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Instituto de Matemáticas, UNAM, Ciudad Universitaria
Area de la Investigación Cient́ıfica, Circuito Exterior
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Abstract

It is shown that every 3-connected planar graph with a large num-
ber of vertices has a long induced path.
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Let G be an undirected graph without loops and multiple edges. Denote by
p(G) the number of vertices in the longest induced path of G. Finding long
induced paths in graphs is an interesting but difficult problem. However, it
is easy to revise all the references devoted to related problems (see [1-7]).

Denote pn = min{p(G)} where the minimum is taken over all tricon-
nected planar graphs of order n. The purpose of this note is to prove the
following.

Theorem. lim
n→∞ pn = ∞

Proof. Denote by Gn a fixed triconnected planar graph such that p(Gn) =
pn. Let ∆n be the maximum degree of Gn and let vn be a fixed vertex of
maximum degree in Gn. It is easy to see that the diameter d of any graph
is large if it has an small maximum degree. In fact one can prove that
pn ≥ d(Gn)+1 ≥ log∆n

n. So if {∆n} is bounded, then we are done. Hence,
we can suppose that {∆n} grows.

A well known theorem of Whitney states that, any triconnected planar
graph has an unique embedding in the sphere. In this embedding the topo-
logical neighborhood of a vertex v is an open disk bounded by a cycle Cv
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of the graph which in general contains more vertices than the ones in the
graphical neighborhood of the vertex.

Denote by G′
n the graph obtained from Gn by deleting vn and every

other vertex not in Cvn . Of course, any induced path in G′
n is an induced

path in Gn. We denote by n′ the order of G′
n. We know that n′ ≥ ∆n and

therefore {n′} is unbounded.
We can think on the graph G′

n as drawn in the plane in such a way that
the cycle Cvn bounds the infinite face. Let Dn be the dual graph of G′

n and
let us delete from Dn the vertex corresponding to the infinite face to obtain
D′

n. Since every vertex of G′
n lies in the boundary of the infinite face then,

D′
n is a tree.

Let us associate to each vertex of D′
n a weight equal to the number of

vertices of the corresponding face in G′
n minus two. The weight of a path

in D′
n is by definition the sum of the weights of its vertices. Observe that

a path of weight w in D′
n corresponds to a subgraph P of G′

n which is a
path of faces separated by edges. It is easy to see that P has exactly w + 2
vertices. Deleting a vertex from each of the two end faces of P we split the
boundary of P into two paths. Again, the fact that every vertex of G′

n lies
in the boundary of the infinite face implies that these two paths are induced
in G′

n and one of them has at least w/2 vertices. Therefore, if we denote by
wn the maximum weight of a path in D′

n then, to prove the proposition we
must show that {wn} is unbounded.

Denote by k = k(n) the size of the biggest interior face in G′
n and by

m = m(n) the number of vertices in D′
n. If we triangulate all interior faces

of G′
n, then the number of all interior triangles with respect to the cycle

Cvn must be n′ − 2, but in the interior of each face there are at most k − 2
triangles and so m ≥ n′−2

k−2 . Let v be a vertex in D′
n of eccentricity equal to

the diameter d = d(n) of D′
n and denote by Vi the set of vertices at distance

i from v.
It is clear that

n′ − 2
k − 2

≤ m =
d∑

i=0

|Vi| ≤
d∑

i=0

ki ≤ kd+1 − 2
k − 2

and therefore log3 n′ ≤ (d + 1) log3 k. Since any vertex has weight no less
than one then wn ≥ d + 1. On the other hand, wn ≥ k − 2 ≥ log3 k for any
k ≥ 3. Hence, wn ≥

√
log3 n′ and the proof is completed.

Remark. The method in the proof of the proposition gives a lower bound
O(log n) for maximal outerplanar graphs with n vertices. However, this an



Long Induced Paths in 3-Connected Planar Graphs 107

easier result that can be proved in several other ways. In this case the bound
is asymptotically sharp. It is reached in the family {Si} shown in the figure.
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Figure 1. Polygon triangulations with p = O(log n).

References

[1] P. Alles and S. Poljak, Long induced paths and cycles in Kneser graphs, Graphs
Combin. 5 (1989) 303–306.
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