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Abstract

Motivated by problems in radio channel assignments, we consider
radio k-labelings of graphs. For a connected graph G and an integer
k ≥ 1, a linear radio k-labeling of G is an assignment f of nonnegative
integers to the vertices of G such that

|f(x)− f(y)| ≥ k + 1− dG(x, y),

for any two distinct vertices x and y, where dG(x, y) is the distance
between x and y in G. A cyclic k-labeling of G is defined analogously
by using the cyclic metric on the labels. In both cases, we are interested
in minimizing the span of the labeling. The linear (cyclic, respectively)
radio k-labeling number of G is the minimum span of a linear (cyclic,
respectively) radio k-labeling of G.

In this paper, linear and cyclic radio k-labeling numbers of paths,
stars and trees are studied. For the path Pn of order n ≤ k + 1, we
completely determine the cyclic and linear radio k-labeling numbers.
For 1 ≤ k ≤ n − 2, a new improved lower bound for the linear radio
k-labeling number is presented. Moreover, we give the exact value of
the linear radio k-labeling number of stars and we present an upper
bound for the linear radio k-labeling number of trees.
Keywords: graph theory, radio channel assignment, cyclic and linear
radio k-labeling.
2000 Mathematics Subject Classification: 05C15, 05C78.
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1. Introduction and Definitions

In wireless networks, an important task is the management of the radio
spectrum, that is the assignment of radio frequencies to transmitters in a
way that avoid interferences. Interferences can occur if transmitters with
close locations receive close frequencies. The problem, often modeled as a
coloring problem on the graph where vertices represent transmitters and
edges indicate closeness of the transmitters, has been studied by several
authors under different scenarios.

In this context, the general L(p1, p2, . . . , pt)-labeling problem has been
proposed: find a labeling of the vertices of the graph such that the labels
of any two vertices at distance d are pd apart. The goal is to minimize the
span (range of frequencies). Since this problem appears to be difficult in its
generality, many particular cases have been studied. Among all, labelings
with constraints at two distances, i.e., L(h, k)-labelings and particularly
L(2, 1)-labeling introduced by Griggs and Yeh [7] have been the subject of
many works.

In this paper, we study the radio k-labeling problem defined by Char-
trand et al. [2, 4], which can be viewed as an extension of the L(2, 1)-labeling
problem and a particular case of the L(p1, p2, . . . , pk)-labeling problem in
which the constraints are given by pi = k +1− i. More formally, for a graph
G = (V, E), we denote by dG(x, y) the distance between two vertices x and
y, and by D(G) the diameter of G.

Definition 1 (linear and cyclic radio k-labeling). Let G = (V,E) be a
connected graph and k an integer with k ≥ 1.
(i) A linear radio k-labeling of G is a function f which maps each vertex

of V to an element of {0, 1, 2, . . . , λk(f)} such that:

|f(x)− f(y)| ≥ k + 1− dG(x, y),

for every two distinct vertices x and y of G. λk(f) is called the span
of f . The linear radio k-labeling number λk(G) of G is the minimum
span of all linear radio k-labelings of G.

(ii) A cyclic radio k-labeling of G is a function g which maps each vertex
of V to an element of {0, 1, 2, . . . , λk

c (g)− 1} such that for any (x, y) ∈
V × V , x 6= y,

k + 1− dG(x, y) ≤ |g(x)− g(y)| ≤ λk
c (g)− (k + 1− dG(x, y)),



Linear and Cyclic Radio k-Labelings of Trees 107

or equivalently,

|g(x)− g(y)|m ≥ k + 1− dG(x, y),

where |a − b|m = min {|a− b|,m− |a− b|} is the cyclic metric on the
labels. λc

k(g) is called the span of g. The cyclic radio k-labeling number
λc

k(G) of G is the minimum span of all cyclic radio k-labelings of G.

Let g be a cyclic k-labeling of G, we remark that if m is the largest label of g
then the span of g is m+1 because there is one more interval of frequencies
between m and 0.

Therefore, radio k-labelings generalize many known labelings: For k =
1, λ1(G) = χ(G)− 1, where χ(G) is the chromatic number of G. For k = 2,
the radio 2-labeling problem corresponds to the L(2, 1)-labeling problem.
For k = D(G)− 1, a linear radio k-labeling is referred to as radio antipodal
coloring (see [2, 1]), because only antipodal vertices can be of the same
color. In that case, the minimum number of colors needed is called the
radio antipodal number, denoted by ac(G). As the authors of [2, 1] consider
the maximum color used (labels are positive) instead of the span, then we
have λk(G) = ac(G)− 1. Finally, in the case k = D(G), λk(G) is called the
radio number and is studied in [3, 13].

Figure 1 shows a linear radio 3-labeling of a graph with span 10 (notice
that the diameter of the graph is 4, thus this labeling is antipodal). If we
consider this labeling to be a 13-labeling, then it is also a cyclic radio 3-
labeling with span 13 (although the labels 11 and 12 are not used), but it is
not a cyclic radio 3-labelings with span 12 since adjacent vertices with label
0 and 10 have too close labels.

0

0

10

7

2 5

Figure 1. A linear radio 3-labelings with span 10.

In this paper, we shall relate the linear and cyclic radio k-labeling number
with the following parameters: the upper hamiltonian number of a graph G
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of order n, denoted by h+(G) is the maximum of
∑n−1

i=0 dG(π(i + 1), π(i)),
over all cyclic permutations π of the vertices of G; and the upper traceable
number (see [14]) is defined as t+(G) = maxπ

∑n−2
i=0 dG(π(i + 1), π(i)). The

upper hamiltonian number was first studied in [5, 6]. Later, Král et al. in [11]
showed that the problem of determining the upper hamiltonian number of a
graph is NP -hard. The same method can be used to prove that computing
the upper traceable number is also an NP -hard problem.

The complexity of deciding whether λk(G) ≤ h for a given graph G and
integers k and h is still unknown. However, in this paper, we show that
determining the radio k-labeling number of a graph G for k ≥ 2D(G)− 2 is
an NP -hard problem.

To our knowledge, bounds on the linear radio k-labeling number are
given only for the path Pn, when k ≤ n− 1. Furthermore, for the particular
cases k = n−2 and k = n−1, the exact value of λk(Pn) have been established
recently [10, 13].

In the context of radio frequency assignment, many authors adopt the
linear metric on the channel. Nevertheless, the use of the cyclic metric ap-
pears to be interesting also, even so not much works consider this approach:
Heuvel et al. [8], Shepherd [15], and Leese and Noble [12] considered cyclic
labeling, but mainly for constraints at two distances.

Notice that, although the authors in [4] only consider linear radio k-
labelings for k ≤ D(G), one can also consider the case k > D(G). The
motivation behind the study of the case k > D(G) is of two kinds: first,
this case seems less difficult to study than the case k ≤ D(G) (see Theorem
1) and secondly, computing the radio k-labeling number of a graph for k ≥
D(G) can be help to compute the radio k-labeling number of other graphs
with larger diameter, as it is done in [9].

In this paper, we first present a complete study both for the linear and
the cyclic radio k-labeling problem on the path Pn for any value of n and k.
In most cases we find the exact value of the radio numbers and in other cases
we improved the existing bounds (see table below, where (∗) represents our
results in this paper).

Next, we investigate the linear and cyclic radio k-labeling number for
trees. We give the exact value of the linear and cyclic radio k-labeling
number of star for any k ≥ 2. We also present an upper bound for the linear
and cyclic radio k-labeling number of a tree of order at least 5 that is neither
a star nor a path.



Linear and Cyclic Radio k-Labelings of Trees 109

λk(Pn) λk
c (Pn)

≤
{

k2+2k
2

if k is even,
k2+2k−1

2
if k is odd.

[4] ≤
{

k2+4k
2

if k is even,
k2+4k−1

2
if k is odd.

(∗)
1 ≤ k ≤

n− 3 ≥
{

k2+4
2

if k is even,
k2+1

2
if k is odd.

(∗) ≥
{

k2+2k+2
2

if k is even,
(k+1)2

2
if k is odd.

(∗)

k = n− 2 =

{
2p2 − 4p + 4 if n = 2p,

2p2 − 2p + 2 if n = 2p + 1.
[10] same bounds as above

k = n− 1 =

{
2p2 − 2p + 1 if n = 2p,

2p2 + 2 if n = 2p + 1.
[13] =

{
2p2 if n = 2p,

2p2 + 2p + 1 if n = 2p + 1.
(∗)

k ≥ n =

{
(n− 1)k − 1

2
n(n− 2) if n is even,

(n− 1)k − 1
2
(n− 1)2 + 1 if n is odd.

(∗) =

{
nk − 1

2
n(n− 2) if n is even,

nk − 1
2
(n− 1)2 + 1 if n is odd.

(∗)

2. The Linear Radio k-Labeling Number of
Graphs

In this section, we first give some simple bounds on the linear radio k-labeling
number of a general graph for any k ≥ 1, and secondly, we present results
concerning linear radio k-labeling numbers of paths.

2.1. General graphs

The following proposition helps to obtain an upper bound for λk(G).

Proposition 1 ([10]). For any graph G on n vertices, and for any integers
k ≥ 1 and α ≥ 1,

λk+α(G) ≤ λk(G) + (n− 1)α.

If Gk is the kth power of G, that is the graph with vertex set V (Gk) = V (G)
and edge set E(Gk) = {(x, y) ∈ V (G) | dG(x, y) ≤ k}), then

Proposition 2. For any integer k ≥ 1,

λk(G) ≤ k(χ(Gk)− 1).

Proof. Assume that there exists a proper coloring f of Gk which uses
χ(Gk) colors. Then, for any (x, y) ∈ E(Gk), we have |f(x)− f(y)| ≥ 1.
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Consider the labeling g : V (G) → {0, 1, . . . , kχ(Gk) − k}, defined by
g(x) = kf(x) for any x ∈ V (G). Let (x, y) be two distinct vertices of G. If
(x, y) ∈ E(Gk), we get

|g(x)− g(y)| = k|f(x)− f(y)| ≥ k ≥ k + 1− dG(x, y).

Hence, g is a linear k-labelings with span λk(g) = k.χ(Gk)−k. Consequently,

λk(G) ≤ k(χ(Gk)− 1).

Thus far we have presented only upper bounds on λk(G) when k ≥ 1. We
now provide a lower bound on λk(G). Note that the linear radio k-labeling
number is related to the upper traceable number t+(G). This result also
appears in our paper [9], but as the proof is short, we give it again to be
complete.

Lemma 1 ([9]). For any integer k ≥ 1, and any graph G of order n,

λk(G) ≥ (n− 1)(k + 1)− t+(G).

Proof. Let f be a linear radio k-labeling of G such that λk(f) = λk(G). Let
(x1, x2,. . . ,xn) be an ordering of the vertices of G such that f(xi) ≤ f(xi+1).
Observe that f(xn)− f(x1) =

∑n−1
i=1 (f(xi+1)− f(xi)).

As, for each i = 1, . . . , n − 1, |f(xi+1) − f(xi)| ≥ k + 1 − dG(xi+1, xi),
we get

f(xn)− f(x1) ≥ (n− 1)(k + 1)−
n−1∑

i=1

dG(xi+1, xi).

Thus
λk(f) ≥ (n− 1)(k + 1)− t+(G).

Finally, note that if k ≥ 2D(G)− 2 then we can compute the exact value of
λk(G) as a function of k, n, and h+

o (G).

Theorem 1 ([9]). For any graph G on n vertices, if k ≥ 2D(G)− 2, then

λk(G) = (n− 1)(k + 1)− t+(G).

Remark 1. An immediate consequence of this result is that given a graph
G and an integer k ≥ 2D(G)− 2, determining the radio k-labeling number
of G is an NP -hard problem since computing the upper traceable number
is NP -hard, as observed in the introduction.



Linear and Cyclic Radio k-Labelings of Trees 111

2.2. Paths

Let Pn denote the path on n vertices. In the next, we determine the exact
value of the linear radio k-labeling number of Pn for k ≥ n. Note that
λn−2(Pn) was calculated by Khennoufa and Togni in [10], and λn−1(Pn) by
Liu and Zhu in [13].

Theorem 2 ([10]). For any n ≥ 5,

λn−2(Pn) =

{
2p2 − 4p + 4 if n = 2p,

2p2 − 2p + 2 if n = 2p + 1.

Theorem 3 ([13]). For any n ≥ 3,

λn−1(Pn) =

{
2p2 − 2p + 1 if n = 2p,

2p2 + 2 if n = 2p + 1.

With these results in hand, we can now determine λk(Pn) for k ≥ n.

Lemma 2 ([13]). For any integer n ≥ 2,

t+(Pn) =

{
2p2 − 1 if n = 2p,
2p2 + 2p− 1 if n = 2p + 1.

Theorem 4. If Pn is a path of order n ≥ 3, then for k ≥ n

λk(Pn) =

{
(n− 1)k − 1

2n(n− 2) if n is even,

(n− 1)k − 1
2(n− 1)2 + 1 if n is odd.

Proof. Let k ≥ n. For n = 2p, Proposition 1 gives

λk(Pn) ≤ λn−1(Pn) + (n− 1)(k − n + 1).

With Theorem 3 we obtain

λk(Pn) ≤ 2p2 − 2p + 1 + (2p− 1)(k − 2p + 1).

Then
λk(Pn) ≤ (n− 1)k − 1

2
n(n− 2).
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On the other hand, by combining Lemma 1 and Lemma 2, we get

λk(Pn) ≥ (n− 1)k − 1
2
n(n− 2).

For n = 2p + 1, Proposition 1 gives

λk(Pn) ≤ λn(Pn) + (n− 1)(k − n).

In the next, we need to determine λn(Pn). For this, we define a labeling f
of Pn by

{
f(i) = (2p + 1)(i− 1) + p + 1, 1 ≤ i ≤ p + 1,

f(i + p + 1) = f(i)− p− 1, 1 ≤ i ≤ p.

It is easy to verify that f is a linear radio k-labeling with span λn(f) =
f(p + 1) = 2p2 + 2p + 1. Then

λ2p+1(P2p+1) ≤ 2p2 + 2p + 1.

This implies
λk(Pn) ≤ 2p2 + 2p + 1 + (n− 1)(k − n).

Thus
λk(Pn) ≤ (n− 1)k − 1

2
(n− 1)2 + 1.

On the other hand, by virtue of Lemma 1 and Lemma 2, we have

λk(Pn) ≥ (n− 1)k − 1
2
(n− 1)2 + 1.

Bounds for the radio k-labeling number of Pn where given in [4]:

Theorem 5 (Chartrand et al. [4]). For 1 ≤ k ≤ n− 3,

λk(Pn) ≥
{

k2

4 if k is even,

k2−1
4 if k is odd,

and

λk(Pn) ≤
{

k2+2k
2 if k is even,

k2+2k−1
2 if k is odd.
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In the next, we give an improved lower bound for the linear radio k-labeling
number of the path.

Theorem 6. For 1 ≤ k ≤ n− 3,

λk(Pn) ≥
{

k2+4
2 if k is even,

k2+1
2 if k is odd.

Proof. Observe that for any positive integers n and m, if n ≤ m then
λk(Pn) ≤ λk(Pm). Thus, for k ≤ n− 3, we have λk(Pk+1) ≤ λk(Pn).
Moreover, according to Theorem 3, we have

λk(Pk+1) =

{
2p2 − 2p + 1 if k + 1 = 2p,

2p2 + 2 if k + 1 = 2p + 1.

That is,

λk(Pk+1) =

{
k2+1

2 if k is odd,
k2+4

2 if k is even.

Consequently, for k ≤ n− 3, we have

λk(Pn) ≥ λk(Pk+1) =

{
k2+1

2 if k is odd,
k2+4

2 if k is even.

3. The Cyclic Radio k-Labeling Number of
Graphs

In this section, we begin by presenting a relationship between λk(G) and
λk

c (G) for a general graph G, and we provide lower and upper bounds for
λk

c (G). In the remainder we give a complete description of λk
c (Pn), for all

values of k and n.

3.1. General graphs

The following proposition is a consequence of more general result of Heuvel
et al. in [8] concerning constraints (p1, p2, . . . , pk). To be complete we give
a short proof of this result.
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Proposition 3 ([8]). For any graph G and any integer k ≥ 1,

λk(G) + 1 ≤ λk
c (G) ≤ λk(G) + k.

Proof. By the definitions in Section 1, a cyclic radio k-labeling with span
m is a linear radio k-labeling with span m− 1. Thus, λk(G) ≤ λk

c (G)− 1.
On the other hand, any linear radio k-labeling of G with span m is a cyclic
radio k-labeling with span m + k (note that by definition, it is not needed
that the labeling is onto, and the span need not be used as a label on a
vertex). Consequently, λk

c (G) ≤ λk(G) + k.

Proposition 4. For any graph G of order n and any integers k ≥ 1 and
α ≥ 1,

λk+α
c (G) ≤ λk

c (G) + nα.

Proof. Suppose that there exists a cyclic radio k-labelings f of G such that
λk

c (f) = λk
c (G). Let g be a labeling of G such that g(xi) = f(xi) + iα where

(x1, x2,. . . ,xn) is an ordering of V such that f(xi) ≤ f(xi+1). So, for all
1 ≤ i < j ≤ n, we have

|g(xj)− g(xi)| = |f(xj)− f(xi)|+ (j − i)α

≥ k + 1− dG(xj , xi) + (j − i)α

≥ k + α + 1− dG(xj , xi) + (j − i− 1)α

≥ k + α + 1− dG(xj , xi)

because (j − i− 1)α ≥ 0. Moreover,

|g(xj)− g(xi)| = |f(xj)− f(xi)|+ (j − i)α

≤ λk
c (G)− (k + 1− dG(xj , xi)) + (j − i)α

≤ λk
c (G) + nα− (k + α + 1− dG(xj , xi))− (n− 1− (j− i))α

≤ λk
c (G) + nα− (k + α + 1− dG(xj , xi))

because (n − 1 − (j − i))α ≥ 0. Then, λk+α
c (g) = λk

c (G) + nα. Thus,
λk+α

c (G) ≤ λk
c (G) + nα.

The following result is an immediate consequence of propositions 2 and 3.

Proposition 5. For any integer k ≥ 1,

λk
c (G) ≤ kχ(Gk).
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Like the linear radio k-labeling number which is related to the upper trace-
able number, the cyclic radio k-labeling number is related to the upper
hamiltonian number h+(G) in this way:

Lemma 3. Let G be a connected graph of order n, and let k be an integer.
Then

λk
c (G) ≥ n(k + 1)− h+(G).

Proof. Let f be a cyclic k-labeling labeling of G such that λk
c (f) = λk

c (G).
Let (x1, x2,. . . ,xn) be an ordering of the vertices of G such that f(xi) ≤
f(xi+1). Observe that

f(xn)− f(x1) =
n−1∑

i=1

(f(xi+1)− f(xi)).

As for each i = 1, . . . , n− 1, |f(xi+1)− f(xi)| ≥ k + 1− dG(xi+1, xi), we get

f(xn)− f(x1) ≥ (k + 1)(n− 1)−
n−1∑

i=1

dG(xi+1, xi).

Now, as f is a cyclic labeling, we have

f(xn)− f(x1) ≤ λk
c (f)− (k + 1− dG(xn, x1).

Combining the two inequalities, we obtain

λk
c (f) ≥ n(k + 1)− dG(xn, x1)−

n−1∑

i=1

dG(xi+1, xi).

As f is of minimal span, and h+(G) ≥ dG(xn, x1) +
∑n−1

i=1 dG(xi+1, xi) by
definition, then the lemma is proved.

Theorem 7. Let G be a graph on n vertices with diameter D(G), then for
any integers k ≥ 2D(G)− 2,

λk
c (G) = n(k + 1)− h+(G).



116 M. Kchikech, R. Khennoufa and O. Togni

Proof. By Lemma 3 it suffices to prove

λk
c (G) ≤ n(k + 1)− h+(G).

Combining Proposition 3 and Theorem 1, we obtain

λk
c (G) ≤ (n− 1)(k + 1)− t+(G) + k.

It is easy to verify that

h+(G) ≤ t+(G) + dG(π(n− 1), π(0)) ≤ t+(G) + D(G).

where π is a permutation on the vertices of G.
As 2D(G)− 2 ≤ k, we get

λk
c (G) ≤ n(k + 1)− h+(G).

3.2. Paths

The idea of the proof of the following result is the same as the one of Lemma
2 given in [13].

Lemma 4. For any positive integers n,

h+(Pn) =

{
2p2 if n = 2p,

2p2 + 2p if n = 2p + 1.

Proof. Let the vertex set of Pn be {0, 1, . . . , n−1}. For a permutation π on
the vertices, dG(π(i+1), π(i)) is equal to either π(i+1)−π(i) or π(i)−π(i+1),
whichever is positive. Therefore, each integer from {0, 1, . . . , n − 1} occurs
two times in the summation

∑n−1
i=0 dG(π(i+1), π(i)), as positive or negative

term, and in total we have n positive terms and n negative terms in the
sum.

Thus, to maximize the sum, one has to take a permutation π such that
the smaller numbers occur twice as negative and the greater numbers occur
twice as positive.

If n = 2p is even, then the configuration achieving the maximum sum-
mation is when each number in {0, 1, . . . , p−1} occurs twice as negative and
each of {p, p+1, . . . , 2p−1} occurs twice as positive. In that case we obtain
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2p−1∑

i=0

dG(π(i + 1), π(i)) = 2

(
2p−1∑

i=p

i−
p−1∑

i=0

i

)
= 2

p−1∑

i=0

p = 2p2.

If n = 2p + 1 is odd, then the configuration achieving the maximum sum-
mation is when each number in {0, 1, . . . , p − 1} occurs twice as negative,
each of {p + 1, p + 2, . . . , 2p} occurs twice as positive and p occurs once as
negative and once as positive. In that case we obtain

2p−1∑

i=0

dG(π(i+1), π(i)) = 2

(
2p∑

i=p+1

i−
p−1∑

i=0

i

)
−p+p = 2

p−1∑

i=0

(p+1) = 2p(p+1).

Using this result, we can compute the cyclic radio k-labeling number of the
path Pn for k = n− 1.

Theorem 8. For any n ≥ 3,

λn−1
c (Pn) =

{
2p2 if n = 2p,

2p2 + 2p + 1 if n = 2p + 1.

Proof. If k = n − 1, then according to Proposition 3 and Theorem 3, we
get

λ2p−1
c (P2p) ≤ 2p2.

Therefore, it suffices to show that λ2p−1
c (P2p) ≥ 2p2. Lemma 3 and Lemma

4 give
λ2p−1

c (P2p) ≥ 4p2 − 2p2 = 2p2.

For n = 2p + 1, we define a labeling f of P2p+1 by





f(i) = (2p + 1)i, 1 ≤ i ≤ p,

f(p + 1) = p,

f(i + p + 1) = f(i) + p, 1 ≤ i ≤ p.

Note that the span of f is λ2p
c (f) = f(2p + 1) + 1 = 2p2 + 2p + 1.

Now, we need to verify that f is a cyclic radio (2p)-labeling.
For 1 ≤ i, j ≤ 2p + 1, let
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• Ai,j = |f(i)− f(j)|,
• ∆i,j = k + 1− dPn(i, j) = 2p + 1− |i− j|,
• ∆i,j = λ2p−1

c (f)−∆i,j = 2p2 + |i− j|.

Case 1. if 1 ≤ i < j ≤ p, then

• Ai,j−∆i,j = (2p+1)(j−i)−(2p+1)+(j−i) = (2p+2)(j−i−1)+1 ≥ 0.
∆i,j −Ai,j = 2p2 + (j − i)− (2p + 1)(j − i) = 2p(p− (j − i)) ≥ 0. Thus,

∆i,j ≤ Ai,j ≤ ∆i,j .

• Observe that ∆i+p+1,j+p+1 = ∆i,j , and Ai+p+1,j+p+1 = Ai,j , and
∆i+p+1,j+p+1 = ∆i,j , then

∆i+p+1,j+p+1 ≤ Ai+p+1,j+p+1 ≤ ∆i+p+1,j+p+1.

• Ai,j+p+1−∆i,j+p+1 = (2p+1)(j−i)+p−(p−(j−i)) = (2p+2)(j−i) ≥ 0
and ∆i,j+p+1 −Ai,j+p+1 = 2p2 + p + 1 + (j − i)− ((2p + 1)(j − i) + p) =
2p(p− (j − i)) + 1 ≥ 0. Thus

∆i,j+p+1 ≤ Ai,j+p+1 ≤ ∆i,j+p+1.

• Ai+p+1,j−∆i+p+1,j = (2p+1)(j− i)−p− (p+(j− i)) = 2p(j− i−1) ≥ 0
and ∆i+p+1,j −Ai+p+1,j = 2p2 + p + 1− (j − i)− ((2p + 1)(j − i)− p) =
(2p + 2)(p− (j − i)) + 1 ≥ 0. Thus

∆i+p+1,j ≤ Ai+p+1,j ≤ ∆i+p+1,j .

Case 2. if 1 ≤ i ≤ p, then

• Ai,p+1 −∆i,p+1 = (2p + 1)i− p− (p + i) = 2p(i− 1) ≥ 0.
∆i,p+1 −Ai,p+1 = (2p + 2)(p− i) + 1 ≥ 0. Thus

∆i,p+1 ≤ Ai,p+1 ≤ ∆i,p+1.

• Ai+p+1,p+1−∆i+p+1,p+1 = (2p+1)i−(2p+1−i) = (2p+2)(i−1)+1 ≥ 0.
∆i+p+1,p+1 −Ai+p+1,p+1 = 2p(p− i) ≥ 0. Thus

∆i+p+1,p+1 ≤ Ai+p+1,p+1 ≤ ∆i+p+1,p+1.
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Thus, f is a cyclic radio 2p-labeling of P2p+1. Hence

λ2p
c (P2p+1) ≤ λ2p

c (f) = 2p2 + 2p + 1.

By Lemma 3 and Lemma 4, we obtain

λ2p
c (P2p+1) = 2p2 + 2p + 1.

Theorem 9. For any k ≥ n ≥ 3

λc
k(Pn) =





nk − 1
2n(n− 2) if n is even,

nk − 1
2(n− 1)2 + 1 if n is odd.

Proof. The result follows by combining Theorem 4 and Proposition 3.

Theorem 10. For 1 ≤ k ≤ n− 2,

λk
c (Pn) ≤

{
k2+4k

2 if k is even,

k2+4k−1
2 if k is odd.

Proof. The result follows by combining Theorem 5 and Proposition 3.

Theorem 11. For 1 ≤ k ≤ n− 2,

λk
c (Pn) ≥

{
k2+2k+2

2 if k is even,

(k+1)2

2 if k is odd.

Proof. As for the linear case, we can show that for any positive integers
n and m, if n ≤ m then λk

c (Pn) ≤ λk
c (Pm). This allows us to prove the

theorem.

4. Linear and Cyclic Radio k-Labeling of Trees

In this section, we first determine the exact value of the linear and cyclic
radio k-labeling number of stars for any k ≥ 2. Secondly, we give the upper
bound of the linear and cyclic radio k-labeling number of a tree of order at
least 5 that is neither a star nor a path.

4.1. Linear and cyclic radio k-labeling of stars

Let Sn be a star on n vertices.
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Theorem 12. For any integer n ≥ 3 and for any integer k ≥ 2,

λk(Sn) = (n− 1)(k − 1) + 1,

and
λk

c (Sn) = n(k − 1) + 2.

Proof. For any integer n ≥ 3, we have D(Sn) = 2. Since k ≥ 2D(Sn)− 2,
by Theorem 1, we get

λk(Sn) = (n− 1)(k + 1)− t+(Sn).

Let {0, 1, . . . , n− 1} be the vertex set of Sn. It is easy to see that

t+(Sn) = max
π

n−2∑

i=0

dSn(π(i + 1), π(i)) = 1 +
n−2∑

i=1

2 = 2n− 3.

This implies
λk(Sn) = (n− 1)(k − 1) + 1.

In the other hand, Proposition 3 and Lemma 3 give

n(k + 1)− h+(Sn) ≤ λk
c (Sn) ≤ λk(Sn) + k.

Easy calculation shows that h+(Sn) = 2n− 2. Then

n(k−1)+2 = n(k+1)−2n+2 ≤ λk
c (Sn) ≤ (n−1)(k−1)+1+k = n(k−1)+2.

Thus
λk

c (Sn) = n(k − 1) + 2.

4.2. Linear and cyclic radio k-labeling of trees

Let Tn be a tree of order n ≥ 5 that is neither a star nor a path.

Lemma 5. There exists a Hamiltonian path (x0, x1, · · · , xn−1) in the com-
plement Tn of Tn and there exists 0 ≤ p ≤ n−2 such that dTn(xp, xp+1) ≥ 3.

Proof. The proof is by induction on the order of Tn.
For n = 5, by symmetric reason, two possible configurations of T5 are
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presented in Figure 2. In both case the path (x0, x1, x2, x3, x4) is a Hamil-
tonian path in T 5 such that dT5(xp, xp+1) = 3 with p = 1 or 2.

4x x

x
1

x
2 34

0

x

x

x

x
1

3

x
2

0
x

Figure 2. The two possible configurations for T5.

Suppose that the result holds for every tree Tn of order n ≥ 5. It is easy to
see that Tn+1 contains a leaf x such that Tn+1− x is a tree that is neither a
star nor a path. Thus, by the induction hypothesis, there exists a Hamilto-
nian path (x0, x1, · · · , xn−1) in the complement Tn+1 − x of Tn−x, and there
exists 0 ≤ p ≤ n−2 such that dTn(xp, xp+1) ≥ 3. Since x is a leaf in Tn+1, x
is adjacent to one vertex of (x0, x1, · · · , xn−1). If x is adjacent to x0 in Tn+1

then x is not adjacent to xn−1 in Tn+1, so (x0, x1, · · · , xn−1, x) is a Hamilto-
nian path in Tn+1. If x is adjacent to xn−1 in Tn+1 then x is not adjacent to
x0 in Tn+1, thus (x, x0, x1, · · · , xn−1) is a Hamiltonian path in Tn+1. Thus,
either (x0, x1, · · · , xn−1, x) or (x, x0, x1, · · · , xn−1) is a Hamiltonian path in
Tn+1. Moreover, in both case we have dTn+1(xp, xp+1) ≥ 3.

Theorem 13. For any integer k ≥ 2,

λk(Tn) ≤ (n− 1)(k − 1)− 1.

Proof. As Tn is a tree of order n ≥ 5 that is neither a star nor a path,
by Lemma 5, Tn contains a Hamiltonian path (x0, x1, · · · , xn−1) and there
exists p with 0 ≤ p ≤ n− 2 such that dTn(xp, xp+1) ≥ 3.

Since (x0, x1, · · · , xn−1) is a Hamiltonian path in Tn, it follows that for
each 0 ≤ i ≤ n− 2, dTn(xi, xi+1) ≥ 2. Define a labeling f of Tn by

f(xi) =

{
(i− 1)(k − 1) if 0 ≤ i ≤ p,

(i− 1)(k − 1)− 1 if p + 1 ≤ i ≤ n− 2.

If 0 ≤ i < j ≤ p or p+1 ≤ i < j ≤ n−2 then |f(xj)−f(xi)| = (j− i)(k−1).
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If j − i = 1 then dTn(xi, xi+1) ≥ 2, and we get |f(xi+1) − f(xi)| = k − 1 ≥
k + 1 − dTn(xi+1, xi). Moreover, if j − i ≥ 2 we can easily verify that
|f(xj)− f(xi)| = 2(k − 1) ≥ k + 1− dTn(xj , xi).

If 0 ≤ i ≤ p and p + 1 ≤ j ≤ n− 2 then

|f(xj)− f(xi)| = (j − i)(k − 1)− 1.

If i = p and j = p+1 then |f(xp+1)−f(xp)| = k−2. Since dTn(xp+1, xp) ≥ 3,
we get |f(xp+1)− f(xp)| ≥ k + 1− dTn(xp+1, xp).

If j− i ≥ 2 then |f(xj)− f(xi)| ≥ 2k− 3, in this case it is easy to verify
that |f(xj)− f(xi)| ≥ k + 1− dTn(xj , xi).

Thus f is a linear radio k-labeling of Tn of span λk(f) = f(xn−1) =
(n− 1)(k − 1)− 1. Consequently,

λk(Tn) ≤ λk(f) ≤ (n− 1)(k − 1)− 1.

The corollary follows by combining Theorem 13 and Proposition 3

Corollary 1. For any integer k ≥ 2,

λk
c (Tn) ≤ n(k − 1).

5. Concluding Remarks

For paths Pn, we have presented exact results for the linear radio k-labeling
number for some values of k and quite close upper and lower bounds. Nev-
ertheless, it seems to be difficult to find an exact formula for λk(Pn) for
any k.

Several examples lead us to conjecture that the upper bound of Char-
trand et al. is the exact value when n is large enough, i.e. that

lim
n→+∞λk(Pn) =

{
k2+2k

2 , if k is even,
k2+2k−1

2 , if k is odd.
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