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Abstract

A graph G = (V, E) is called a split graph if there exists a parti-
tion V' = I U K such that the subgraphs G[I] and G[K] of G induced
by I and K are empty and complete graphs, respectively. In 1980,
Burkard and Hammer gave a necessary condition for a split graph G
with |I| < |K| to be hamiltonian. We will call a split graph G with
|I| < |K]| satisfying this condition a Burkard-Hammer graph. Fur-
ther, a split graph G is called a maximal nonhamiltonian split graph
if G is nonhamiltonian but G + wv is hamiltonian for every uwv ¢ E
where v € I and v € K. Recently, Ngo Dac Tan and Le Xuan Hung
have classified maximal nonhamiltonian Burkard-Hammer graphs G
with minimum degree 6(G) > |I| — 3. In this paper, we classify max-
imal nonhamiltonian Burkard-Hammer graphs G with |I| # 6,7 and
§(G) = |I| — 4.
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1. INTRODUCTION

All graphs considered in this paper are finite undirected graphs without
loops or multiple edges. If G is a graph, then V(G) and E(G) (or V and
E for short) will denote its vertex-set and its edge-set, respectively. For a
subset W C V(G), the set of all neighbours of W is denoted by Ng(W) or
N (W) for short. For a vertex v € V(G), the degree of v, denoted by deg(v),
is the number |N(v)|. The minimum degree of G, denoted by §(G), is the
number min{deg(v) | v € V(G)}. By Ng,w(v) or Ny (v) for short we denote
the set W N Ng(v). The subgraph of G induced by W is denoted by G[W].
Unless otherwise indicated, our graph-theoretic terminology will follow [1].

A graph G = (V,E) is called a split graph if there exists a partition
V = ITUK such that the subgraphs G[I] and G[K]| of G induced by I and K
are empty and complete graphs, respectively. We will denote such a graph
by S(I UK, E). Further, a split graph G = S(I UK, F) is called a complete
split graph if every uw € I is adjacent to every v € K. The notion of split
graphs was introduced in 1977 by Foldes and Hammer [4]. These graphs
are interesting because they are related to many problems in combinatorics
(see [3, 5, 10]) and in computer science (see [6, 7]).

In 1980, Burkard and Hammer gave a necessary condition for a split
graph G = S(I U K, E) with |I| < |K| to be hamiltonian [2] (see Section 2
for more detail). We will call this condition the Burkard-Hammer condition.
Also, we will call a split graph G = S(I U K, E) with |I| < |K|, which
satisfies the Burkard-Hammer condition, a Burkard-Hammer graph.

Thus, by [2] any hamiltonian split graph G = S(IUK, E) with || < |K|
is a Burkard-Hammer graph. In general, the converse is not true. The first
nonhamiltonian Burkard-Hammer graph has been indicated in [2]. Further
infinite families of nonhamiltonian Burkard-Hammer graphs have been con-
structed recently in [13].

A split graph G = S(I U K, FE) is called a mazimal nonhamiltonian
split graph if G is nonhamiltonian but the graph G + wv is hamiltonian for
every uv ¢ E where v € I and v € K. It is known from a result in [12]
that any nonhamiltonian Burkard-Hammer graph is contained in a maxi-
mal nonhamiltonian Burkard-Hammer graph. So knowledge about maximal
nonhamiltonian Burkard-Hammer graphs provides us certain information
about nonhamiltonian Burkard-Hammer graphs.

It has been shown in [12] that there are no nonhamiltonian Burkard-
Hammer graphs and therefore no maximal nonhamiltonian Burkard-Hammer
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graphs G = S(IUK, E) with §(G) > |I|—2. In the same paper [12], Ngo Dac
Tan and Le Xuan Hung have classified maximal nonhamiltonian Burkard-
Hammer graphs G = S(I U K, E) with 6(G) = |I| — 3. Namely, they have
proved in [12] that for every integer n > 5 there exists up to isomorphisms ex-
actly one maximal nonhamiltonian Burkard-Hammer graph G = S(IUK, E)
with |K| = n and §(G) = |I| — 3 which is the graph H*" in their notation
there (see the definition of H%™ in Section 2). Recently, Ngo Dac Tan
and Tamjaroen have constructed in [14] a family of maximal nonhamiltonian
Burkard-Hammer graphs G = S(I U K, E) with 6(G) = |I| — 4. In this pa-
per, we will show that if a maximal nonhamiltonian Burkard-Hammer graph
G = S(IUK, FE) with §(G) = |I| —4 has |I| # 6,7, then G must be a graph
in the family constructed by Ngo Dac Tan and Iamjaroen in [14]. Namely,
we will prove the following main result of the paper.

Theorem 1. Let G = S(I U K, E) be a split graph with |I| # 6,7 and
)G) = |I| —4. Then G is a mazimal nonhamiltonian Burkard-Hammer
graph if and only if G is isomorphic to the expansion H*'[Go,vi] where
t =|K|—=|I|+5 and Gy = S(Ia U Ko, E3) is a complete split graph with
|Ka| — 1= || =|I|-5>3.

The expansion graph H*![Gy,v3] will be defined in Section 2.
Thus, we will get the classification of maximal nonhamiltonian Burkard-
Hammer graphs G = S(IUK, E) with 6(G) = |I| — 4 for the case |I| # 6, 7.
We would like to note that there is an interesting discussion about the
Burkard-Hammer condition in [9]. Concerning the hamiltonian problem for
split graphs, readers can see also [8] and [11].

2. PRELIMINARIES

Let G = S(I UK, E) be a split graph and I’ C I, K’ C K. Denote by
Be(I' U K',E') the graph G[I' U K'| — E(G[K']). It is clear that G’ =
Ba(I' U K’ F') is a bipartite graph with the bipartition subsets I’ and K.
So we will call Bg(I'UK', E') the bipartite subgraph of G induced by I' and
K'. For a component G = Bg(I; U K}, EY) of G' = Be(I' U K', E') we
define
!/ / : ! /
k(G = k(I K1) = {’IJ‘ LI )
0 otherwise.
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If G’ = Bg(I' U K', E') has r components G} = Bg(I1 U Ky, EY),...,G =
Ba(IL U K, E) then we define

ka(G) = ka(I' K') =Y ka(G)).
j=1

A component G, = Bg(I; U K, E}) of G' = Bg(I' U K',E') is called
a T-component (resp., H-component, L-component) if ]Ij’\ > \KJ’] (resp.,
|| = K|, 15| < |KG]). Let ha(G') = ha(I', K') denote the number of
H-components of G.

In 1980, Burkard and Hammer proved the following necessary but not
sufficient condition for hamiltonian split graphs [2].

Theorem 2 [2]. Let G = S(I UK, E) be a split graph with |I| < |K|. If G
1s hamiltonian, then

< [N (I')| = | K|

I' K’
ka(I', K') +max{1, %}

holds for all) #1' C I, K' C Ng(I') with (ka(I', K"),ha(I', K")) # (0,0).

We will shortly call the condition in Theorem 2 the Burkard-Hammer con-
dition. We also call a split graph G = S(I U K, E) with |I| < |K|, which
satisfies the Burkard-Hammer condition, a Burkard-Hammer graph. Thus,
by Theorem 2 any hamiltonian split graph G = S(IUK, E) with |I| < | K] is
a Burkard-Hammer graph. For split graphs G = S(I U K, E) with |I| < |K|
and §(G) > |I| — 2 the converse is true [12]. But it is not true in gen-
eral. The first example of a nonhamiltonian Burkard-Hammer graph has
been indicated in [2]. Recently, Ngo Dac Tan and Le Xuan Hung have
classified nonhamiltonian Burkard-Hammer graphs G = S(I U K, E) with
d(G) = |I| — 3. Namely, they have proved the following result.

Theorem 3 [12]. Let G = S(I U K, E) be a split graph with |I| < |K| and
the minimum degree §(G) > |I| — 3. Then
(i) If |I| # 5, then G has a Hamilton cycle if and only if G satisfies the
Burkard-Hammer condition;

(ii) If |I| =5 and G satisfies the Burkard-Hammer condition, then G has
no Hamilton cycles if and only if G is isomorphic to one of the graphs
HW g2 H3™ or HY™ listed in Table 1.
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Table 1. The graphs H", H>" H3™ and H*".

The graph | The vertex-set The edge-set

G V(G)=T"UK* E(G)=EfU...UE!UEj}.
HY T = {ufu, g}, | B = {udol ujs),
(n >5) K* = {vj,v5,...,u5}. | BE5 = {ubvy, usv}},

B3 = {ujv3, uzvi, uivg },
*x * %k k) k% k%
Ej = {u4v1,u4v4,u4v6},
* koK ok ok
E5 = {uzvs, uzvg},

B ={vjvjli # jii,5 =1,...,n}.

VPt = VE) | B = B(HY) U {ujo3)
HVESY) = VEY) | B(HR) = B(HY) U {uj05)
HvVE) = VEY) | B(EY) = B(HY) U {ujog, ujs)

Theorem 3 shows that there are up to isomorphisms only four nonhamil-
tonian Burkard-Hammer graphs G = S(I U K, F) with K = N(I) and
§(G) = |I| — 3, namely, the graphs H® H?6 H3% and H*®. In contrast
with this result, the number of nonhamiltonian Burkard-Hammer graphs
G=SUIUK,FE) with K = N(I) and §(G) = |I| — 4 is infinite. This is a
recent result of Ngo Dac Tan and Iamjaroen [13]. We remind now one of
the constructions in this work, which is needed here.

Let G; = S(Il U Kl,El) and Gy = S(IQ U Ko, EQ) be split graphs with

V(G1)NV(Ge) =10

and v be a vertex of K. We say that a graph G is an expansion of G1 by
Go at v if G is the graph obtained from (G — v) U Gy by adding the set of
edges

Ey =A{zjv; | z; € V(G1) \ {v},v; € Ky and zv € Eq}.

It is clear that such a graph G is a split graph S(I UK, E) with I = I; U I,
K = (K; \ {v}) U K3 and is uniquely determined by G1,G2 and v € Kj.
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Because of this, we will denote this graph G by G1[G2,v]. Further, a graph
G is called an expansion of G1 by Gs if it is an expansion of G by G at
some vertex v € Kj.

As an example, we show in Figure 1 the expansion of the graph H*"
by the complete split graph Gy = S(Iz U Ko, F5) with Iy = {uj,us} and
Ko = {v1,v9,v3} at the vertex v} of H*™.

{x

Ko
b7 N
AR AT T N L NN -
r LAY A
R R A U A R A

Figure 1. The expansion H*"[Ga, v}].
The following results are needed later.

Lemma 4 [11]. Let G = S(I U K, E) be a split graph with |I| < |K].
Then G has a Hamilton cycle if and only if |N(I)| > |I| and the subgraph
G' = G[I UN(I)] has a Hamilton cycle.

Lemma 5 [12]. Let G = S(I U K, E) be a Burkard-Hammer graph. Then
for anyuw € I and v € K with wv € F, the graph G + uv also is a Burkard-
Hammer graph.

Lemma 6 [12]. Let G = S(I U K, E) be a Burkard-Hammer graph. Then
for any O # I' C I, we have [N(I')| > |I'|.

Theorem 7 [13]. Let Gi = S(I; U K1, E1) be a Burkard-Hammer graph
and Gy = S(Is U Ko, E) be a complete split graph with |I3] < |Ka|. Then
any expansion of G1 by Ga is a Burkard-Hammer graph.

Theorem 8 [13]. Let G; = S(I; U Ky, E1) be an arbitrary split graph and
Go = S(I2UKo, Es) be a split graph with |Ko| = |Is|+1. Then an expansion
of G1 by Go is a hamiltonian graph if and only if both G1 and Gy are
hamiltonian graphs.
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Let G = S(I UK, FE) be a split graph. Set
Bi(G) ={ve K ||Ng,(v)| =i}

If the graph G is clear from the context then we also write B; instead of
B;i(G).

Theorem 9 [14]. Let G = S(I U K,E) be a mazimal nonhamiltonian
Burkard-Hammer graph with |I| > 7 and §(G) = |I| —4. Then By = Bs =
"':B\I\—lzw buthaé(ﬂ.

Theorem 10 [14]. Any expansion of the graph H*™ by a complete split
graph Gy = S(Iy U Ky, Ey) with |Is] = |Ka| — 1 > 1 at the vertex vy of H*"
is a mazimal nonhamiltonian Burkard-Hammer graph G = S(I UK, E) with
I(G) = |I| —4.

Let C be a cycle in a graph G = (V, E). By C we denote the cycle C' with
a given orientation and by C the cycle C with the reverse orientation. If
wy,wg € V(C), then wy 8102 denotes the consecutive vertices of C from wq
to ws in the direction specified by E’) The same vertices in the reverse order
are given by wggwl. We will consider wlawg and wggwl both as paths
and as vertex sets. If w € V(C'), then w™ denotes the successor of w on 6’),
and w~ denotes its predecessor. The vertices (w*)T and (w™)~ are written
briefly by w™ and w™~, respectively. Similar notation as described above
for a cycle is also used for a path.
We prove now the following lemma.

Lemma 11. Let G = S(IUK, E) be a Burkard-Hammer graph with |I| > 7
and §(G) = |I| —4. Then G is a maximal nonhamiltonian split graph if and
only if G' = G[I U Ng(I)] is a mazimal nonhamiltonian split graph.

Proof. Let G = S(IUK,FE) be a Burkard-Hammer graph with [I| > 7
and 6(G) = |I| — 4. Then by Lemma 6 |Ng(I)| > |I].

First suppose that G is a maximal nonhamiltonian split graph. Then
by Lemma 4 it is not difficult to see that G’ = G[I U N¢(I)] is a maximal
nonhamiltonian split graph.

Conversely, suppose that G’ = G[I U Ng(I)] = S(I' U K', E") where
I' = I and K’ = Ng(I) is a maximal nonhamiltonian split graph. By
Lemma 4, G is nonhamiltonian. So it remains to prove that for any u € I
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and any v € K with uv € E the graph H = G + wv is hamiltonian. We
consider separately two cases.

Case 1. v € Ng(I).
Then u € I'’, v € K' and uwv € E’'. Therefore, H = G’ + uv has a Hamilton
cycle because G’ is a maximal nonhamiltonian split graph. Since H' =
H[IUNg(I)], by Lemma 4 H also has a Hamilton cycle.

Case 2. v e K\ Ng(I).

First assume that u is adjacent in G to all vertices of Ng(I). Then we
consider the graph G — u which is a Burkard-Hammer graph S(I, U K, E,,)
with I, = I \ {u} and E, = F \ {uw | w € Ng(I)}. Since |I,| # 5 and
(G —wu) > |I,| — 3, by Theorem 3, G — u has a Hamilton cycle C,,. We
fix an orientation for C,. Since v € K \ Ng(I) both v~ and v" are in K.
By going from v along C, in the direction specified by (T)’u we can find a
vertex w such that w € Ng(I) but w™ € K \ Ng(I). Then w is adjacent
in G to u by our assumption. Therefore, C' = vuwC’—;v is a Hamilton cycle
of G+w =Hifw=v"and C = vuwC—';v_w_(CTuv is a Hamilton cycle of
G+uv=Hifw#v".

Now assume that there is a vertex v; € Ng(I) such that u is not adjacent
in G to v;. By Case 1, G + uv; has a Hamilton cycle C’ that must contain
the edge uv, because G is nonhamiltonian. We fix an orientation for C’
so that ut = v;. Since v € K \ Ng(I), we have v € K. Therefore,
C= uv(?vw*g”u is a Hamilton cycle of G + uv = H.

The proof of the lemma is complete. [

3. CLASSIFICATION FOR CASE |I| # 6,7
First of all, we prove the following Lemmas 12 and 13.

Lemma 12. Let G = S(I U K, E) be a mazimal nonhamiltonian Burkard-
Hammer graph with m = |I| # 6, n = |K| and 6(G) = |I| —4. Then |I| > 7
and G possesses a Hamil)ton path P with the endvertices uy and v, such that
uy € I,v, € By and if P = uy ...v, is the path P with the orientation from
uy to vy, then v, € 1.

Proof. Let G = S(I U K,FE) be a maximal nonhamiltonian Burkard-
Hammer graph with m = |I| # 6,n = |K| and §(G) = |I| —4. By Lemma 6,



A CLASSIFICATION FOR MAXIMAL NONHAMILTONIAN ... 75

for any vertex u € I we have |[N(u)| > [{u}| = 1. So, 6(G) = |I| —4 > 2
and therefore we must have |I| > 6. This implies that |I| > 7 because we
assume that |[I| # 6. Now by Theorem 9, By = B5 = --- = By,_1 = () but
Bs # (). Choose a vertex v, € Bs. Since m = |I| > 7 we can find a vertex
Uy € I\N[(’l}n).

Since u1v, € F and G is a maximal nonhamiltonian split graph, G+uq vy,
has a Hamilton cycle D which must contain the edge wiv,. So P = D —uqvy,
is a Hamilton path in G with u; and v, its endvertices.

Let ? = uq ...V, be the path P with the orientation from u; to v,. If
v, € I, then P already is a Hamilton path required in the lemma. So we
suppose that in P the vertex v, is in K. Since |Ny(v,)| = 3, there exists
u € Ni(vy). Then ﬁ = ull_ﬁu_v; <Fuvn is also a Hamilton path of G with
the endvertices u; and v,,. But in ]37 the predecessor of v, is u which is in
I. Thus, the path P’ is a Hamilton path required in the lemma. The proof
of Lemma 12 is complete. [ |

Let G = S(IUK, E) be a maximal nonhamiltonian Burkard-Hammer graph
with m = |I| # 6,n = |K| and 6(G) = |I| — 4 and let P, u; and v, be
as in Lemma 12. Set Njy(v,) = I\ Ni(v,). Then we have |Ni(v,)| =
|I| — |N1(vy,)| = m — 3. Let

UL, U2y - -+ Umn—3
— —
be the vertices of N(vy,) occurring on P in the order of their indices. Set

- e —
Py =uiPuy,Po =ugPug,...,Ppn_4=Up_ 4Pu P,_3=umn_3Pu,.

m—3’
Then these subpaths of P appear on ]_3> in the order of their indices. Because
of this we will call the subpath P;, j =1,...,m — 3, the j-th subpath ofP
If v is a neighbour of u; and v~ is adJacent to vy, then C = uy Pv vanul
is a Hamilton cycle of G, a contradiction. Thus, v~ is not adjacent to v,
ie, v™ € Ny(vy) = {u1,...,um—3}. Hence, v € {uf,...,ul _5}. We have
proved the following lemma.

Lemma 13. N(u) C {uf,...,ul 5}. |

m—3

The following Lemmas 14, 15 and 16 help us to know the structure of G in
more detail.
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Lemma 14. (i) If v € N(uj)NV(B;) with j <1 wherei € {1,2,...,m—3},
je{2,...,m—3} and uj € N(uyp), then v— & N(vy);

(ii) If v € N(uj) NV (F;) with j > i where i € {1,2,...,m =3}, j €
{2,...,m =3} and u} € N(u1), then v* & N(vy,).

Proof. First assume that v € N(u;) NV (P;) with j < ¢ wherei € {1,2,...,
m—3}, 7 €{2,...,m—3} and u;r € N(up). Ifv = u;r thenv™ = u; & N(vy,).
If v # u;r and v~ € N(vy), then C = uj(lgulu;r]_ﬁv_vn(]?vuj is a Hamilton
cycle of G, a contradiction.

Now assume that v € N(u;) NV (F;) with j > i where i € {1,2,...,

m—3}, j € {2,...,m — 3} and u;r € N(up). If vt € N(vy,), then

— +_> = . . . .
C = ujv Puju; Pu,vt Pu; is a Hamilton cycle of G, contradicting the
nonhamiltonicity of G again. This completes the proof of Lemma 14. [ |

By Lemma 14, Ny(v,) = {u1,us,...,um—3} and §(G) = |I| — 4, we have
immediately the following Lemma 15.

Lemma 15. If u;r € N(u1) for j € {2,...,m — 3}, then N(u;) C {uy,ug,

— o ot +
..,uj,uj,ujﬂ,...,um_g}. [

Lemma 16. If integers a and b with 2 < a < b < m — 3 are such that
ul € N(uy), uy is adjacent to up and u, is adjacent to u;r, then both

uf y =ug and uf =ug,; hold.

Proof. Suppose, on the contrary, that uz{_l # uy, . Then u,~ & Ni(vy)
and therefore it is adjacent to v,. Further, since m > 7, we have deg(u;) >
m —4 > 3 for every j € {1,2,...,m — 3}. Therefore, since u; is adjacent
to uf, C = uluz{l_ﬁubuguaugl_ﬁvnugfﬁul is a Hamilton cycle of G, a
contradiction. Similarly, if uf # u,, ;, then uf* is adjacent to v,. So, since
deg(u;) > m—4> 3 for every j € {1,2,...,m—3} and uy is adjacent to u/,
C = uluj{uaujl_ﬁvnuz{*]_ﬁubug Puy is a Hamilton cycle of G, contradicting
the nonhamiltonicity of G again. The proof of Lemma 16 is complete. [ |

Now we prove the following two Lemmas 17 and 18 which are crucial for the
classification.

Lemma 17. Let G = S(I U K, E) be a mazimal nonhamiltonian Burkard-
Hammer graph with |I| # 6,7 and §(G) = |I| —4. Then |I| > 8 and G
possesses a verter v € Bz such that some vertex uw € Ny(v) = I\ Ny(v) has
deg(u) > |I] - 3.
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Proof. Let G = S(I U K, FE) be a maximal nonhamiltonian Burkard-
Hammer graph with m = |I| € {6,7},n = |K| and §(G) = |I| — 4. By
Lemma 12, m = |I| > 8 and G possesses a Hamilton path P with the end-
vertices u1 and v, such that uqy € I,v, € B3 and if ]_3) = uy...v, be the
path P with the orientation from u; to v, then v, € I.

Suppose, on the contrary, that G does not satisfy the last conclusion
of the lemma. This means that for any vertex v € B3 and for any vertex
u € Nr(v) =1\ Ni(v), we have deg(u) < m — 4. But 6(G) = m — 4. So for
any vertex u € Ny(v), deg(u) =m — 4.

We already noticed before Lemma 13 that |Nj(v,)| = m — 3. There we
also denoted the vertices of Nj(vy,) in the order of their appearing on P by
U1, U2, - .., Um—g and defined the subpaths Py, P, ..., Py_3 of P.

By Lemma 13, N(u1) C {uf,...,u} _3}.

From this and deg(u;) = m — 4 it follows that there exists 7o € {2,3,...,
m— 3} such that vertices uj with j € {1,2,..., m—3}\{ro} and only these
vertices are neighbours of u;.

By Lemma 15 we have

N(uj;) C {uz_,ug,...,uj_,u;",u;;l,...,u;f?’}

for any j € {2, ...,m —3}\ {ro}.

Claim 3.1. (i) If 3 < rop < m — 4, then either some of wug,..., up,—1 is
adjacent to uffo or some of Upy11,. .., Un—3 is adjacent to u, .

(ii) If 7o = 2, then some of us, ..., umy—3 is adjacent to u; .

(iii) If 79 = m — 3, then some of ug, ..., un,—4 is adjacent to u:;_g.

Proof. First we prove the assertion (i). So we assume now that 3 < ro <
m — 4. Suppose, on the contrary, that uf% & N(uj) for every j € {2,...,
ro — 1} and u,, & N(u;) for every j € {ro+1,...,m —3}. Then by Lemma
13, Lemma 15 and deg(u;) = m — 4, we have

— [t + + -
N(ui) ={ul, .o ul w0 sh,
— S -t + + + ;
N(uj) = {uy s U yeees U U gy ey U g} for 2 < <rg—1
and
— [a= - - -+ + :
N(uj) = {u, gy U s U s e U 5 U e Um—g} forrg+1<j<
m — 3.
g it = + - + = +
If all equalities uy” = ug, ..., o = Uy UL 1) = Uy yoseey Uy g =
u,,_5 hold, then all vertices u1,...,Ur,—1,Ury+1,-..,Un—3 are adjacent to
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+ + + + i : :
each of ui, ..., u. o, Uy yq,--- Uy 3. This implies that each of vertices
+ + + + : .
U 5wy U gy Upe 4 qs- - -5 Uy, g has at least 4 neighbours in I because m > 8.

Therefore, by Theorem 9, each of these vertices is adjacent to all vertices in I.
In particular, they are adjacent to w,,. But u,  and u;LO are also neighbours
of uy,. So deg(uy,) > m — 3, contradicting the assumption about G.

Thus, there exists the number jo € {1,...,m — 4} \ {ro — 1,79} such
that u;:) # u;oil So both quJr and “;011 are adjacent to v,. If jo # 1, then

C = Ujo+1Uj, Pu1u+u]0 ]O+1PUnU PUJOH is a Hamilton cycle of G. If
+3

jo =1, then C = u1u2 Pup_3uq us u Pvnu2 Pu1 is a Hamilton cycle
of G. We have got a contradiction in all pos&ble situations. So the assertion
(i) of the claim must be true.

Assertions (ii) and (iii) can be proved by similar arguments. We leave
it to the reader to carry out the proofs of (ii) and (iii) in detail.

The proof of Claim 3.1 is complete. [ |

Now if rg = m — 3, then u:;

j€{2,...,m —4} by Claim 3.1. Let P’ = uj(lgulu;r]_ﬁvn. Then P’ is a
Hamilton path of G with the endvertices u; and v,, and all vertices of N (vy,)
are in u]P’ +

u, 5. Moreover, in P’ the vertex u; is adjacent to um 3. 50
by considering u; instead of u; and P’ instead of P, if necessary, we may
assume that

_s must be adjacent to some vertex wu; with

2<rg<m—4.

Claim 3.2. There exists jo € {1,2,...,m — 4} such that u 7 Uit

Proof Suppose, on the contrary, that uJr = for every j € {1,2,.

]+1
— 4}, If N(upy) Nt Pvn = (), then by Lemmas 13 and 15 we have
({ul,u2,.. JUm—3}) = {ul,u;,..., ul 5}, Tt follows that |N({uy,us,
s = o g gl = T s, s}, contradicting

Lemma 6. Thus, N(u,) Nut Pvn # (). Let w be a vertex of N(u,,) N
m73Pvn. Then w™ & Ny(vy,) and therefore w™ is adjacent to vy,.

By Claim 3.1, if 3 < rg < m — 4 then either some of ug,..., up,—1 is
adjacent to u;LO or some of Uy y1,...,Un—3 is adjacent to u, and if ro = 2
then some of us,...,u;,_3 is adjacent to Uy If some of uQ, ey Upg—1 1S

adjacent to uro, say u;,, then C = w4 Pumu Pw vnPwuroPu uy 1S a
Hamilton cycle of G, a contradiction. If some of Upgt1s -y Um—3 1S adjacent
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— — — = 4 . .
to u,,, say uj,, then C' = uy Pu;oujOPurovanw_Pujoul is a Hamilton
cycle of G, a contradiction again.

Thus, there must exist a subscript jo € {1,2,...,m — 4} such that

Jr —
Ujo 7 Ujo+1- u
: ++
Claim 3.3. u, "5 € I.

Proof. By Claim 3.2 there exists jo € {1,2,...,m — 4} such that u;:)

;0 +1 Then u; —, is adjacent to v,. Therefore, if v, € K, then C =

Uy Pu

Jo +
Pu1 is a Hamilton cycle of G, a contradiction.
|

]0+1um 3Pvnu]0+1

Claim 3.4. u:;hg is adjacent to all vertices of G.

Proof. Assume that u:;hg is not adjacent to u; for each j € {2,3,...,
m — 4}. Then by Lemma 15 and deg(u;) = m — 4 we have

N(uj;) = {u;,u;...,u;,u;r,...,u:;fz;}

for every j € {2,3,...,m —4} \ {ro}.

If ro = m — 4, then by applying Lemma 16 for a = 2,...,m — 6 and
b=m —5 we get uf = Uy,... ,u;;f6 = u,, 5. In particular, since m > 8,
we always have uf = uy and u; = u5. Suppose that u;rlff) 75 Uy
Then um 5 is adjacent to vy, Now if uy,—3 is adjacent to u, = u1 , then
C= ulu Pu2 Uy — 3Pum 5vnPum su1 is a Hamilton cycle of G, a con-
tradiction. Thus um—3 is not adjacent to u, . Together with Lemma 15 and

deg(um—3) =m —4, thlb implies that Um-—3 is adjacent to ug = uj . There-

fore, C' = uwfuzu Pu3 Uy — 3Pu 5vnPu _guq is a Hamilton cycle of

+ _
G, a contradiction again. Thus, we also have u, - =u,, _, if ro =m —4.

If ro = m — 5, then by applying Lemma 16 for a = 2,...,m — 6 and
b=m—4 we get uf = u;,...,u:;h6 = u,, 5. In particular, we have
ul = u;. Since m > 8, we have rp = m —5 > 3. So u; is adjacent

+ ++

to us . Novv if uf 5 7 U, oy then um 5 is adjacent to v, and therefore

C = u1u2 Pu _5U2Ug Upy— 4Pu 5vnPu _4u is a Hamilton cycle of G, a
contradiction. Thus, we also have u:;h5 =u,,_,if ro =m—>5.

If ro = 2, then by applying Lemma 16 fora = 3,...,m—5and b = m—4
we get u; = Uz ,... ,u;ﬁ% =u,,_4. In particular, we have uf{ = u, . Since
m > 8, we have m—4 > 4. Hence, u4 is adjacent to u, . Now 1fu1 =+ u2 , then
uy ~ is adjacent to v, and therefore C' = UlU;UgU;UQUQ U4Pvnu2 Pu1 isa

Hamilton cycle of G, a contradiction. Thus, we also have uf =u, ifrog = 2.
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If 2 < rg < m — 5, then by applying Lemma 16 for a« = 2,...,rg — 1 and

b=m —4 we get uf = Uy ,... u;fo 1 = U, and by applying Lemma 16 for
a=ro+l,..., m=5and b =m— 4wealsogetu Upo 4 qse -+ Suh =
Thus, we always have uj = uy,...,u} o = u_, _, for any value of
ro. By Claim 3.2, we must have u} , # u_ 3. Hence, utt, is adja-
cent to v,. Since m > 8, deg(um,-3) = m —4 > 4. Tt follows that
there exists jo € {3,...,m — 4} such that um,g is adjacent to u; be-
cause by Lemma 15 N (Upyp— 3) C {u;,... u_s,ub 5}, Therefore, C =
uUq Pvn Pum 3u Pum AWjo— 1Pu1 is a Hamilton cycle of G. This

ﬁnal contradlctmn shows the assumption that umf3 is not adjacent to u; for
each j € {2,3,...,m — 4} is false.

So u&fg must be adjacent to a vertex w; with j € {2,3,...,m — 4}.
By Claim 3.3, u/ %, is in I. Hence, |[Ny(u) 5)| > 4 because u1,u;j, U3
F1, are in Ny(u,!_3). By Theorem 9, u.,_, must be adjacent to all
vertices of G.

and w
The proof of Claim 3.4 is complete. [ |

Claim 3.5. u_, =u,,

Proof. Suppose, on the contrary, that u;_4 # u,,_s. Then u;il & Ni(vp)
and therefore it is adjacent to v,. Further, since m > 8, deg(upy—3) =

m —4 > 4. Together with N (up,—3) C {uy,...,u _s,ub 5}, it follows that
there exists sg € {2,...,m—4} such that N (um,—3) = {uy, ..., u_s,ut }\
{ug, }- Now if ro < m —4, then by taking x € {2 ,m—4} Wlth x 7& S we

have C = ulu 4Puz ul Pvnqu

G, a contradiction.
Thus, 79 = m — 4 must hold. Now we consider separately the following
cases.

4Pum U, Pu1 is a Hamilton cycle of

Case 1. There exists a vertex us € {us,...,un_5} adjacent to u,

m—4-
We have N (um—3) = {uy,...,u,,_3, U:;FB}\{USO}. Since m > 8 there exists
xe{2,...,m—4}\{t,so}. Then uy is adjacent t0 tm—3 ! because x 7é 50.

If2 <z <t-—1, then C = utu ?ut ulPu Ugp— 3Pu 4vnPum 3

uz?ut 1s a Hamilton cycle of G. If t+ 1 <z < m—4, then C =
—

utu Puz + Pvnu+Jr Pum 3Uy Pu;rul Puy is a Hamilton cycle of G.

We have got a contradictlon in all possible situations. Thus, this case cannot
oceur.
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Case 2. No vertices u; € {ua,...,um—5} are adjacent to ulb .
In this case, for j € {2,...,m — 5}, since deg(u;) = m —4 and N(u;) C
{uy,... ,uj_,uj, e 7“273} by Lemma 15, we have

N(uj;) = {u;,...,u;,u;r,...,u;%),umf:s )
By applying Lemma 16 for ¢ = 2,...,m — 6 and b = m — 5 we get uf =
— + —

U yeees Uy o =U .

We show now that u, - = wu, , also holds. We have N(uy_3) =
{ug .o uy, g ut b\ {uso}. If so 7é m — 5, then by applying Lemma 16

fora:m—5amdb:m—?;vvegetuJr 5 = U,,_4. SO We may assume

now that syg = m — 5. With this assumption we have u,,_3 is adjacent to

uy = uf. Therefore, if ul 5 7 u;l 4 then u;+5 is adjacent to v, and

++

therefore C' = ulu Pu2 Uy — 3Pu 5vnPu _guq is a Hamilton cycle of
+

G, a contradiction. So, Uy s =u, _, always holds.

Thus, N(uj) = {uy, ... ,u;,uj, ... ,u;;%, u;73}:{uf, ... ,u;;%, u;73}
for j € {2,...,m — 5}. Hence, each of the vertices uy,ua,...,Uny,_5 is ad-
jacent to each of the vertices uf,... ,u:;%. Since N(um-3) = {uy,...,
un, g, o3\ {ug,}, the vertex un,_s is adjacent to each of the Vertices
uy s U gy ud, cu . It follows that |[Ny(uf)| > 4,...,|Nr(ulf _5)| >
4,|Np(uf)l > 4,...,|Ni(u,_5)| > 4. By Theorem 9, uf, ... ,u;er, ;‘;, e
;75 are adjacent to all vertices of G. In particular, they are adjacent to
Um—_4. Further, since m > 8 and all ul, ..., Um—5 are adjacent to u;ro_l, we
have |Ny(uj ;)| > 3. Now if |[Ny(u], _;)| > 3, then again by Theorem 9 the

vertex u;r -
0

u

1 is adjacent to all vertices of G. In particular, it is adjacent to
Um—4. So {uf, ... ul o} C N(up—4). (We recall that u,, 5 is adjacent to
all vertices of G by Claim 3.4.) Therefore deg(um,—4) > m — 3, contradicting
our assumption about G. Thus, |Ny(u] + _1)] = 3. Since {uy,...,um-5} C
Ny(uf ug, 1), this can happen only if m = 8 and Ny(uf ug q) = {ul,UQ,U3}.
€ B3. Let u € Nj(v,) be such that u # u Then

u € Nl(ujofl) and therefore deg(u) = m — 4 by our assumption about

Hence, u?

so—1 m— 3

G. On the other hand, since ul =u,,... uJr =u,,_ 4 as we have shown
1 2 -5 —4
above, u 1s either in u Pu _g or, if u+++ £ Uy, In u+++ Puv, . So, both

v~ and ut are dlﬁerent from uf,...,u:OfQ, ;t),...,u;;% and u:;f:g. But
all the vertices uf,...,u;zﬂ,u;z,...,u;;%,u:;fg,u_and ut are in N(u).
(Recall that uf, . ,u;zﬂ,ujo, . ,u;th5 and u:;fg are adjacent to all ver-

tices of G.) Hence, deg(u) > m — 3, contradicting deg(u) = m — 4 obtained
before.
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Thus, Case 2 also cannot occur. This means our assumption that u&f 4 F
u,,_s is false.
The proof of Claim 3.5 is complete. [ |

Claim 3.6. uf = Uy -

Proof. Let Q@ = up_ 3Pu1u ]_31)“. Then ) is a Hamilton path in

G with the endvertices u,,_3 and v,. In 6 = Um_3...Vy, the vertices
UL, ..., Um—3 of Ny(v,) appear in the reverse order of their indices. So, if v
and v~ are still the successor and the predecessor of a Vertex v, respectively,
with respect to P then the first subpath Q1 of Q is up,— 3Pum 40 -+ -, the

(m —4)-th subpath Qr—q of Q is us Pu1 and the (m 3)-th subpath Qm 3

of Q is ulu Pvn Since u,,_3 is adjacent to u _g, the path @ can play

the role of P in the discussion of Claim 3.5. Therefore by exchanging the
+

roles of u; and u(y,—3)—(j-1), u and u(m 8)-(-1)> U and u, 3)—(j—1)

ro and sg, respectively, we can repeat arguments in Clalm 3.5 to show that

m—3

- _ 7t
Uy = Uq . |

Now we complete the proof of Lemma 17. By Claims 3.5 and 3.6, um 4=
u 5 and uf = uy. Therefore by Claim 3.2 there is a subscrlpt Jo such
that 2 < jo < m—>5 and ujo #* ;1 Then both quJr and u; ~ ; are adjacent
to v,.

Assume that u1 is adjacent to qu 1 If Ui I8 adjacent to u;,_3,

]0+

then C = ulum 4Pu] L 1Um— 3Pvnu Pu1 is a Hamilton cycle of G, a

jo+1
contradiction. Thus, U4 g cannot be adjacent to u,,_3. Therefore, since
deg(tm—3) =m—4 and N(upm-3) C {uy,...,u, s, ul 5}, the vertex u,, 3

— “— —
must be adjacent to u, . Now Q=u Puj um-—3 Pujou;% Pwv, can play
the role of P in Claim 3.5. So we can get a contradiction as in the proof of
Claim 3.5. Hence, the assumption that u1 is adjacent to U:L 4 1s false.

Thus, u; is not adjacent to um 4 e, rg = m — 4. This means
that u; is adjacent to each of u] ,...,u+ 5 and um 3. By Claim 3.6,
uf = u; Therefore um—3 cannot be adjacent to u, because otherwise C' =

T+

«—
ulu Pu1 Up—3 Pu Un, Pu;%ul would be a Hamilton cycle of G, a contra-

dlctron. Thus, um_g is adjacent to each of vertices us,...,u,, 5 and um 3
e B~ DSt P +

Therefore, if jo > 2, then C' = wu; Pujoum,gPujo vnPum73ujOujoi1 is a

Hamilton cycle of G, a contradiction; and if jo = 2, then C = ulugP Um—3
— —

Ug ugu;_ngnug_ ~ Puj is a Hamilton cycle of G, a contradiction again.
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This final contradiction shows the assumption that G does not satisfy the
last conclusion of Lemma 17 is false.
The proof of Lemma 17 is complete. [ |

Lemma 18. Let G = S(I U K, E) be a mazimal nonhamiltonian Burkard-
Hammer graph with m = |I| > 7,n = |K| and 6(G) = |I| — 4. Furthermore,
let G possess a vertex v € Bs such that some vertex w € Ni(v) = I\ Ny(v)
has deg(u) > |I| — 3. Then G is isomorphic to the expansion H'[Ga,v}]
where t = |K| — |I| +5 and Gy = S(I2 U Ko, E3) is a complete split graph
with |Ks| — 1 = |Is] = |I| = 5.

Proof. By Lemma 11, without loss of generality, we may assume here that
K = N(I). Let P, u; and v, be as in Lemma 12. Set u,, = v,, € I and let
the vertices uq,uo, ..., uy_3 of I and the subpaths Py, Py, ..., Py,_3 of P be
defined as before Lemma 13. By the assumption of our lemma, without loss
of generality, we may assume that w1 and v, are such that

deg(uy) > m — 3.
Together with Lemma 13, this implies the following Claim.

Claim 3.7. N(w1) = {u],ud,...,ul .}

m—3

By Lemma 14 and Claim 3.7, for any j € {1,2,...,m—3} we have deg(u;) <
m — 3. But deg(u;) > §(G) = m — 4. It follows that deg(u;) = m —4 or
m — 3 for any j € {1,2,...,m — 3}. By Lemma 15,

N(u;) C {u;,ug,...,u;,u;r,u;rﬂ,...,u;rn_3}

for j =2,3,...,m— 3.

Claim 3.8. There exists a number jy € {1,2,...,m — 4} such that u% #*
() but u;:)—kl =Uj4o)--- ,u;74 = U, 3.

Proof. Suppose that u;r = ujy, for each j € {1,2,...,m — 4}. Then for
I' = {u1,u2,...,Up-3}, by Claim 3.7 and N(u;) C {u;,ug_,...,uj_,uj,
u;_l,..., u:;hg} for each j = 2,3,...,m — 3 just proved above, we have
NI = {uf,ug,...,ul _3}. So [N(I")| = |I|, contradicting Lemma 6.
This means that Claim 3.8 must hold. [
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We have u%*,u{oil & Nr(vp) = {u1,...,un—3}. Therefore, both u%* and
Ujo 4 are adjacent to v,. The reader should remember this because later we
frequently use it, without mentioning it, to construct a Hamilton cycle in a
graph G.

Claim 3.9. At least one of vertices us or u,,_4 is adjacent to u;tl_3.

Proof. Suppose, on the contrary, that neither us nor w,,_4 is adjacent to

u 5. Then since deg(u;) > m — 4 and N(u;) C {uy ,uz, ... U u;r,u;r_H,
.,u;;_:s} for j =2,3,...,m — 3, we have
N(ug) = {uy,ug,ug,...,ut 3},
N(um—a) = {ug,uz,...,u, _4ut 4}

By applying Lemma 16 with a = 2 and b = m — 4 we get uf =u,, u; = U .

If there exists € {3,...,m — 5} such that u} # u, , then v} is adja-

cent to vy,. So since deg(u;) > m —4 > 3 for every j € {1,2,...,m — 3},
— L = 3 _ . .

C = wu} Pugu, 4 Pvpul ™ Puy,—4uy uq is a Hamilton cycle of G, con-

tradicting the nonhamiltonicity of G. Thus, we also have u; = uZ,uI =
Us y. .. ,u;rlﬁr) = u,,_,. It follows that jo = m — 4 and therefore U:ZJL; is

adjacent to vy,.
—
If w3 is adjacent to uy, then since uf = uy, C = upm_suy Pul_,uy

ut L Puutt Pu, s is a Hamilt le of G tradiction. S
3 Pun m—3 is a Hamilton cycle of GG, a contradiction. So u.,,_3

m—4

is not adjacent to uy . It follows that N(um—3) = {uz,uy,...,u,, 3, u’ 5}
because deg(um—3) > m — 4 and N(upm—3) C {uy,uz,...,u _s,ut 5}
Since m > 7 and uf = Uy ,... ,u:;h5 =u,,_,, we always have uf = u, and
uj = us. Therefore, C = u - Put tuut P ++ P

2 3 - ) m—3Ug L7 Uy, 4 U2UT UIUp, 387 UnUp,_ g 17 Um—3
is a Hamilton cycle of G, a contradiction again. The proof of Claim 3.9 is
complete. m

-
P
— ++ - N — . . . .

Ujo 41U g Popug q Puy is a Hamilton cycle of G, contradicting the non-
hamiltonicity of G. So u,} T, € I. It follows that |Ny(ul _5)| > 4 because
ul,um,g,u:{tg and at least one of vertices uy or u,,_4 by Claim 3.9 are
in Nj(u;_g). By Theorem 9, N[(u:rn_3) =1, 1ie., u;_g is adjacent to all
vertices of G.

If u,;,—3 is adjacent to u, then by applying Lemma 16 with a = 2
and b = m — 3 we get u = uy,uj = ug. Therefore, jo > 3 and C =

We continue the proof of Lemma 18. If u:;'tg € K, then C = uju

m—3
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ulu Pu2 Ui —3 Pu++vn<ﬁ u:;hgul is a Hamilton cycle of G, a contradiction.
Thus, Um—3 1S not adJacent to u, . Hence N(up—3) = {us,uy,...,u,, s,
ul 3} because deg(um—3) > m —4 and N(upm—3) C {uy,uz,uy,... U, 3,
u:rn_3}. By applying now Lemma 16 with a =3,..., m—4and b=m — 3
we get u; = ug_,uéF = UL---,U;_4 = Uy, _3-

Thus, jo =1.1f u; is adjacent to some u; with j € {3,4,...,m—3} then
C = ujuy Pu _qu1 P Uy vnP uj is a Hamilton cycle of G, a contradiction.

So u, is not adJacent to any vertices us,uq, ..., Um—3. It follows that for
ji=34,...,m—3,

N(uj) = {ug ug, -y, s}
because deg(u;) > m — 4 and N(uj) C{uy,ug,... uy, ;r, ul o}
We have proved before that u g€l If quJr 3= Up = Uy, and Uy, has
no neighbours in P, = u, Pu2 , then Bg(I’ UK',E') with I’ = {uy,us,...,
Um—3, U } and K' = N(I') \ {u2 ,ua,...,ul 5} has three H-components,

namely Be({ur}Ufut b, furut 1), Ba({us}Ufuy b, fusuy ) and Bo({u }U
{vn}, {umvn}) and m — 5 T-components, each of which consists of a single
vertex from {us,...,u,—3}. Therefore, k(I', K') + max {1, %} =m—
54 2. But [IN(I')| - |K'| = |[{ug ,u], ..., ul_4}| =m —4. This contradicts
the fact that G is a Burkard-Hammer graph. Thus, if u:;LJjB = U, then
Uy, has to have a neighbour v in P;. If v # uf then v~ is adjacent to v,
and therefore C' = umv]_3>u+ 3u11_3>1fvnum is a Hamilton cycle of G. If
v = uf then v* is adjacent to v, and therefore C' = umvulu P v,
is a Hamilton cycle of G. We have got a contradlctlon in any 81tuat10ns

Thus, u:;iB # Upy. Set Up_g = ut R1 = u1 Pu2 and Rg = Upp— 2P
UpUm—o. Then ]?1) has at least two vertices and Rg is a cycle of length at
least 4.

m3’

Claim_) 3.10. If there exist a vertex y of the path 1?{ and a vertex z of the
cycle Ry such that either both yz and y ™2™ are edges of G or both yz* and
y+z are edges of G, wﬂiare y+ ind 2T are the successor of y and the successor
of z with respect to R; and Rs, respectively, then G has a Hamilton cycle.

Proof Suppose that both Yz and y*2T are edges of G. If z # v,, then
C = yPulu Py z*Pvnum ngy is a Hamilton cycle of G. If z = v,,
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then 2T = u,,_2. Therefore, C' = yPulu Py Uy — 2Pvny is a Hamilton

cycle of G.
If both yz' and y Tz are edges of G, then Claim 3.10 can be proved
similarly. The proof of Claim 3.10 is complete. |

Let u,,—1 be the remaining vertex of I. Then either u,,_1 € }?{ or Upm—_1 €
-
Rs.
H . H . .

If w1 € Ry then all vertices of Ry are in K. Therefore, by using
Claim 3.10, it is not difficult to see that—)u 9 = Uy _1,U) | = U, and
Upm—2, Um—1, Uy, have no neighbours in Ry. Take I' = I,K' = N(I') \
{uf,uf,...,u} _5}. Then it is not difficult to see as before that k(I’, K') =

m — 5 and h(I',K’') = 3. Therefore, k(I', K') +max{1,%} =m —
5+ %v IN(I')| — |K'| = \{uJ,ug, ; 3} = m — 4. It follows that
k(I'K') + max{l h(l K) } > |N(I’)| — |K'|, contradicting the fact that

G is a Burkard-Hammer graph. Thus, u,,—1 cannot be a vertex of }?2> and
therefore u,,—1 € ]?1) .

Suppose that u;r%z = u,,. Since v, is adjacent to every vertex of ]?{ ,
again by using Claim 3.10, we see that u,,_s and u,, are not adjacent to any
Vertices of }?1) Take I' = {uy,ug,..., Um—3, Um—2,un} and K' = N(I')\
{ug ,u3 - ,u:;hg}. Then as before it is not difficult to check that G does
not satisfy the Burkard-Hammer condition with respect to these I’ and K’,
a contradiction. Thus, u+72 # u,, and therefore again by Claim 3.10 we

must haxLe; uf =u,, q,uf | =uy and u,_1 is not adjacent to any vertices
in U;LQP . Further, 1f U2 18 adjacent to a vertex v € u++ Pu then

since v~ € K,
C = ulu Pum 1vanum QPU uful

is a Hamilton cycle of G. Similarly, if w,, is adjacent to a vertex v €
—
ul o Pu;~ then since vt € K,

C—ulu Pum 1Un Uy — ngumPv uful

is a Hamilton cycle of G. We have got a contradiction in both situations.
—
Thus, in Ry the vertex u,,_o is adjacent to only u:;fz and v, and the vertex

—
Uy, is adjacent to only u,, and v,. It follows that if u) , Pu,, has more
than two vertices, then since K = N(I) (by our assumption), N(u;) =
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{uf,...,u} 3} (by Claim 3.7) and N(u;) C {us,... ,u;,u;r, VAR
for j = 2,3,...,m — 3 (by Claim 3.7 and Lemma 15) are true, the vertex
u;tLJ[Q must be adjacent to u,,—1. By Claim 3.10, G has a Hamilton cycle,
contradicting the nonhamiltonicity of G. Thus, u ", = u,,. It follows that
n=|K|=|N()=m+1 and

I = {uj,ug,...,um},

B A
K = {uf,uy,....;u} 5,0 o, 1, U, Uyl )

Let H=S(IUK,E(H)) be a split graph with

Ny (up) = {ui",u;’,...,u;‘%:s ,

Ny(uz) = {ud,ud,...;ul 5wt 1,

Np(uz) = Npg(ug) = -+ = Ng(um-3) = {ug ,uy, ..., u,_3},
Np(um—2) = {ug ,ug s« U3, U5, Vi1 },
N (um—1) = {uy ,ug ... g,y 1, U},

Ny (upy) = {ug,uf,...,ub s u,, Omi1}

Set IQ = {U3,U4, ce ,um_g}, KQ = {u;,u;, ce ,u;_g} and Gg = H[IQUKQ].
Then Gg is a complete split graph S(Ia U Ky, Eo) with |Ks| — 1 = |[3] =
|I|—5. Further, let H*® = S(I*UK*, E(H*%)) with I* = {u},u}, u}, u}, ut}
and K* = {v],v5,vs, v, v, v} be a split graph defined in Table 1 and
H' = H*%[Gy,v3]. Then H’ is a split graph S(I’ U K',E') with I' =
{uf, uy, ul, uf, ub, ug, ug, . . um—3} and K’ = {v},v3, v}, v, 05, ud, ug, ..
u’_5}. Consider the following mapping ¢ : V(H) — V(H') with

*

o(ur) = uy, p(uz) = uy, p(uj) = u; for j =3,4,...,m—3,
O(Um—2) = ug,gp(um,l) = uy, P(Up,) = Ug,

o(uf) = vf,gp(uj‘) :uj for j =2,3,...,m—3,
p(uy o) = v3,0(ut 1) = vi,0(uy,) = v5,0(vms1) = V5.

It is not difficult to see that ¢ is an isomorphism between the graphs H and
H'. By Theorem 10, H’ is a maximal nonhamiltonian Burkard-Hammer
graph. So, by H =2 H', H = S(IUK, E(H)) also is a maximal nonhamilto-
nian Burkard-Hammer graph.
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By considerations before we see that Ng(u;) C Npg(u;) for every i =
1,2,...,m, ie, G=S(IUK,FE) is a spanning subgraph of H = S(I U K,
E(H)). But G is a maximal nonhamiltonian Burkard-Hammer graph by our
assumption. So GG must coincide with H and therefore GG is isomorphic to
H = H4’6[G2,U§].

The proof of Lemma 18 is complete. [ |

From Theorem 10 and Lemmas 17 and 18 we can obtain immediately The-
orem 1 formulated in the introduction, which gives us the classification of
maximal nonhamiltonian Burkard-Hammer graphs G = S(I U K, E) with
|I| # 6,7 and §(G) = |I| — 4.

Acknowledgements

We would like to express our sincere thanks to the referees for valuable
comments and useful suggestions which help us to improve the paper.

REFERENCES

[1] M. Behzad and G. Chartrand, Introduction to the theory of graphs (Allyn and
Bacon, Boston, 1971).

[2] R.E. Burkard and P.L. Hammer, A note on hamiltonian split graphs, J. Com-
bin. Theory (B) 28 (1980) 245-248.

[3] V. Chvétal and P.L. Hammer, Aggregation of inequalities in integer program-
ming, Ann. Discrete Math. 1 (1977) 145-162.

[4] S. Foldes and P.L. Hammer, Split graphs, in: Proceedings of the Eighth
Southeastern Conference on Combinatorics, Graph Theory and Computing
(Louisiana State Univ., Baton Rouge, La, 1977) pp. 311-315. Congr. Numer.,
No. XIX, Utilitas Math., Winnipeg, Man. 1977.

[5] S. Foldes and P.L. Hammer, On a class of matroid-producing graphs, in: Com-
binatorics (Proc. Fifth Hungarian Colloq., Keszthely 1976) Vol. 1, 331-352,
Colloq. Math. Soc. Jands Bolyai 18 (North-Holland, Amsterdam-New York,
1978).

[6] P.B. Henderson and Y. Zalcstein, A graph-theoretic characterization of the
PVepunk class of synchronizing primitive, SIAM J. Computing 6 (1977)
88-108.

[7] A.H.Hesham and ELR. Hesham, Task allocation in distributed systems: a split
graph model, J. Combin. Math. Combin. Comput. 14 (1993) 15-32.



A CLASSIFICATION FOR MAXIMAL NONHAMILTONIAN ... 89

8]

9]
[10]
11]
12]

[13]

D. Kratsch, J. Lehel and H. Miiller, Toughness, hamiltonicity and split graphs,
Discrete Math. 150 (1996) 231-245.

J. Peemoller, Necessary conditions for hamiltonian split graphs, Discrete Math.
54 (1985) 39-47.

U.N. Peled, Regular Boolean functions and their polytope, Chap VI, Ph. D.
Thesis (Univ. of Waterloo, Dept. Combin. and Optimization, 1975).

Ngo Dac Tan and Le Xuan Hung, Hamilton cycles in split graphs with large
minimum degree, Discuss. Math. Graph Theory 24 (2004) 23-40.

Ngo Dac Tan and Le Xuan Hung, On the Burkard-Hammer condition for
hamiltonian split graphs, Discrete Math. 296 (2005) 59-72.

Ngo Dac Tan and C. Iamjaroen, Constructions for nonhamiltonian Burkard-
Hammer graphs, in: Combinatorial Geometry and Graph Theory (Proc. of
Indonesia-Japan Joint Conf., September 13-16, 2003, Bandung, Indonesia)
185-199, Lecture Notes in Computer Science 3330 (Springer, Berlin Heidel-
berg, 2005).

Ngo Dac Tan and C. lamjaroen, A necessary condition for mazimal nonhamil-
tonian Burkard-Hammer graphs, J. Discrete Math. Sciences & Cryptography
9 (2006) 235-252.

Received 22 September 2006
Revised 21 May 2007
Accepted 21 May 2007



