DECOMPOSITION OF COMPLETE GRAPHS INTO FACTORS OF DIAMETER TWO AND THREE

Damir Vukičević

Department of Mathematics University of Split Teslina 12, 21000 Split, Croatia

Abstract

We analyze a minimum number of vertices of a complete graph that can be decomposed into one factor of diameter 2 and k factors of diameter at most 3. We find exact values for $k \leq 4$ and the asymptotic value of the ratio of this number and k when k tends to infinity. We also find the asymptotic value of the ratio of the number of vertices of the smallest complete graph that can be decomposed into p factors of diameter 2 and k factors of diameter 3 and number k when p is fixed.

Keywords: decomposition, graph.

2000 Mathematics Subject Classification: 05C70.

1. Introduction

Decompositions of graphs into factors with given diameters have been extensively studied for many years, cf. [3, 4, 5, 6, 8]. The problem of decomposition of the factors of equal diameters d, $d \ge 3$, has been solved in [4]. Several papers are devoted to the decomposition of a complete graph into factors of diameter 2 [6, 7, 8]. Denote by f(k) the smallest natural number n such that a complete graph on n vertices can be decomposed into k factors of diameter 2. In [6] it is proved that

$$f(k) \leq 7k$$
.

In [2] this is improved to

$$f(k) \leq 6k$$
.

In [7], it is proved that this upper bound is quite close to the exact value of f(k) since,

$$f(k) \ge 6k - 7, \ k \ge 664$$

and in [8] the correct value of f(k) is given for large values of k, namely

$$f(k) = 6k, \ k \ge 10^{17}.$$

In this paper we asymptotically solve the problem of decomposition of a complete graph into factors of diameters two and three.

Also, decompositions into small number of factors have been extensively studied. Specially, the case of decomposition of a complete graph into two factors with given diameters is solved completely in [3] and for the case of decomposition of a complete graph into three factors with given diameters is partially solved in [5]. Therefore, we shall pay some more attention to decompositions into small number of factors.

2. Definitions and Preliminaries

By a factor of graph G we mean a subgraph of G containing all the vertices of G. Two or more factors are called disjoint if every edge of G belongs to at most one of them. A set of pairwise disjoint factors such that their union is a complete graph is called a decomposition. The symbol K_n denotes the complete graph on n vertices, $d_G(x)$ — degree of a vertex x in G, the symbol $\Delta(G)$ — the maximum degree of G, the symbol $\delta(G)$ — the minimum degree of G, e(G) — the number of the edges of G and V(G) — the set of vertices of G. The distance of vertices x and y in a G is denoted by $d_G(x,y)$. We define the function $f: \cup_{k \in \mathbb{N}} \mathbb{N}^k \to \mathbb{N}$ with

 $f(d_1, \ldots, d_k) = \min\{n : \text{there is a decomposition of } K_n \text{ into } k \text{ factors such that the diameter of the } i\text{-th factor is } d_i\}.$

The following theorem can be found in [1].

Theorem 1. If $m \ge f(d_1, d_2, \dots, d_k) \ge 2$, then K_m can be decomposed into k factors such that the diameter of the i-th factor is d_i .

We also define the function $\phi: \mathbb{N} \to \mathbb{N}$ with

 $\phi(k) = \min\{n : \text{there is a decomposition of } K_n \text{ into } k+1 \text{ factors,}$ one of diameter 2 and others of diameter 3}.

The following simple lemma will be useful in the sequel.

Lemma 2. If in a decomposition of K_n , $n \in \mathbb{N}$, at least one of the factors has diameter 2, then all the factors of diameter 3 must have at least n edges.

Proof. Suppose to the contrary, that there is a factor F of diameter three which is a tree and denote the factor of diameter two by F'. Distinguish two cases.

- (1) Suppose that the length of the longest path in F is more than 3. Then there are two vertices connected in F by two different paths. Since F is a tree, this is impossible.
- (2) Suppose that the longest path in F has length 3. Denote, the vertices of arbitrary path of length three, in order of their appearance, by a, b, c, d.

Let us prove that each of the vertices $V(K_n)$ is adjacent to either b or c. Suppose oppositely that there is a vertex $x \in V(K_n) \setminus \{a, b, c, d\}$ which is not adjacent to either of vertices b and c. Since the longest path in F has length 3 and F does not contain a cycle, it follows that b is the only neighbor of a and that c is the only neighbor of d. It follows that there is a path of length at most 2 from x to b and from x to c. Note that $\{b, c\}$ is not an edge of any of these two paths and that b and c have no common neighbors. But, then this two paths together with the edge $\{b, c\}$ form a cycle, a contradiction.

Therefore, each vertex from $V(K_n) \setminus \{a, b, c, d\}$ is adjacent to either b or c, but then b and c have no common neighbors in F' and they are not adjacent in F'. This is in contradiction with the fact that $\operatorname{diam}(F') = 2$, so our claim is proved.

3. Small values of k

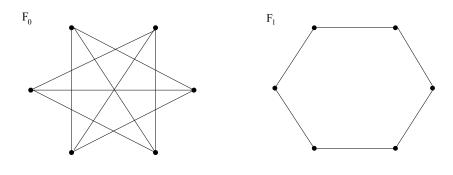
Though the value of $\phi(1)$ follows from [3], for the sake of completeness we state

Proposition 3. $\phi(1) = 6$.

Proof. First, we prove that $\phi(1) \geq 6$. Suppose $\phi(1) \leq 5$. Then we can decompose K_5 into two factors, one F_1 of diameter two and the other F_2 of diameter three. Note that F_2 has to have at least 5 edges, but then F_1 can

have at most 5 edges. Also, note that $\delta(F_2) \geq 1$, so $\delta(F_1) \leq 3$. The only graph with 5 vertices and at most 5 edges such that its maximum degree is less then 4 and its diameter is 2 is a cycle, but then F_2 is also a cycle with 5 vertices and is not of diameter 3.

The following sketch proves $\phi(1) \leq 6$.



$$diam(F_0) = 2, diam(F_1) = 3$$

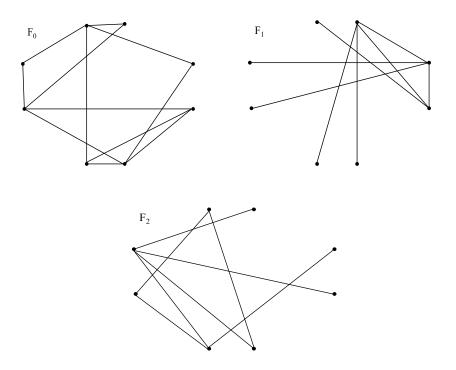
So, the claim is proved.

Proposition 4. $\phi(2) = 8$.

Proof. First, we prove that $\phi(2) \geq 8$. Suppose that $\phi(2) < 8$. Than we can decompose K_7 into three factors, one F_1 of diameter two and others of diameter three. By Lemma 2, factors of diameter three have to have at least 7 edges, so $e(F_1) \leq 21 - 2 \cdot 7 = 7$. Each vertex has at least one incident edge in each factor of diameter three, so $\Delta(F_1) \leq 4$. We distinguish two cases.

- (1) If each vertex has degree two in F_1 , then F_1 is either disconnected or is a cycle of length 7 which is a contradiction.
- (2) If there is a vertex x, such that $3 \leq d_{F_1}(x) \leq 4$, then denote by F'_1 a graph obtained by deleting this vertex. Let y be an arbitrary vertex of F_1 which is not adjacent to x. Vertex y has to be connected in F'_1 to each vertex of F'_1 by a path of length at most 2 (otherwise the diameter of F_1 would be greater than 2), so F'_1 is connected. But, this is in contradiction to the fact that F'_1 has 6 vertices and at most 4 edges.

The following sketch proves that $\phi(2) \leq 8$.



 $diam(F_0) = 2$; $diam(F_1) = 3$, $diam(F_2) = 3$

So,
$$\phi(2) = 8$$
.

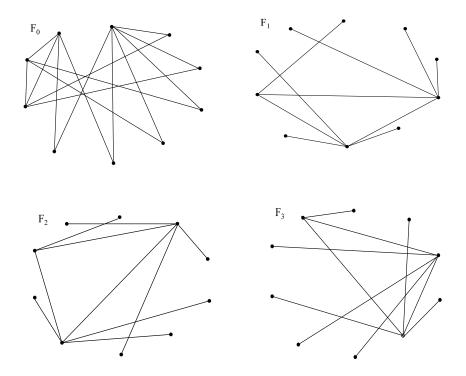
Proposition 5. $\phi(3) = 10$.

Proof. First, we prove that $\phi(3) \geq 10$. Analogously, as above, suppose that we can decompose K_9 into four factors, one F_1 of diameter two and others of diameter three. By Lemma 2, factors of diameter three have to have at least 9 edges, so $e(F_1) \leq 36 - 3 \cdot 9 = 9$. Each vertex has at least one incident edge in each factor of diameter three, so $\Delta(F_1) \leq 5$. We distinguish two cases.

- (1) If each vertex has degree two in F_1 , then F_1 is either disconnected or is a cycle of length 9, a contradiction.
- (2) If there is a vertex x, such that $3 \leq d_{F_1}(x) \leq 5$, then denote by F'_1 a graph obtained by eliminating this vertex. Let y be an arbitrary vertex of F_1 which is not adjacent to x. Vertex y has to be connected in F'_1 to each vertex of F'_1 by a path of length at most 2 (otherwise the diameter of F_1

would be greater than 2), so F'_1 is connected. But, this is in contradiction to the fact that F'_1 has 8 vertices and at most 6 edges.

The following sketch proves that $\phi(3) \leq 10$.



 $\operatorname{diam}(F_0)=2,\ \operatorname{diam}(F_1)=3,\ \operatorname{diam}(F_2)=3,\ \operatorname{diam}(F_3)=3$

So, the claim is proved.

4. The Main Results

First, we give an upper bound for the function ϕ .

Theorem 6. For any $k \in \mathbb{N}$, we have $\phi(k) \leq 2k + 3\lceil \sqrt{k} \rceil + 2t$ where t is the least natural number such that

$$\binom{2t-1}{t-1} \ge k.$$

Proof. We will construct a decomposition of K_n , $n = 2k + 3\lceil \sqrt{k} \rceil + 2t$, in factors $F_0, F_1, F_2, \ldots, F_k$ such that $\operatorname{diam}(F_0) = 2$ and $\operatorname{diam}(F_i) = 3$, $1 \le i \le k$. Let

$$V(K_n) = L \cup D \cup W \cup Z \cup U \cup A \cup B,$$

where

$$L = \{l_1, \dots, l_k\}, D = \{d_1, \dots, d_k\}, W = \{w_0, \dots, w_{\lceil \sqrt{k} \rceil - 1}\},$$

$$Z = \{z_0, \dots, z_{\lceil \sqrt{k} \rceil - 1}\}, U = \{u_1, \dots, u_{\lceil \sqrt{k} \rceil}\}, A = \{a\}, B = \{b_1, \dots, b_{2t-1}\}.$$

Let \mathcal{B} be the set of all t-1 element subsets of the set $\{1,2,\ldots,2t-1\}$. Let f be any injection

$$f:\{1,\ldots,k\}\to\mathcal{B}.$$

Let us notice that for each $j \in \{1, ..., kt\}$ there are unique numbers q_j and r_i such that

$$j = q_j \cdot \left\lceil \sqrt{k} \right\rceil + r_j, \ 0 \le q_j \le \left\lceil \sqrt{k} \right\rceil - 1, \ 1 \le r_j \le \left\lceil \sqrt{k} \right\rceil.$$

The edges of the factor F_i , $1 \le i \le k$ are

 $(1) l_i d_i$,

- (2) $l_i l_j$, $1 \le j < i \le k$,
- (3) $d_i l_j$, $1 \le j < j \le k$,
- $(4) d_i d_j, 1 \le j < i \le k,$
- (5) $l_i d_j$, $1 \le i < j \le k$,
- $(6) l_i a$,
- $(7) l_i b_i, j \in f(i),$
- (8) $d_i b_i$, $j \in \{1, 2, \dots, 2t 1\} \setminus f(i)$,
- (9) $l_i w_j$, $1 \le j \le \lceil \sqrt{k} \rceil 1$, (10) $d_i z_j$, $1 \le j \le \lceil \sqrt{k} \rceil 1$,
- $(11) \ w_{q_i} u_{r_i},$

- $(12) z_{q_i} u_{r_i},$
- (13) $d_i u_i$, $1 \le j \le k$, $j \ne r_i$.

The other edges are edges of the factor F_0 . In each factor F_i , $1 \le i \le k$ all vertices are adjacent to either l_i or d_i , except u_{r_i} which is connected by a path of length 2 to both, l_i and d_i , and also l_i and d_i are adjacent, so we have $\operatorname{diam}(F_i) \leq 3$, $1 \leq i \leq k$. Now, let us prove that $\operatorname{diam}(F_i) \geq 3$, $1 \le i \le k$. Let i be an arbitrary number such that $1 \le i \le k$. Let j be an element of the set $\{1, 2, \dots, 2t-1\} \setminus f(i)$. Note that $d_{F_i}(a, b_i) = 3$, so the claim is proved.

It remains to prove that diam $(F_0) = 2$. We have to prove that every two vertices of F_0 are adjacent or that they have a common neighbor. We distinguish five cases.

- (1) $x \notin L$, $y \notin L$. Then $a \in N_{F_0}(x) \cap N_{F_0}(y)$.
- (2) $x, y \in L$. Since

$$|N_{F_0}(x) \cap B| + |N_{F_0}(y) \cap B| = t + t > |B|$$

by pigeonhole principle we have $b \in B$ such that $b \in N_{F_0}(x) \cap N_{F_0}(y)$.

- (3) $x \in L, y \in D$. We distinguish two subcases.
- (3a) $x = l_i, y = d_i, 1 \le i \le k$. Then $u_{r_i} \in N_{F_0}(l_i) \cap N_{F_0}(d_i)$.
- (3b) $x = l_i, y = d_j, 1 \le i, j \le k, i \ne j$. We have

$$|N_{F_0}(l_i) \cap B| + |N_{F_0}(d_j) \cap B| = t - 1 + t = |B|,$$

so either there is a vertex $b \in N_{F_0}(l_i) \cap N_{F_0}(d_j)$ or

$$N_{F_0}(l_i) \cap B = B \setminus N_{F_0}(d_i) = N_{F_0}(l_i) \cap B$$

which is impossible.

- (4) $x \in L$, $y \in U \cup Z$. Then x and y are adjacent.
- (5) $x \in L, y \in W \cup A \cup B$. Then $(\forall z \in Z)(z \in N_{F_0}(x) \cap N_{F_0}(y))$.

So, the claim is proved.

From the last theorem, it easily follows

Corollary 7. $\lim_{k\to\infty} \frac{\phi(k)}{k} = 2$.

Proof. Let $k \in \mathbb{N}$ be sufficiently large. Let us find upper and lower bounds for $\phi(k)$.

$$k \cdot (\phi(k) - 1) \le {\phi(k) \choose 2} \Rightarrow k \le \frac{\phi(k)}{2} \Rightarrow \phi(k) \ge 2k.$$

Let us notice that, for sufficiently large k, we have

$$\binom{2\lceil\sqrt{k}\rceil - 1}{\lceil\sqrt{k}\rceil - 1} \ge k,$$

so

$$2k \le \phi\left(k\right) \le 2k + 5\left(\sqrt{k} + 1\right) \Rightarrow 2 \le \frac{\phi\left(k\right)}{k} \le 2 + \frac{5}{\sqrt{k}} + \frac{5}{k}.$$

$$\Rightarrow 2 \le \lim_{k \to \infty} \left(\frac{\phi\left(k\right)}{k}\right) \le \lim_{k \to \infty} \left(2 + \frac{5}{\sqrt{k}} + \frac{5}{k}\right).$$

which proves the claim.

Now, we give an auxiliary result.

Lemma 8. Let $k \geq 4$. Then there is a decomposition of K_k into factors F_1' and F_2' such that $\delta(F_1') \geq 1$ and $\delta(F_2') \geq 1$.

Proof. We prove our claim by induction on k. We denote $W(K_k) = \{1, \ldots, k\}$. For k = 4, the claim is trivial. Suppose it is true for j and let us prove it for j + 1. We decompose the graph induced by vertices $\{1, \ldots, j\}$ as K_j and add to F'_1 the edge $\{1, j + 1\}$ and add to F'_2 the edges $\{i, j + 1\}$, $2 \le i \le k$. This decomposition proves the lemma.

Theroem 9. Let $k \geq 4$. Then we have $\phi(k) \leq 3k + 1$.

Proof. We shall construct the decomposition of K_n , n = 3k+1, into factors $F_0, F_1, F_2, \ldots, F_k$ such that $\operatorname{diam}(F_0) = 2$ and $\operatorname{diam}(F_i) = 3$, $1 \le i \le k$. We denote

$$V(K_n) = \{x, y_{ij} : 1 \le i \le k, \ 1 \le j \le 3\}.$$

Let F_1' and F_2' be the factors of K_k described in previous Lemma. The edges of the factor F_i , $1 \le i \le k$ are

- $(1) \{v_{i3}, xt\},\$
- $(2) \{v_{i1}, v_{i2}\}, \{v_{i2}, v_{i3}\}, \{v_{i3}, v_{i1}\},$
- (3) $\{v_{i2}, v_{i2}\}, \{v_{i2}, v_{i3}\}, \{v_{i1}, v_{i1}\}, 1 \leq j < i, \{i, j\} \in F'_1$
- (4) $\{v_{i2}, v_{j1}\}, \{v_{i2}, v_{j3}\}, \{v_{i1}, v_{j2}\}, i < j \le k, \{i, j\} \in F'_1$
- (5) $\{v_{i1}, v_{j1}\}, \{v_{i1}, v_{j3}\}, \{v_{i2}, v_{j2}\}, 1 \le j < i, \{i, j\} \in F_2'$
- (6) $\{v_{i1}, v_{i2}\}, \{v_{i1}, v_{i3}\}, \{v_{i2}, v_{i1}\}, i < j \le k, \{i, j\} \in F_2'$

The other edges are edges of the factor F_0 . Indeed, diam $(F_i) = 3$, $1 \le i \le k$, because all its vertices are adjacent to at least one of vertices v_{i1}, v_{i2} and v_{i3} , and these three vertices form a triangle.

It remains to prove that $diam(F_0) = 2$. We have to prove that each two vertices of F_0 are adjacent or that they have a common neighbor. We distinguish eight cases.

- (1) $p = x, q = v_{ij}, 1 \le i \le k, 1 \le j \le 2$. Then x and v_{ij} are adjacent.
- (2) $p = x, q = v_{i3}, 1 \le i \le k$. Let us choose $j, j \ne i, 1 \le j \le k$, such that $\{i, j\} \in F'_1$. We have $v_{j1} \in N_{F_0}(x) \cap N_{F_0}(v_{i3})$.
- (3) $p = v_{ij}, q = v_{ab}, 1 \le i, a \le k, 1 \le j, b \le 2$. Then $x \in N_{F_0}(v_{ij}) \cap N_{F_0}(v_{ab})$.
- (4) $p = v_{i3}, q = v_{j3}, 1 \le i, j \le k, i \ne j$. Then v_{i3} and v_{j3} are adjacent.
- (5) $p = v_{i3}, q = v_{j1}, 1 \le i, j \le k, \{i, j\} \in F'_1$. Then v_{i3} and v_{j1} are adjacent.
- (6) $p = v_{i3}, q = v_{j1}, 1 \le i, j \le k, \{i, j\} \notin F'_1$. Let us choose $m, m \ne i, m \ne j, 1 \le m \le k$, such that $\{m, j\} \in F'_1$. We have $v_{m3} \in N_{F_0}(v_{i3}) \cap N_{F_0}(v_{j1})$.
- (7) $p = v_{i3}, q = v_{j2}, 1 \le i, j \le k, \{i, j\} \in F'_2$. Then v_{i3} and v_{j2} are adjacent.
- (8) $p = v_{i3}, q = v_{j2}, 1 \le i, j \le k, \{i, j\} \notin F'_2$. Then let us choose $m, m \ne i, m \ne j, 1 \le m \le k$, such that $\{m, j\} \in F'_2$. We have $v_{m3} \in N_{F_0}(v_{i3}) \cap N_{F_0}(v_{j2})$.

So, the claim is proved.

Denote by $\mathcal{H}'_d(n,k)$ the set of all graphs with n vertices and with maximal degree at most k and diameter at most d. Put

$$e'_{d}(n,k) = \min \{e(G) : G \in \mathcal{H}'_{d}(n,k)\}.$$

In the proof of Theorem IV. 1.2 in [1], the following statement is proved:

Lemma A. $e'_d(n, n-4) \ge 2n-5$, if $n \le 12$.

Corollary 10. $\phi(4) = 13$.

Proof. By the previous Theorem $\phi(4) \leq 13$. It remains to prove $\phi(4) \geq 13$. On the contrary, suppose that K_{12} can be decomposed into one factor F_1 of diameter 2 and four factors of diameter 3. From Lemma A it follows that

 $e(F_1) \ge 2 \cdot 12 - 5 = 19$. From Lemma 2 it follows that the factors of diameter three have at least 12 edges each, so we have

$$66 = e(K_{12}) \ge 19 + 4 \cdot 12 = 67,$$

which is a contradiction, so our claim is proved.

As our last main result, we are going to generalize Corollary 7. First, we give a lemma.

Lemma 11. There is a function $q: \mathbb{N} \to \mathbb{N}$ such that, for each $p \in \mathbb{N}$, a complete graph $K_{p \cdot q(p)}$ with a set of vertices $\{e_i^{\alpha}: 1 \leq i \leq q(p), 1 \leq \alpha \leq p\}$ can be decomposed into factors E_1, E_2, \ldots, E_p such that:

- (1) $e_i^{\alpha} e_j^{\alpha}$ is an edge of E_{α} , $1 \le i < j \le q(p)$, $1 \le \alpha \le p$,
- (2) diam $(E_{\alpha}) \leq 2$, $1 \leq \alpha \leq p$,
- (3) $(\forall \alpha, \beta \in \{1, \dots, p\}, \alpha \neq \beta)(\forall i \in \{1, \dots, q(p)\})(\exists j \in \{1, \dots, q(p)\})$ $(e_i^{\alpha} e_j^{\beta} \text{ is an edge of } E_{\beta}).$

Proof. Let E_1', E_2', \dots, E_p' be a decomposition of a graph $K_{p \cdot q(p)}$, such that:

- (a) $e_i^{\alpha} e_j^{\alpha}$ is an edge of E_{α}' , $1 \le i < j \le q(p)$, $1 \le \alpha \le p$.
- (b) The probability that $e_i^{\alpha} e_j^{\beta}$, $1 \leq i, j \leq q(p)$, $1 \leq \alpha < \beta \leq p$ is an edge of E'_{α} is $\frac{1}{2}$ and the probability that it is an edge of E'_{β} is also $\frac{1}{2}$.

Let us estimate a probability $\operatorname{prob}(\gamma, e_i^{\alpha}, e_j^{\beta})$ that $d_{E'_{\gamma}}(e_i^{\alpha}, e_j^{\beta}) > 2$ for $1 \leq \alpha, \beta, \gamma \leq p, \quad 1 \leq i, j \leq q(p), e_i^{\alpha} \neq e_j^{\beta}$. Distinguish four cases.

- (1) $\gamma = \alpha = \beta$. prob $(\gamma, e_i^{\alpha}, e_i^{\beta}) = 0$, because $e_i^{\alpha} e_i^{\alpha}$ is an edge of E_{α}' .
- (2) $\gamma = \alpha \neq \beta$. prob $(\gamma, e_i^{\alpha}, e_j^{\beta})$ is less or equal to the probability that e_j^{β} is not adjacent to any e_k^{α} in E_{α}' , $1 \leq k \leq q(p)$, so prob $(\gamma, e_i^{\alpha}, e_j^{\beta}) \leq (\frac{1}{2})^{q(p)}$.
- (3) $\gamma = \beta \neq \alpha$. Similarly as above $\operatorname{prob}(\gamma, e_i^{\alpha}, e_i^{\beta}) \leq (\frac{1}{2})^{q(p)}$.
- (4) $\gamma \neq \alpha, \gamma \neq \beta$. Probability that $e_{\gamma}^{k} \notin N_{E_{\gamma}^{\prime}}(e_{i}^{\alpha}) \cap N_{E_{\gamma}^{\prime}}(e_{j}^{\beta})$ is $\frac{3}{4}$ for each fixed $k = 1, \ldots, q(p)$, so $\operatorname{prob}(\gamma, e_{i}^{\alpha}, e_{j}^{\beta}) \leq (\frac{3}{4})^{q(p)}$.

For the sake of simplicity we also define $\operatorname{prob}(\gamma, e_i^{\alpha}, e_i^{\alpha}) = 0$. In any case, $\operatorname{prob}(\gamma, e_i^{\alpha}, e_j^{\beta}) \leq (\frac{3}{4})^{q(p)}$. Let us find a probability $\operatorname{prob}(\beta, e_i^{\alpha})$ that for e_i^{α} , $1 \leq i \leq q(p)$, $1 \leq \alpha \leq p$ and $\beta \neq \alpha$, $1 \leq \beta \leq p$ there is no j, $1 \leq j \leq q(p)$

such that $e_i^{\alpha} e_j^{\beta}$ is an edge of E_{β}' . The probability that $e_i^{\alpha} e_j^{\beta}$ is not an edge of E_{β}' for a fixed j, $1 \le j \le q(p)$ is $\frac{1}{2}$, so $\operatorname{prob}(\beta, e_i^{\alpha}) \le (\frac{1}{2})^{q(p)}$.

Now, we can find a lower bound for the probability $X_{q(p)}^p$ that the random decomposition E_1', E_2', \dots, E_p' of $K_{p \cdot q(p)}$, described above, has properties required in Lemma. It holds that

$$\begin{split} X_{q(p)}^{p} & \geq 1 - \left(\sum_{\substack{1 \leq i \leq q(p) \\ 1 \leq \alpha, \beta \leq p \\ \alpha \neq \beta}} \operatorname{prob}\left(\beta, e_{i}^{\alpha}\right) + \sum_{\substack{1 \leq i, j \leq q(p) \\ 1 \leq \alpha, \beta, \gamma \leq p}} \operatorname{prob}\left(\beta, e_{i}^{\alpha}, e_{j}^{\beta}\right) \right) \\ & \geq 1 - \left(q\left(p\right) \cdot p^{2} \cdot \left(\frac{1}{2}\right)^{q(p)} + p^{3} \cdot \left(q\left(p\right)\right)^{2} \left(\frac{3}{4}\right)^{q(p)} \right). \end{split}$$

Since

$$\lim_{q(p)\to\infty}\left(1-\left(q\left(p\right)\cdot p^{2}\cdot\left(\frac{1}{2}\right)^{q(p)}+p^{2}\cdot\left(q\left(p\right)\right)^{2}\left(\frac{3}{4}\right)^{q(p)}\right)\right)=1>0,$$

for any p and sufficiently large q(p) we have

$$X_{q(p)}^p > 0,$$

so there is a decomposition E_1, \ldots, E_p with the required properties.

Theorem 12.
$$\lim_{k\to\infty} \frac{f(\underbrace{2,2,\ldots,2},\underbrace{3,3\ldots,3})}{k} = 2$$
, where p is a fixed natural number.

Proof. Analogously, as in the proof of Corollary 7, we have

(1)
$$f\left(\underbrace{2,2,\ldots,2}_{p\text{-times}},\underbrace{3,3,\ldots,3}_{k\text{-times}}\right) \ge 2k.$$

Now, we are going to prove that for sufficiently large k,

$$(2) f\left(\underbrace{2,2,\ldots,2}_{p\text{-times}},\underbrace{3,3,\ldots,3}_{k\text{-times}}\right) \leq 2k + 5p \cdot \left\lceil \sqrt{k} \right\rceil + \binom{p}{2} \left\lceil \sqrt{k} \right\rceil + 2 \cdot p \cdot q\left(p\right),$$

where q is the function from the previous Lemma.

Denote $n = 2k + 5p \cdot \lceil \sqrt{k} \rceil + \binom{p}{2} \lceil \sqrt{k} \rceil + 2 \cdot p \cdot q(p)$. Let E_1, E_2, \ldots, E_p be a decomposition of $K_{p \cdot q(p)}$ from Lemma 11. We describe a decomposition of K_n into factors F_1, F_2, \ldots, F_p of diameter 2 and factors G_1, G_2, \ldots, G_k of diameter 3. Let

$$V\left(K_{n}\right) = L \cup D \cup \bigcup_{\alpha=1}^{p} \left(W_{\alpha} \cup Z_{\alpha} \cup U_{\alpha} \cup A_{\alpha} \cup B_{\alpha} \cup C_{\alpha}\right) \cup \bigcup_{1 \leq \alpha < \beta \leq p} S_{\alpha\beta},$$

where

$$L = \{l_1, \dots, l_k\},$$

$$D = \{d_1, \dots, d_k\},$$

$$W_{\alpha} = \{w_0^{\alpha}, \dots, w_{\lceil \sqrt{k} \rceil - 1}^{\alpha}\}, 1 \le \alpha \le p,$$

$$Z_{\alpha} = \{z_0^{\alpha}, \dots, z_{\lceil \sqrt{k} \rceil - 1}^{\alpha}\}, 1 \le \alpha \le p,$$

$$U_{\alpha} = \{u_1^{\alpha}, \dots, u_{\lceil \sqrt{k} \rceil}^{\alpha}\}, 1 \le \alpha \le p,$$

$$A_{\alpha} = \{a_1^{\alpha}, \dots, a_{q(p)}^{\alpha}\}, 1 \le \alpha \le p,$$

$$B_{\alpha} = \{b_1^{\alpha}, \dots, b_{2\lceil \sqrt{k} \rceil}^{\alpha}\}, 1 \le \alpha \le p,$$

$$C_{\alpha} = \{c_1^{\alpha}, c_2^{\alpha}, \dots, c_{q(p)}^{\alpha}\}, 1 \le \alpha \le p,$$

$$S_{\alpha\beta} = \{s_1^{\alpha\beta}, \dots, s_{\lceil \sqrt{k} \rceil}^{\alpha\beta}\}, 1 \le \alpha \le p.$$

Let \mathcal{B} be the set of all $\lceil \sqrt{k} \rceil$ element subsets of the set $\{1, 2, \dots, 2\lceil \sqrt{k} \rceil\}$. Let f be any injection

$$f:\{1,\ldots,k\}\to\mathcal{B}.$$

f exists, because

$$\begin{pmatrix} 2 \cdot \lceil \sqrt{k} \rceil \\ \lceil \sqrt{k} \rceil \end{pmatrix} \ge k$$

for a sufficiently large k. Let us notice that for each $j \in \{1, ..., k\}$ there are unique numbers q_j and r_j such that

$$j = q_j \cdot \left\lceil \sqrt{k} \right\rceil + r_j, \ 0 \le q_j \le \left\lceil \sqrt{k} \right\rceil - 1, \ 1 \le r_j \le \left\lceil \sqrt{k} \right\rceil.$$

The edges of a factor G_i , $1 \le i \le k$ are

- (1) $l_i d_i$,
- (2) $l_i l_j$, $1 \le j < i \le k$,
- (3) $d_i l_j$, $1 \le i < j \le k$,
- (4) $d_i d_j$, $1 \le j < i \le k$,
- (5) $l_i d_j$, $1 \le i < j \le k$,
- (6) $l_i a_i^{\alpha}, 1 \le \alpha \le p, 1 \le j \le q(p),$
- (7) $l_i b_i^{\alpha}$, $j \in f(i)$, $1 \leq \alpha \leq p$,
- (8) $d_i b_j^{\alpha}$, $j \in \{1, 2, \dots, 2 \lceil k \rceil\} \setminus f(i)$, $1 \le \alpha \le p$,
- $(9) \ d_i c_j^{\alpha}, \ 1 \le \alpha \le p, \ 1 \le j \le q(p),$
- (10) $l_i w_i^{\alpha}$, $0 \le j \le \lceil \sqrt{k} \rceil 1$, $1 \le \alpha \le p$,
- $(11) \ d_i z_j^{\alpha}, \ 0 \le j \le \lceil \sqrt{k} \rceil 1, \ 1 \le \alpha \le p,$
- $(12) \ w_{q_i}^{\alpha} u_{r_i}^{\alpha}, \ 1 \le \alpha \le p,$
- $(13) \ z_{q_i}^{\alpha} u_{r_i}^{\alpha}, \ 1 \le \alpha \le p,$
- $(14) \ d_i u_j^\alpha, \ 1 \leq j \leq k, \ j \neq r_i, \ 1 \leq \alpha \leq p,$
- $(15) \ s_{q_i}^{\alpha\beta} u_{r_i}^{\alpha}, \ 1 \le \alpha < \beta \le p,$
- $(16) \ s_{q_i}^{\alpha\beta} u_{r_i}^{\beta}, \ 1 \le \alpha < \beta \le p,$
- (17) $l_i s_j^{\alpha\beta}, 1 \le \alpha < \beta \le p, \ 1 \le j \le \lceil \sqrt{k} \rceil.$

The edges of a factor $F_{\alpha}, 1 \leq \alpha \leq p$ are

- (1) xy such that $x, y \in L \cup D \cup W_{\alpha} \cup Z_{\alpha} \cup U_{\alpha} \cup A_{\alpha} \cup B_{\alpha} \cup C_{\alpha}$ and xy is not an edge of any graph $G_i, 1 \leq i \leq k$.
- (2) xy such that $x \in A_{\alpha} \cup C_{\alpha}$ and $y \in \bigcup_{\substack{1 \leq \beta \leq p \\ \beta \neq \alpha}} (W_{\beta} \cup Z_{\beta} \cup U_{\beta} \cup B_{\beta}) \cup \bigcup_{\substack{1 \leq \beta < \gamma \leq p \\ \beta \neq \alpha}} S_{\beta\gamma}.$

(3)
$$a_i^{\alpha} e_j^{\beta}$$
, so that $e_i^{\alpha} e_j^{\beta} \in E_{\alpha}$, $1 \le i, j \le q(p)$, $1 \le \beta \le p$.

(4)
$$a_i^{\alpha} e_i^{\beta}$$
, so that $e_i^{\alpha} e_j^{\beta} \in E_{\alpha}$, $1 \le i, j \le q(p)$, $1 \le \beta \le p$.

(5)
$$a_i^{\alpha} a_j^{\beta}$$
, so that $e_i^{\alpha} e_j^{\beta} \in E_{\alpha}$, $1 \le i, j \le q(p)$, $1 \le \beta \le p$.

(6)
$$c_i^{\alpha} c_j^{\beta}$$
, so that $e_i^{\alpha} e_j^{\beta} \in E_{\alpha}$, $1 \le i, j \le q(p)$, $1 \le \beta \le p$.

Now, we shall prove that the diameter of G_i , $1 \le i \le k$, is 3. First, we prove that for each $x, y \in G_i$ is $d_{G_i}(x, y) \le 3$. Distinguish 4 cases.

(1)
$$x, y \in \{l_i, d_i\} \cup N_{G_i}(l_i) \cup N_{G_i}(d_i)$$
.

(2)
$$x = \{u_{r_i}^{\alpha} : 1 \le \alpha \le p\}, y \in N_{G_i}(l_i) \cup \{l_i\}.$$

(3)
$$x = \{u_{r_i}^{\alpha} : 1 \le \alpha \le p\}, y \in N_{G_i}(d_i) \cup \{d_i\}.$$

(4)
$$x, y \in \{u_{r_i}^{\alpha} : 1 \le \alpha \le p\}.$$

In each case a simple analysis shows that there is a path of length ≤ 3 .

Let us prove that the diameter of G_i , $1 \le i \le k$, is ≥ 3 . Let j be an arbitrary number such that $\{1, 2, \ldots, 2 \lceil k \rceil\} \setminus f(i)$. Then $d_{G_i}(a_1^1, b_i^1) = 3$.

It remains to prove that the diameter of each F_{α} , $1 \leq \alpha \leq p$, is 2. So, we have to prove that each $x, y \in F_{\alpha}$ are adjacent or have a common neighbor. Distinguish eight cases.

$$(1) x, y \in L \cup D \cup W_{\alpha} \cup Z_{\alpha} \cup U_{\alpha} \cup A_{\alpha} \cup B_{\alpha} \cup C_{\alpha}.$$

This case can be proved by complete analogy with the proof of Theorem 6.

$$x \in L \cup D \cup W_{\alpha} \cup Z_{\alpha} \cup U_{\alpha} \cup A_{\alpha} \cup B_{\alpha} \cup C_{\alpha}$$

(2)
$$y \in \bigcup_{\substack{1 \le \beta \le p \\ \beta \ne \alpha}} (W_{\beta} \cup Z_{\beta} \cup U_{\beta} \cup B_{\beta}) \cup \bigcup_{1 \le \beta < \gamma \le p} S_{\beta\gamma}.$$

We have $A_{\alpha} \cup C_{\alpha} \subseteq N_{F_{\alpha}}(y)$ and $N_{F_{\alpha}}(x) \cap (A_{\alpha} \cup C_{\alpha}) \neq \emptyset$, so $N_{F_{\alpha}}(x) \cap N_{F_{\alpha}}(y) \neq \emptyset$.

(3)
$$x \in L \cup D \cup W_{\alpha} \cup Z_{\alpha} \cup U_{\alpha} \cup A_{\alpha} \cup B_{\alpha} \cup C_{\alpha}, y = a_{i}^{\beta},$$
$$1 \leq \beta \leq p, \ 1 \leq i \leq q(p).$$

There is an edge $e_i^{\beta}e_j^{\alpha}$ in E_{α} , for some $j,\ 1 \leq j \leq q(p)$, so $\{a_j^{\alpha}, c_j^{\alpha}\} \subseteq N_{F_{\alpha}}(y)$. Also we have $\{a_j^{\alpha}, c_j^{\alpha}\} \cap N_{F_{\alpha}}(x) \neq \emptyset$, so $N_{F_{\alpha}}(x) \cap N_{F_{\alpha}}(y) \neq \emptyset$.

(4)
$$x \in L \cup D \cup W_{\alpha} \cup Z_{\alpha} \cup U_{\alpha} \cup A_{\alpha} \cup B_{\alpha} \cup C_{\alpha}, y = c_{i}^{\beta},$$
$$1 \leq \beta \leq p, \ 1 \leq i \leq q(p).$$

There is an edge $e_i^{\beta}e_j^{\alpha}$ in E_{α} , for some $j,\ 1 \leq j \leq q(p)$, so $\{a_j^{\alpha},c_j^{\alpha}\} \subseteq N_{F_{\alpha}}(y)$. Also we have $\{a_j^{\alpha},c_j^{\alpha}\} \cap N_{F_{\alpha}}(x) \neq \emptyset$, so $N_{F_{\alpha}}(x) \cap N_{F_{\alpha}}(y) \neq \emptyset$.

(5)
$$x, y \in \bigcup_{\substack{1 \le \beta \le p \\ \beta \ne \alpha}} (W_{\beta} \cup Z_{\beta} \cup U_{\beta} \cup B_{\beta}) \cup \bigcup_{1 \le \beta < \gamma \le p} S_{\alpha_{\beta}}.$$

We have $a_1^{\alpha} \in N_{F_{\alpha}}(x) \cap N_{F_{\alpha}}(y)$

(6)
$$x \in \bigcup_{\substack{1 \le \beta \le p \\ \beta \ne \alpha}} (W_{\beta} \cup Z_{\beta} \cup U_{\beta} \cup B_{\beta}) \cup \bigcup_{\substack{1 \le \beta < \gamma \le p}} S_{\alpha\beta},$$
$$y = a_{i}^{\gamma}, 1 \le \gamma \le p, \alpha \ne \gamma, 1 \le i \le q(p).$$

There is an edge $e_i^{\gamma} e_j^{\alpha}$ in E_{α} , for some $j, 1 \leq j \leq q(p)$. So $a_j^{\alpha} \in N_{F_{\alpha}}(x) \cap N_{F_{\alpha}}(y)$

(7)
$$x \in \bigcup_{\substack{1 \le \beta \le p \\ \beta \ne \alpha}} (W_{\beta} \cup Z_{\beta} \cup U_{\beta} \cup B_{\beta}) \cup \bigcup_{\substack{1 \le \beta < \gamma \le p}} S_{\alpha\beta},$$
$$y = c_{i}^{\gamma}, 1 \le \gamma \le p, \gamma \ne \alpha, 1 \le i \le q(p).$$

There is an edge $e_i^{\gamma} e_j^{\alpha}$ in E_{α} , for some $j, 1 \leq j \leq q(p)$. So $a_i^{\alpha} \in N_{F_{\alpha}}(x) \cap N_{F_{\alpha}}(y)$.

(8)
$$x \in A_{\beta} \cup C_{\beta}, y \in A_{\gamma} \cup C_{\gamma}, 1 \le \beta, \gamma \le p, \ \alpha \ne \beta, \ \alpha \ne \gamma, x \ne y.$$

We distinguish four subcases

(8a)
$$x = a_i^{\beta}, \ y = a_i^{\gamma},$$

(8b)
$$x = a_i^{\beta}, \ y = c_i^{\gamma},$$

(8c)
$$x = c_i^{\beta}, \ y = a_i^{\gamma},$$

(8d)
$$x = c_i^{\beta}, \ y = c_i^{\gamma}.$$

As proofs of this subcases are completely analogous, we prove only (8a). Since $d(e_i^{\beta}, e_j^{\gamma}) \leq 2$, either e_i^{β} and e_j^{γ} are adjacent in E_{α} or there is a vertex $e_k^{\alpha} \in N_{E_{\alpha}}(e_i^{\beta}) \cap N_{E_{\alpha}}(e_j^{\alpha})$. In the first case a_i^{β} and a_j^{γ} are adjacent in F_{α} , and in the second case $a_k^{\alpha} \in N_{F_{\alpha}}(a_i^{\beta}) \cap N_{F_{\alpha}}(a_j^{\gamma})$.

So, the inequality (2) is proved.

From (1) and (2) we get

$$2k \leq f\left(\underbrace{2,2,\ldots,2}_{p\text{-times}},\underbrace{3,3,\ldots,3}_{k\text{-times}}\right)$$

$$\leq 2k + 5p \cdot \left\lceil \sqrt{k} \right\rceil + \binom{p}{2} \left\lceil \sqrt{k} \right\rceil + 2 \cdot p \cdot q(p).$$

$$2k \leq f\left(\underbrace{2,2,\ldots,2}_{p\text{-times}},\underbrace{3,3,\ldots,3}_{k\text{-times}}\right)$$

$$\leq 2k + \left(5p + \binom{p}{2}\right) \sqrt{k} + \left(5p + \binom{p}{2}\right) + 2 \cdot p \cdot q(p).$$

Dividing by k and passing to the limit, we get

$$\frac{f\left(\underbrace{2,2,\ldots,2}_{p\text{-times}},\underbrace{3,3,\ldots,3}_{k\text{-times}}\right)}{k}$$

$$\leq \lim_{k\to\infty} 2 + \frac{\left(5p + \binom{p}{2}\right)}{\sqrt{k}} + \frac{\left(5p + \binom{p}{2}\right)}{k} + \frac{2 \cdot p \cdot q(p)}{k}$$

which proves the theorem.

Acknowledgement

The author thanks D. Veljan for useful advise and help.

References

- [1] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).
- [2] J. Bosák, Disjoint factors of diameter two in complete graphs, J. Combin. Theory (B) 16 (1974) 57–63.
- [3] J. Bosák, A. Rosa and Š. Znám, On decompositions of complete graphs into factors with given diameters, in: Proc. Colloq. Tihany (Hung), (1968) 37–56.
- [4] D. Palumbíny, On decompositions of complete graphs into factors with equal diameters, Bollettino U.M.I. (4) 7 (1973) 420–428.
- [5] P. Hrnčiar, On decomposition of complete graphs into three factors with given diameters, Czechoslovak Math. J. **40** (115) (1990) 388–396.
- [6] N. Sauer, On factorization of complete graphs into factors of diameter two,J. Combin. Theory 9 (1970) 423–426.
- [7] S. Znám, Decomposition of complete graphs into factors of diameter two, Math. Slovaca 30 (1980) 373–378.
- [8] Š. Znám, On a conjecture of Bollobás and Bosák, J. Graph Theory 6 (1982) 139–146.

Received 25 May 2001 Revised 5 September 2002