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Abstract

For two positive integers r and s, G(n;r, s) denotes to the class of graphs
on n vertices containing no r of s-edge disjoint cycles and f(n;r,s) =
max{E(G) : G € G(n;r,s)}. In this paper, for integers r > 2 and k > 1,
we determine f(n;r, 2k + 1) and characterize the edge maximal members in
G(n;r,2k + 1).
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1. INTRODUCTION

The graphs considered in this paper are finite, undirected and have no loops or
multiple edges. Most of the notations that follow can be found in [5]. For a given
graph G, we denote the vertex set of a graph G by V(G) and the edge set by
E(G). The cardinalities of these sets are denoted by v(G) and £(G), respectively.
The cycle on n vertices is denoted by C,.
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Let G; and G2 be graphs. The union of G; and G is a graph with vertex
set V(G1) UV (G2) and edge set E(G1) U E(G2). Two graphs G; and G are
vertex disjoint if and only if V(G1) N V(G3) = 0; G1 and Gy are edge disjoint
if E(G1) N E(G2) = 0. If G1 and Gy are vertex disjoint, we denote their union
by G1 4+ G3. The intersection G1 N Gy of graphs G and (G5 is defined similarly,
but in this case we need to assume that V(G1) N V(G2) # (. The join GV H
of two vertex disjoint graphs G and H is the graph obtained from G 4+ H by
joining each vertex of G to each vertex of H. For two vertex disjoint subgraphs
H, and H of G, we let Eq(H1,Hs) = {2y € E(G) :x € V(Hy),y € V(H2)} and
Eq(Hy, Hy) = |Eg(Hy, H2)|.

In this paper we consider the Turédn-type extremal problem with the odd edge
disjoint cycles being the forbidden subgraph. Since a bipartite graph contains no
odd cycles, the non-bipartite graphs have been considered by some authors. First,
we recall some notations and terminologies. For a positive integer n and a set
of graphs F, let G(n;F) denote the class of non-bipartite F-free graphs on n
vertices, and

fn; F) =max{&(G) : G € G(n; F)}.

For simplicity, in the case when F consists only of one member Cs, where s is an
odd integer, we write G(n;s) = G(n; F) and f(n;s) = f(n; F).

An important problem in extremal graph theory is that of determining the
values of the function f(n;F). Further, characterize the extremal graphs G(n; F)
where f(n; F) is attained. For a given r, the edge maximal graphs of G(n;r) have
been studied by a number of authors [1, 2, 3, 7, 8, 9, 10, 12]. In 1998, Jia [11]
proved the following result:
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Figure 1. (a) The figure represents a member of G*(n).
(b) The figure represents a member of (n,2).

Theorem 1 (Jia). Let G € G(n;5), n > 10. Then £(G) < |(n —2)?/4] + 3.
Furthermore, equality holds if and only if G € G*(n) where G*(n) is the class
of graphs obtained by adding a triangle, two vertices of which are new, to the
complete bipartite graph K|(n—2)/2),[(n—2)/21- Figure 1(a) displays a member of
G*(n).
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Jia, also conjectured that f(n;2k + 1) < |(n—2)2/4] + 3 for all n > 4k + 2.
In 2007, Bataineh, confirmed positively the conjecture. In fact, he proved the
following result:

Theorem 2 (Bataineh). Let k > 3 be a positive integer and G € G(n;2k + 1).
Then for large n, £(G) < |(n —2)*/4] + 3.

Furthermore, equality holds if and only if G € G*(n) where G*(n) is as above.

Let G(n;r, s) denote to the class of graphs on n vertices containing no r of s-edge
disjoint cycles and

f(n;r,s) =max{E(G) : G € G(n;r,s)}.

Note that
g(n’ 278) g g(n7378) g .. g g(n;fr, S).

Let Q(n,r) denote to the class of graphs obtained by adding r — 1 edges to the
complete bipartite graphs KHJ =7 Figure 1(b) displays a member of Q(n, 2).
2171 2
The Turan-type extremal problem with two odd edge disjoint cycles being
the forbidden subgraph, was studied by Bataineh and Jaradat [2]. In fact, they

only established partial results by proving the following:

Theorem 3 (Bataineh and Jaradat). Let k = 1,2 and G € G(n;2,2k+1). Then
for large n,

E(G) < |n*/4] + 1.
Furthermore, equality holds if and only if G € Q(n,2).

In this paper, we continue the work initiated in [2] by generalizing and extending
the above theorem. In fact, we determine f(n;r,2k+1) and characterize the edge
maximal members in G(n;r,2k + 1). Now, we state a number of results, which
play an important role in proving our result.

Lemma 4 (Bondy and Murty). Let G be a graph on n vertices. If £(G) > n?/4,
then G contains a cycle of length r for each 3 <r < |[(n+3)/2].

Theorem 5 (Brandt). Let G be a non-bipartite graph with n vertices and more
than L(n — 1)2/4J + 1 edges. Then G contains all cycles of length between 3 and
the length of the longest cycle.

In the rest of this paper, Ng(u) stands for the set of neighbors of u in the graph
G. Moreover, G[X] denotes to the subgraph induced by X in G.
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2. EDGE-MAXIMAL Cyi11-EDGE DISJOINT FREE GRAPHS

In this section, we determine f(n;r,2k + 1) and characterize the edge maximal
members in G(n;r,2k+1). Observe that Q(n,r) C G(n;r,2k+1) and every graph
in Q(n,r) contains |n?/4] 4+ r — 1 edges. Thus, we have established that

(1) fnsr,2k+1) > [n?/4] +r— 1.

In the following work, we establish that equality holds. Further we characterize
the edge maximal members in G(n;r, 2k + 1).

Theorem 6. Let k > 1,7 > 2 be two positive integers and G € G(n;r, 2k + 1).
For large n,
E(G) < [n*/4] +r—1.

Furthermore, equality holds if and only if G € Q(n,r).

Proof. We prove the theorem using induction on 7.

Step 1. We show the result for r = 2. Note that by Theorem 3, it is enough to
prove the result for £ > 3. Let G € G(n,2,2k 4+ 1). If G does not have a cycle
of length 2k + 1, then by Lemma 4, £(G) < |n?/4]. Thus, £(G) < |n?/4] + 1.
So, we need to consider the case when G has cycles of length 2k + 1. Assume
C = z129... 2951121 be a cycle of length 2k + 1 in G. Consider H = G — {e; =
XT1To, €3 = T3, ..., €511 = Tok+121}. Observe that H cannot have 2k + 1-cycle
as otherwise G would have two edge disjoint 2k + 1-cycles. We now consider two
cases according to H:

Case 1. H is not a bipartite graph. If £ > 2, then by Theorems 1 and 2
EH) < |(n—2)?/4] +3.

But, £(G) = E(H) + 2k +1 < [P522] 4 2k 44 < || — n + 2k + 5. Thus,
for n > 2k + 5, we have £(G) < L%QJ + 1. If £ = 1, then by Theorems 5
E(H) < |(n—1)*/4] + 1. And so, by using the same argument as in the above,
we get that for n > 7,

2

£(G) < MJ +1.

Case 2. H is a bipartite graph. Let X and Y be the partition of V(H).
Thus, £(H) < |X||Y|. Observe |X| + |Y| = n. The maximum of the above is
when |X| = [%] and |Y]| = [%]. Thus, £(H) < L%QJ Restore the edges of the
cycle C'. We now consider the following subcases:

(2.1). One of X and Y contains two edges of the cycle, say e; and e; belong

to X. Let y1,92,...,yx—1 be a set of vertices in X —{z;,x;y1, 2, zj11}. We split
this subcase into two subcases:
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(2.1.1). ¢ and j are not consecutive. Then |Ny (z;) N Ny (zi41) N Ny (x;) N
Ny (2j4+1) N Ny (y1) N Ny (y2) N -+ - N Ny (yx—1)| < k+ 2, as otherwise G contains
two edge disjoint 2k + 1-cycles. Thus,

Ea{zi, xiv1, 25, j11,91,92, - Ye—1 1Y) < (B +2)[Y [+ k4 2.
So,

E(Q) = Ea(X —{Zi, Tit1, Tj, Tj1, Y1, Y25 - - Yk—1}, Y)
+Ea({zi, xiv1, x5, xj1.01, 92, - Yk—1 1, Y ) + E(G[X]) + E(G[Y])

< (X =k=3)Y|+(k+2Y|+k+2+2k+1

< |IX|IY] = Y]+ 3k +3 < (IX]—1)[Y] + 3k + 3.

Observe that |X| + |Y| = n. The maximum of the above equation is when
Y| =[22] and | X| -1 = [252]. Thus,

£(@) < V”;DQJ + 3k + 3.

Hence, for n > 6k + 7, we have £(G) < L%QJ + 1.

(2.1.2). i and j are consecutive, say j = ¢ + 1. Then by following, word
by word, the same arguments as in (2.1.1) and by taking into the account that
|Ny(.732) N Ny(xi_H) N Ny(xj+2) N Ny(yl) N Ny(yg) n---N Ny(yk_l)‘ <k+1and
so E({wi, Tit1, Tiva, Y1,Y2, - Yk—1},Y) < (k+ 1)|Y| 4+ k + 1, we get the same
inequality.

(2.2). £(G[X]) =1 and E(G[Y]) = 0 or E(G[X]) = 0 and E(GY]) = 1,
say e; € E(G[X]). Then G — e; is a bipartite graph and so as in the above
E(G —e1) < |%]. Thus, £(G) = E(G —e1) +1 < [ 2] + 1.

One can observe from the above arguments that for » = 2 the only time we
have equality is in case when G is obtained by adding an edge to the complete
bipartite graph KL [NEaE This gives rise to the class Q(n, 2).

n n
2 2

Step 2. Assume that the result is true for » — 1. We now show the result is true
for r > 3. To accomplish that we use similar arguments to those in Step 1. Let
G € G(n;r, 2k + 1). If G contains no r — 1 edge disjoint cycles of length 2k + 1,
then by the inductive step £(G) < |n?/4] +r — 2. Thus, £(G) < |n?/4| +r—1.
So, we need to consider the case when G has r — 1 edge disjoint cycles of length
2k + 1. Assume that {C" = 1, 740, . .. ,.’L‘izk_t'_l,xil}g:_ll be the set of cycles of
length 2k + 1. Consider H = G — U/_ E(C"). Observe that H cannot have
2k + 1-cycles as otherwise G would have r of edges disjoint 2k + 1-cycles. As in
Step 1, we consider two cases:
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Case 1. H is not a bipartite graph. If £k > 2, then by Theorems 1 and 2
E(H) < |(n —2)2/4] + 3. Thus, £(G) = EH) + (r — 1)(2k +1) < | 2] + (r —
1) —n+4+2k(r—1). Hence, for n > 44 2k(r — 1), we have £(G) < L%J +r—1.
If k = 1, then by Theorems 5 £(H) < |(n —1)?/4] + 1.

By using the same argument as in the above, we get that for n > 4(r —1)+1,

2

£(G) < HJ +1.

Case II. H is a bipartite graph. Let X and Y be the partition of V(H).

Thus, E(H) < |X||Y|. Observe | X|+ |Y| = n. The maximum of the above is
when |X| = |%] and [Y] = [4]. Thus, £(H) < {"TQJ Now, we consider the
following two subcases:

(ILI). There is 1 < m < r — 1 such that C™ contains at least two edges, say
€i = TmiTm(i+1) ad €j = TpmjTp(j11), joining vertices of one of X and Y , say
X. Let y1,92,...,yr—1 be a set of vertices in X — {Zmi, Tp(it1), Ty Tin(j4+1) }-
To this end we have two subcases:

(ILLI). 7 and j are not consecutive. Then [Ny (Zmi) NNy (T, (i41)) NNy (Tm;)
NNy (T (j41)) Ny (y1) NNy (y2) N - -NNy (yx—1)| < k+2, as otherwise HU{e;, e}
contains two edges disjoint 2k 4+ 1-cycles and so G contains r edge disjoint cycles
of length 2k 4+ 1. Thus, as in (2.1.1) of Step 1,

gH({xmu xm(i+l)7xmj7 xm(j+1)7y17 Y2, ... 7yk71}7 Y) S (k + 2)‘Y’ + k + 2.
And so,
EG) = &H)+| Uz E(CY|
- EH(X - {xmiv mm(iJrl)y Tmy, xm(jJrl)? Y1,Y25- -+, ykfl}a Y)
gH({Z'mZ, mm(i+l) ) wm]& xm(j+1)7 Y1, Y2, - - -, yk71}7 Y) + ’ U:;ll E<CZ)’

(IX|=k=3)Y|+k+2)|Y|+k+2+(r—1)2k+1)
(X -DY|+k+2+(r—1)2k+1).

IN +

Moreover, the maximum of the above inequality is when |Y| = [25}] and |X| —
1= L%‘lj Thus,

£(G) < V";DQJ b E+24 (r—1)(2k+1).

2

Hence, for n > 6k(r — 1) + 7, we have £(G) < [%| + (r — 1).
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(IT.LIT). i and j are consecutive, say j = i + 1. Then by following word by
word the same arguments as in (2.1.2) of Step 1 and (IL.L.I) of Step 2, we get the

same inequality
2

£(Q) < HJ +(r—1).

(ILII). Each 1 < m < r — 1, C™ has exactly one edge belonging to one of
X and Y. Let e be the edge of C' that belongs to one of X and Y. Then
G —e € G(n;r — 1,2k 4+ 1) and so by inductive step, E(G) = E(G —e) +1 <
n? _ _ |n? _
T +r—2+1= %] +r-1

We now characterize the extremal graphs. Throughout the proof, we notice
that the only time we have equality is in case when G obtained by adding r — 1
edges to the complete bipartite graph K 12 ].[2]- This gives rise to the class

n
2 2

Q(n,r). This completes the proof of the theorem. [

From Theorem 6 and the inequality (1), we get that for k¥ > 1, r > 2 and
large n, f(nir, 2k +1) = | %]+ - 1.
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