10, we have that

G1, G2, G3 ∈ {Fm,K
−
4 | r ≥ 9}, where m satisfies the conditions of Lemma

2.10. Recalling that q(G) = p(G), we have, from (4.23), that

a+ b+ | T1 | + | T2 | + | T3 | = 2.

Recalling that the number of component K−
4 is 1, we conclude, from (3)

of Theorem 3.2.4, that
∑3

k=1R4(Gk) ≥ 8, which lead to R4(G) = 4 ≥
R4(P2) + R4(C3) +

∑3
k=1R4(Gk) + |B | = 6 + |B | , that is, |B | ≤ −2

which is impossible.

This completes the proof of the theorem.

Corollary 4.1. For n ≥ 7, the chromatic equivalence class of Bn−6,1,2 only

contains the complements of graphs described in Theorem 4.3.
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