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Abstract

A hypergraph H is a sum hypergraph iff there are a finite S ⊆ IN+

and d, d ∈ IN+ with 1 < d ≤ d such that H is isomorphic to the
hypergraph Hd,d(S) = (V, E) where V = S and E = {e ⊆ S : d ≤
|e| ≤ d ∧ ∑

v∈e
v ∈ S}. For an arbitrary hypergraph H the sum number

σ = σ(H) is defined to be the minimum number of isolated vertices
w1, . . . , wσ 6∈ V such that H ∪ {w1, . . . , wσ} is a sum hypergraph.

For graphs it is known that cycles Cn and wheels Wn have sum
numbers greater than one. Generalizing these graphs we prove for the
hypergraphs Cn and Wn that under a certain condition for the edge
cardinalities σ(Cn) = σ(Wn) = 1 is fulfilled.
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1 Introduction and Definitions

The notion of sum graphs was introduced by Harary [4]. This graph theoretic
concept can be generalized to hypergraphs as follows.

All hypergraphs considered here are supposed to be nonempty and fi-
nite, without loops and multiple edges. In standard terminology we follow
Berge [1]. By H = (V, E) we denote a hypergraph with vertex set V and
edge set E ⊆ P(V )\{∅}. Further we use the notations d = d(H) = min
{|e| : e ∈ E} and d = d(H) = max {|e| : e ∈ E}; if d = d = d, we say H is
a d-uniform hypergraph. A hypergraph is linear if no two edges intersect in
more than one vertex.
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Let S ⊆ IN+ be finite and d, d ∈ IN+ such that 1 < d ≤ d. Then Hd,d(S) =
(V, E) is called a (d, d)-sum hypergraph of S iff V = S and E = {e ⊆ S :
d ≤ |e| ≤ d ∧ ∑

v∈e
v ∈ S}. Furthermore, a hypergraph H is a sum hypergraph

iff there exist S ⊆ IN+ and d, d ∈ IN+ such that H is isomorphic to Hd,d(S).
For d = d = 2 we obtain the known concept for graphs. For an arbitrary
hypergraph H the sum number σ = σ(H) is defined to be the minimum
number of isolated vertices w1, . . . , wσ 6∈ V such that H ∪ {w1, . . . , wσ} is a
sum hypergraph.

Generalizing known results for classes of graphs, the sum number for the
corresponding classes of hypergraphs was determined in the following three
cases:
• Trees T : σ(T ) = 1 (Ellingham [3]);

hypertrees T with d < 2d− 1 : σ(T ) = 1 (Sonntag and Teichert [9]).
• Complete graphs Kn with n ≥ 4 : σ(Kn) = 2n− 3 (Bergstrand et al. [2]);

d-uniform complete hypergraphs Kd
n with n ≥ d+2 : σ(Kd

n) = d(n−d)+1
(Sonntag and Teichert [10]).

• Complete bipartite graphs Kn1,n2 with 2 ≤ n1 ≤ n2 : σ(Kn1,n2) =⌈
1
2(3n1 + n2 − 3)

⌉
(Hartsfield and Smyth [6]);

d-partite complete hypergraphs Kd
n1,...,nd

with 2 ≤ nd−1 ≤ nd :

σ(Kd
n1,...,nd

) = 1 +
d∑

i=1
(ni − 1)+ min

{
0,

⌈
1
2

(
d−1∑
i=1

(ni − 1)− nd

)⌉}

(Teichert [11]).
In this paper, we determine the sum number for two other classes of hyper-
graphs. As a generalization of cycles Cn and wheels Wn, n ≥ 3, we obtain
the linear hypergraphs Cn and Wn, respectively. These hypergraphs have
the same number of edges as the corresponding graphs, but now each edge ej

consists of an arbitrary number dj ≥ 2 of vertices. Note that any two edges
of Cn and Wn, respectively, have only a vertex in common if this is explicitly
claimed in the following definitions. In detail, a hypercycle Cn = (Vn, En) is
defined by

Vn =
n⋃

i=1
{vi

1, . . . , v
i
di−1},

En = {e1, . . . , en} with ei = {vi
1, . . . , v

i
di

= vi+1
1 }(1)

where i + 1 is taken modn.
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A hyperwheel Wn = (V ′
n, E ′n) is defined by

V ′
n = Vn ∪ {c} ∪

n⋃
i=1
{vn+i

2 , . . . , vn+i
dn+i−1},

E ′n = En ∪ {en+1, . . . , e2n}(2)

with en+i = {vn+i
1 = c, vn+i

2 , . . . , vn+i
dn+i−1, v

n+i
dn+i

= vi
1}.

The edges of En are called the rim of the hyperwheel, the vertex c is the
centre and the edges en+1, . . . , e2n are the spokes of Wn. Obviously, for
di = 2, i = 1, . . . , n and i = 1, . . . , 2n it follows Cn = Cn and Wn = Wn,
respectively.

The sum numbers of cycles (Harary [5]) and wheels (Hartsfield and Smyth
[7], Miller et al. [8]) are known:

σ(Cn) =

{
2, if n 6= 4,

3, if n = 4.
σ(Wn) =

{
n
2 + 2, if n even and n ≥ 4,

n, if n odd and n ≥ 5.

Now observe that both, trees and hypertrees, have sum number one and that
the sum number for complete graphs and complete bipartite graphs can be
obtained from the more general formula for the corresponding hypergraphs
by setting d = 2. In contrast to these observations, we show in the following
that under a certain condition for the edge cardinalities σ(Cn) = σ(Wn) = 1
is fulfilled.

2 An Algorithm for Labelling Hypercycles and
Hyperwheels

The algorithm given below is a modification of an algorithm for labelling
the vertices of hypertrees (Sonntag, Teichert [9]). It starts with labelling
the vertices of e1, . . . , en, therefore it can be used for labelling both, Cn

and Wn.
Let ṽ /∈ V ′

n be an isolated vertex, C̃n = Cn ∪ {ṽ} and W̃n = Wn ∪ {ṽ}.
We consider the vertex set V (H̃n) of the hypergraph H̃n ∈ {C̃n, W̃n} and
construct a labelling r : V (H̃n) → IN+. This vertex labelling r induces the
mapping r∗:

P(V (H̃n)) 3 M 7→ r∗(M) =
∑

v∈M

r(v) ∈ IN+.
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In the following assume

d(H̃n) ≥ 3.(3)

Before formulating the algorithm in detail we give a summary of the main
steps: In the algorithm the vertices are labelled edge by edge. Whenever a
vertex gets its label we add it to the set L of labelled vertices.
– We start with initialization (i.e., labelling the vertices of e1 similarly as

described in the next step).
– If ei, 1 ≤ i ≤ n−1, is completly labelled but ei+1 not then r(vi+1

1 ) = r(vi
di

)
is given, vi+1

2 is labelled by the sum of the labels of all vertices of ei. The
other nonlabelled vertices of ei+1 get labels greater than the sum of all
vertices of L.

– The value r∗(en) is assigned to ṽ (if H̃n = C̃n) or c (if H̃n = W̃n). In the
first case we are done; in the other case we label the vertices vi

2, . . . , v
i
di−1

of the spokes en+1, . . . , e2n similarly as described above and assign r∗(e2n)
to ṽ.
We use the notations introduced in (1) and (2) for Cn andWn, respectively.

ALGORITHM: Let H̃n ∈ {C̃n, W̃n} be a hypergraph containing the iso-
lated vertex ṽ.
for i = 1 to n do

if i = 1 then [r(vi
1) := 1; L := {vi

1}; α := 10];
r(vi

2) := α; L := L ∪ {vi
2};

if i < n then k := di else k := di − 1;
for j = 3 to k do

r(vi
j) := 10 · r∗(L); L := L ∪ {vi

j};
end for;
α := r∗(ei);

end for;
if H̃n = C̃n then goto LAB;
for i = 1 to n do

if i = 1 then [r(c) := α; L := L ∪ {c}; r(vn+i
2 ) := n · r∗(L);

L := L ∪ {vn+i
2 }];

else [r(vn+i
2 ) := α; L := L ∪ {vn+i

2 }];
for j = 3 to dn+i − 1 do

r(vn+i
j ) := 10 · r∗(L); L := L ∪ {vn+i

j };
end for;
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α := r∗(en+i);
end for;

LAB: r(ṽ) := α;
stop.

From the algorithm it follows immediately that |en| ≥ 3 is needed and,
furthermore, in case of H̃n = W̃n the spokes en+1, . . . , e2n must contain at
least three vertices. We call all those vertices v̂ of H̃n with r(v̂) := α in
the algorithm α-vertices and the others β-vertices. Let A and B denote the
set of α-vertices and β-vertices, respectively. Corresponding to the order of
labelling we use the notation

v1 = v1
1, v2 = v1

2, v3, v4, . . . , vq = ṽ

with q =





1 +
n∑

i=1
(di − 1), if H̃n = C̃n,

(n + 2) +
2n∑
i=1

(di − 2), if H̃n = W̃n.

(4)

Concluding this section we give some useful properties of the labelling r
needed in the following.

Lemma 1. Assume that the vertices of H̃n are labelled by the algorithm and
consider the sequence v1, v2, . . . , vq. Then

∀ vi ∈ B\{v1} : r(vi) > r∗({v1, . . . , vi−1}),(5)

∀ vi ∈ {c} ∪ Vn\{v1, v2} : r(vi) > r(vi−1) + r(vi−2).(6)

Proof. Condition (5) and condition (6) for β-vertices vi follow from
the algorithm immediately. From (3) it follows that (6) is also true for
α-vertices vi.

Lemma 2. Let M ⊆ V ′
n, t ∈ {1, . . . , n} and a vertex subset M ′ ⊆

t−1⋃
i=1

ei be

arbitrarily chosen. Then

r∗(M) = r(vt
1) + r(vt

2) + r∗(M ′) ⇒ {vt
1, v

t
2} ⊆ M.

Proof. Suppose vt
2 /∈ M . Then t ≥ 2 and we have to substitute r(vt

2) =
r∗(et−1) in the equation by using labels of other vertices. By Lemma 1, (5)
this yields Bt−1 := {vt−1

3 , . . . , vt−1
dt−1

} ⊆ M , hence

r∗(M\Bt−1) = r(vt
1) + r(vt−1

1 ) + r(vt−1
2 ) + r∗(M ′).
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Now observe that vt
1 = vt−1

dt−1
∈ Bt−1; furthermore, the condition (3) implies

that vt
1 is a β-vertex. By the first observation r(vt

1) has to be substituted
by using labels of other vertices and the second observation implies (by
Lemma 1, (5)) that this is not possible. Hence vt

2 ∈ M is necessary. Now
the equation in Lemma 2 can be written as

r∗(M\{vt
2}) = r(vt

1) + r∗(M ′)

and it follows immediately by Lemma 1, (5) that also the β-vertex vt
1 must

be contained in M .

3 The Sum Number of Hypercycles and
Hyperwheels

In the following we use the labelling r and determine σ(Cn) and σ(Wn).
Observe that in every sum hypergraph the vertex with highest label is an
isolated vertex.

Theorem 3. Let Cn be a hypercycle with d(Cn) ≥ 3. Then

σ(Cn) = 1.(7)

Proof. We denote the vertices and edges of Cn = (Vn, En) according to (1),
take an isolated vertex ṽ /∈ Vn and assume that the vertices of Vn ∪ {ṽ} are
labelled by the algorithm given in the previous section. For convenience we
denote by

Bt = et\{vt
1, v

t
2}, if 1 ≤ t ≤ n− 1,

Bn = en\{vn
1 , vn

2 , vn
dn

= v1
1}

(8)

subsets of β-vertices. Thus — considering B1, . . . , Bn as vertex sequences
— (4) can be written into

v1
1, v

1
2, B1, v

2
2, B2, v

3
2, B3, . . . , v

n
2 , Bn, vn+1

2 := ṽ,

where vt
2 is the t-th α-vertex for t = 1, . . . , n + 1. Using r(vn

dn
) = r(v1

1) = 1
this yields

r(vt+1
2 ) = r(vt

1) + r(vt
2) + r∗(Bt) + x

with x =

{
0, if 1 ≤ t ≤ n− 1,
1, if t = n.

(9)
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Let Esum denote the set of edges generated by the labelling r and the sum
hypergraph property. Then the algorithm yields En ⊆ Esum; we prove (7)
by showing that even equality is fulfilled, i.e.,

∀ vi ∈ Vn ∪ {ṽ} ∀ M ⊆ {v1, . . . , vi−1} :

r(vi) = r∗(M) ∧ d(Cn) ≥ 3 ⇒ M ∈ En.
(10)

By Lemma 1, (5) the condition r(vi) = r∗(M) can only be true if vi is an
α-vertex vt+1

2 with 1 ≤ t ≤ n. Hence by (9)

r∗(M) = r(vt+1
2 ) = r(vt

1) + r(vt
2) + r∗(Bt) + x.

Using (8) and Lemma 1, (5) we obtain Bt ⊆ M . Thus

r∗(M\Bt) = r(vt
1) + r(vt

2) + x.(11)

By Lemma 2 it follows that {vt
1, v

t
2} ⊆ M and (11) can be written into

r∗(M\Bt\{vt
1, v

t
2}) = x.(12)

In case of 1 ≤ t ≤ n− 1 (i.e., x = 0) this yields M = Bt ∪ {vt
1, v

t
2} = et. For

t = n (i.e., x = 1) the only possibility is M = Bn ∪ {vn
1 , vn

2 , vn
dn
} = en.

Remark. The labelling r from the algorithm cannot be used to show
σ(Cn) = 1 if there is an edge et−1, t − 1 ∈ {2, . . . , n − 1} with |et−1| = 2.
(This is true because vt

1 = vt−1
2 is an α-vertex in this case and therefore

r(vt+1
2 ) = r∗(M) = r∗(et\{vt

1}) + r∗(et−2), but et−2 ∪ et\{vt
1} /∈ En).

Now we turn to hyperwheels Wn and start with two properties needed for
the proof of the main result.

Lemma 4. Suppose that the hyperwheel Wn = (V ′
n, E ′n) with d(Wn) ≥ 3

is denoted according to (2). Further let M ⊆ V ′
n with |M | ≥ 2. If t ∈

{1, . . . , n}, r∗(M) = r(vn+t+1
2 ) and v2n+1

2 := ṽ, then
(i)

µ := |M ∩ {vn+1
2 , . . . , vn+t

2 }| = 1.(13)

(ii) If j ∈ {1, . . . , t} with vn+j
2 ∈ M , then

M ∩
j−1⋃

i=1

(en+i\{vi
1, c}) = ∅.(14)
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Proof. (i) We use the notation (4) and consider the maximum index k in
that sequence such that vk is an α-vertex belonging to M :

k = max{j ∈ {1, . . . , q} : vj ∈ A ∧ vj ∈ M}.

Then the algorithm yields that each β-vertex vm with m > k belongs to M .
If M ∩ {vn+2

2 , . . . , vn+t
2 } = ∅, it follows that vn+1

2 is such a β-vertex vm.
Hence vn+1

2 ∈ M , i.e., µ = 1 in this case.
If M∩{vn+2

2 , . . . , vn+t
2 } 6= ∅, suppose that j ∈ {2, . . . , t} is the maximum

value such that vn+j
2 ∈ M . Then we obtain by Lemma 1, (5)

Mj =




t⋃

i=j

(en+i\{vn+i
1 = c, vn+i

2 , vn+i
dn+i

= vi
1})


 ⊆ M.(15)

Note that Mj = ∅ is possible. Now assume µ ≥ 2, i.e., there are k, j ∈
{1, . . . , t}, k < j such that {vn+k

2 , vn+j
2 } ⊆ M . With (15) and r∗(M) =

r(vn+t+1
2 ) follows

r∗(M\Mj\{vn+j
2 }) = (t− j + 1) · r(c) + r∗




t⋃

i=j

{vi
1}


 .(16)

Using j ≥ 2, t ≤ n and r(vn+1
2 ) = n · r∗(Vn ∪ {c}) (cf., the algorithm) we

obtain

r∗(M\Mj\{vn+j
2 }) ≤ (n− 1) · r(c) + r∗

(
n⋃

i=2

{vi
1}

)
(17)

< r(vn+1
2 ) ≤ r(vn+k

2 ).

This is a contradiction to the assumption vn+k
2 ∈ M and therefore (13) is

true.

(ii) Property (14) follows immediately from (17) because vn+1
2 is the vertex

with minimum label in
j−1⋃
i=1

(en+i\{vi
1, c}).

Theorem 5. Let Wn be a hyperwheel with d(Wn) ≥ 3 and d(Wn) <
2d(Wn)− 1. Then

σ(Wn) = 1.(18)
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Proof. 1. We denote the vertices and edges of Wn = (V ′
n, E ′n) according to

(2), take an isolated vertex ṽ /∈ V ′
n and assume that the vertices of V ′

n ∪ {ṽ}
are labelled by the algorithm given in the previous section. Further we
denote with

Bn+t = en+t\{vn+t
1 = c, vn+t

2 , vn+t
dn+t

= vt
1}, 1 ≤ t ≤ n(19)

subsets of β-vertices. Using (8) and (19) — again considering B1, . . . , B2n

as vertex sequences — we can write (4) as

v1
1, v

1
2, B1, v

2
2, B2, . . . , v

n
2 , Bn, vn+1

1 = c, vn+1
2 , Bn+1,

vn+2
2 , Bn+2, . . . , v

2n
2 , B2n, v2n+1

2 := ṽ,

where vs
2 (for s 6= n + 1) and vs

1 (for s = n + 1) is the s-th α-vertex for
s = 1, . . . , 2n + 1.

2. Let E ′sum denote the set of edges generated by the labelling r and the sum
hypergraph property. Obviously, the algorithm yields E ′n ⊆ E ′sum; we prove
(18) by showing that even equality is given, i.e.,

∀ vi ∈ V ′
n ∪ {ṽ} ∀ M ⊆ {v1, . . . , vi−1} :

r(vi) = r∗(M) ∧ d(Wn) ≥ 3 ∧ |M | ≤ d < 2d− 1 ⇒ M ∈ E ′n.
(20)

In the proof of Theorem 3 the validity of (20) is shown for all vertices vi of
the rim and the centre (because r(c) = r∗(en)). Hence it suffices to consider
only vertices of V ′

n\Vn\{c} in the following. Because vn+1
2 is a β-vertex the

condition r(vi) = r∗(M) in (20) implies that vi is an α-vertex vn+t+1
2 with

1 ≤ t ≤ n; hence

r∗(M) = r(vn+t+1
2 ) = r∗(en+t) = r(c) + r(vn+t

2 ) + r∗(Bn+t) + r(vt
1).

Bn+t ⊆ M follows from Lemma 1 (5) and we obtain

r∗(M\Bn+t) = r(c) + r(vn+t
2 ) + r(vt

1).(21)

It remains to show that (21) together with the condition |M | ≤ d < 2d− 1
from (20) implies M = en+t.

3. We show that vn+t
2 ∈ M is necessary. By Lemma 4, (13) M contains

exactly one vertex vn+j
2 ∈ {vn+t

2 , . . . , vn+1
2 }; now assume j < t. Then t ≥ 2

and Lemma 1, (5) yields Bn+t ∪Bn+t−1 ⊆ M . We obtain with (19)
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|M\Bn+t\Bn+t−1\{vn+j
2 }| < (2d− 1)− 2(d− 3)− 1 = 4.(22)

On the other hand, by (21) and r(vn+t
2 ) = r∗(en+t−1) it follows that

r∗(M\Bn+t\Bn+t−1\{vn+j
2 }) > 2r(c).

Due to Lemma 4, (14) only (pairwise distinct) vertices of Vn ∪{c} are avail-
able to provide this value. By Lemma 1, (6) we need at least three such
vertices to substitute r(c) once, i.e., (22) cannot be true. Hence vn+t

2 ∈ M
and (21) can be written into

r∗(M\Bn+t\{vn+t
2 }) = r(c) + r(vt

1).(23)

4. Next we show that c ∈ M must be fulfilled. Assuming the contrary it
follows with r(c) = r∗(en) that Bn ⊆ M . Hence by (8)

r∗(M\Bn+t\{vn+t
2 }\Bn) = r(vn

1 ) + r(vn
2 ) + r(vn

dn
) + r(vt

1).

Because of vn
dn

= v1
1 Lemma 2 yields {vn

1 , vn
2 } ⊆ M , i.e.,

r∗(M\Bn+t\Bn\{vn+t
2 , vn

1 , vn
2 }) = r(vt

1) + 1.

Now observe that there is no vertex v̂ with r(v̂) = r(vt
1) + 1 but this is a

contradiction to

|M\Bn+t\Bn\{vn+t
2 , vn

1 , vn
2 }| < (2d− 1)− 2(d− 3)− 3 = 2.

Thus c ∈ M and (23) can be written as

r∗(M\Bn+t\{vn+t
2 , c}) = r(vt

1).

Because vt
1 is a β-vertex we obtain by Lemma 1, (5) that r(vt

1) cannot be
replaced by a sum of other labels, i.e., vt

1 ∈ M . Summarizing the results we
have M = Bn+t ∪ {vn+t

2 , c, vt
1} = en+t and the proof is completed.

Remark. The labelling r from the algorithm can only be used to show
σ(Wn) = 1 if the condition d(Wn) < 2d(Wn)−1 is true. (Otherwise observe
that for some t ∈ {2, . . . , n−1} holds r(vn+t+1

2 ) = r∗(en+t) = r∗(en+t\{c})+
r∗(en); but en ∪ en+t\{c} /∈ E ′n and |en ∪ en+t\{c}| ≥ 2d− 1).
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