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e-mail: mihok@kosice.upjs.sk

Abstract
A property of graphs is any class of graphs closed under isomor-

phism. A property of graphs is induced-hereditary and additive if it is
closed under taking induced subgraphs and disjoint unions of graphs,
respectively. Let P1,P2, . . . ,Pn be properties of graphs. A graph G is
(P1,P2, . . . ,Pn)-partitionable (G has property P1◦P2◦ · · · ◦Pn) if the
vertex set V (G) of G can be partitioned into n sets V1, V2, . . . , Vn

such that the subgraph G[Vi] of G induced by Vi belongs to Pi;
i = 1, 2, . . . , n. A property R is said to be reducible if there exist
properties P1 and P2 such that R = P1◦P2; otherwise the prop-
erty R is irreducible. We prove that every additive and induced-
hereditary property is uniquely factorizable into irreducible factors.
Moreover the unique factorization implies the existence of uniquely
(P1,P2, . . . ,Pn)-partitionable graphs for any irreducible properties
P1,P2, . . . ,Pn.
Keywords: induced-hereditary, additive property of graphs, reduci-
ble property of graphs, unique factorization, uniquely partitionable
graphs, generating sets.
1991 Mathematics Subject Classification: 05C15, 05C75.

1. Motivation and Main Results

A property of graphs is any nonempty class of graphs closed under iso-
morphism. A property of graphs is called induced-hereditary (hereditary)
and additive if it is closed under taking induced subgraphs (subgraphs)
and disjoint unions of graphs, respectively. Induced-hereditary (heredi-
tary) properties are called also hereditary (monotone) (see [3]). Obviously,
any hereditary property of graphs is induced-hereditary, too. On the other
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hand, many well-known induced-hereditary classes of graphs (e.g., complete
graphs, line-graphs, claw-free graphs, interval graphs, perfect graphs, etc.)
are not hereditary. Let P1,P2, . . . ,Pn be properties of graphs. A graph
G is (P1,P2, . . . ,Pn)-partitionable (G has property P1◦P2◦ · · · ◦Pn) if the
vertex set V (G) of G can be partitioned into n sets V1, V2, . . . , Vn such
that the subgraph G[Vi] of G induced by Vi belongs to Pi, i = 1, 2, . . . , n.
An induced-hereditary property R is said to be reducible if there exist
induced-hereditary properties P1 and P2 such that R = P1◦P2, otherwise
the property R is irreducible. The notion of reducible properties have been
introduced in connection with generalized graph colouring and the existence
of uniquely partitionable graphs (see [6, 10, 8]).

The problem: ”Is the factorization of every property into irreducible
properties unique?” have been stated in the book [8] of Jensen and Toft
”Graph Coloring Problems”. Partial results for some subclasses of induced-
hereditary properties may be found in [11, 12, 9, 13]. In May 1995 (see
[11]) we proved the unique factorization theorem (UFT) for the additive
hereditary properties with completeness at most 3, in June 1996 (see [9])
we proved UFT. The aim of this paper is to prove the unique factorization
in the whole class of additive induced-hereditary properties of graphs.

Theorem 1. Any reducible additive induced-hereditary property is uniquely
factorizable into irreducible factors (up to the order of factors).

Since in general for induced-hereditary properties we cannot use the concept
of maximal graphs (used for hereditary properties in [13]), we define new
concepts — the operation ”∗” and R-decomposability number of a graph.

Definition. Let R be an additive induced-hereditary property. For given
graphs G1, G2, . . . , Gn, n ≥ 2, denote by

G1 ∗G2 ∗ . . . ∗Gn = {G :
n⋃

i=1

Gi ⊆ G ⊆
n∑

i=1

Gi},

where
⋃n

i=1 Gi denotes the disjoint union and
∑n

i=1 Gi the join of the graphs
G1, G2, . . . , Gn, respectively.

Let decR(G) = max{n : there exist a partition(V1, V2, . . . , Vn), Vi 6= ∅,
of V (G) (called R-decomposition of G) such that for each k ≥ 1, k.G[V1] ∗
k.G[V2] ∗ . . . ∗ k.G[Vn] ⊆ R}. If G 6∈ R we set decR(G) to be zero.

A graph G is said to be R-decomposable if decR ≥ 2; otherwise G is
R-indecomposable.
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These new concepts are motivated by the following observation.

Let us suppose that G ∈ R = P◦Q and let (V1, V2) be a (P,Q)-partition of
G. Then by additivity of P and Q k.G[V1] ∗ k.G[V2] ⊆ R for every positive
integer k. Thus if the property R is reducible, every graph G ∈ R with at
least two vertices is R-decomposable.

We shall prove that for any additive reducible induced-hereditary prop-
erty also the converse assertion holds.

Theorem 2. An induced-hereditary additive property R is reducible if and
only if all graphs in R with at least two vertices are R-decomposable.

The problem of unique factorization have been from the beginning related
to the investigation of the existence of uniquely partitionable graphs.

A graph G is said to be uniquely (P1,P2, . . . ,Pn)-partitionable if G
has exactly one (unordered) (P1,P2, . . . ,Pn)-partition (V1, V2, . . . , Vn). Let
us denote by U(P1◦P2◦ . . . ◦Pn) the class of all uniquely (P1,P2, . . . ,Pn)-
partitionable graphs. In the case P1 = P2 = . . . = Pn = P we write
P1◦P2◦ . . . ◦Pn = Pn and we say that G belonging to U(Pn) is uniquely
(P, n)-partitionable.

It turned out that the existence of uniquely partitionable graphs follows
from proofs of UFT’s. In this paper we prove the conjecture presented
in [12].

Theorem 3. Let P be an additive induced-hereditary property of graphs.
Then for n ≥ 2, U(Pn) 6= ∅ if and only if P is irreducible.

Analogously as for hereditary properties (see [12, 5]) we prove that every re-
ducible additive induced-hereditary property R can be generated by graphs
which are uniquely partitionable with respect to its irreducible factors.

Theorem 4. Let R = P1◦P2◦ . . . ◦Pn, n ≥ 2 be the factorization of
a reducible additive induced-hereditary property R into irreducible fac-
tors. Then every graph G ∈ R is an induced subgraph of a uniquely
(P1,P2, . . . ,Pn)-partitionable graph G∗.

Using the result of A. Berger [2], who proved that every reducible addi-
tive induced-hereditary property P has infinitely many minimal forbidden
induced subgraphs, we have the following generalization of the Theorem 1
of [1].
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Corollary 5. Let P be any induced-hereditary property of graphs defined by
a finite set of connected forbidden subgraphs. Then for every positive integer
n > 2 there exist infinitely many uniquely (P, n)-partitionable graphs.

The notation and technical preliminary results are presented in Section 2.
The proofs of the main Theorems are given in Section 3.

2. Notation and Preliminary Results

All graphs considered in this paper are finite and simple (without multiple
edges or loops), the class of all graphs is denoted by I. We use the standard
notation (see e.g. [7, 8]. In particular, Kn denotes the complete graph on
n vertices, G ∪H denotes the disjoint union of graphs G and H and k.G
denotes the disjoint union of k isomorphic copies of G. The symbols ≤
and ⊆ stand for the relations ”to be an induced subgraph” and ”to be a
subgraph”, respectively. The join

∑n
i=1 Gi = G1+G2+· · ·+Gn of n graphs

G1, G2, . . . , Gn is the graph consisting of the disjoint union of Gi’s and all
the edges between V (Gi) and V (Gj) for any 1 ≤ i < j ≤ n.

A graph G ∈ P is said to be P-maximal if G+e /∈ P for each e ∈ E(G).
The structure of graphs maximal with respect to reducible hereditary prop-
erties played an important role in the proof of unique factorization of
additive and hereditary properties. However for non-hereditary induced-
hereditary properties we have to find another way. Let us define the related
notion of P-strict graphs using the operation ∗ introduced in Section 1.

Definition. A graph G ∈ P is said to be P-strict if G∗K1 6⊆ P. The class
of all P-strict graphs is denoted by S(P).

A set G ⊂ I is said to be a generating set of P if G ∈ P if and only if G is
an induced subgraph of some graph from G. The fact that G is a generating
set of P will be written as [G] = P. The members of G are called generators
of P.

Let us show that every graph G ∈ P is an induced subgraph of a
P-strict graph and hence the class S(P) forms a generating set of P.

Obviously for any property P 6= I there exists a graph F 6∈ P. For a
property P we can therefore define f(P) to be the least number of vertices
of a forbidden subgraph of P, i.e. f(P) = min{|V (F )| : F /∈ P}. Now
it is easy to see, that for every G ∈ P the class G ∗ K1 ∗ . . . ∗ K1 6⊆ P if
the number of the K1’s is f(P)− 1 which means that if G is not P-strict,
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then repeating the operation ∗ with K1’s after less than f(P) steps we will
obtain a P-strict graph G′ such that G ≤ G′.

Since decR(G) < f(R), this fact allows us to define the decomposability
number dec(G) of a generating set G of R by

dec(G) = min{decR(G) : G ∈ G)}.
Put dec(R) = dec(S(R)).
The next simple Lemma will be used.

Lemma 6. Let G be an R-strict graph and G∗ be an induced supergraph
of G i.e., G ≤ G∗. Then G∗ is R-strict and decR(G) ≥ decR(G∗).

Proof. The fact that G∗ ∈ S(R) is evident. Suppose, in contrary,
that n = decR(G) < decR(G∗) = m and d = (V1, V2, . . . , Vm) be an R-
decomposition of G∗. Then at most n < m sets Vi of d have nonempty
intersections with V (G) (otherwise decR(G) > n) and there is a vertex
z ∈ Vj with Vj ∩ V (G) = ∅, in contradiction with assumption: G be R-
strict.

We are going to show that there exists a generating set G∗ ⊆ S(R) of R
which contains only graphs G with decomposability number decR(G) =
dec(R) = n which are uniquely R-decomposable (i.e., there exist ex-
actly one R-decomposition (V1, V2, . . . , Vn), Vi 6= ∅, such that for each
k ≥ 1, k.G[V1] ∗ k.G[V2] ∗ . . . ∗ k.G[Vn] ⊆ R) .

The final step of the proof of Theorem 2 and Theorem 1 will con-
sist of the construction of corresponding irreducible factors. Analogously
as in [13], by the construction it follows that if dec(R) = n, then R =
P1◦P2◦ . . . ◦Pn where the irreducible factors Pi, i = 1, 2, . . . , n are uniquely
determined by the structure of the generating set G∗.

Our consideration requires the definitions of appropriate generating
sets of R derived from the set of R-strict graphs. Let us present the simple
Lemmas on the properties of generating sets. We omit their simple proofs
analogous to those given for maximal graphs in [13] (see also [14]).

Lemma 7. Let R be an induced-hereditary property of graphs and let G
be a generating set of R. If all graphs belonging to G are R-decomposable,
then all R-strict graphs are R-decomposable, too.

Lemma 8. Let P be an additive induced-hereditary property and G be a
generating set of P. If G is an arbitrary graph with property P then there
exists a generating set G′ ⊆ G such that each graph H ∈ G′ contains at least
one copy of the graph G.
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Lemma 9. Let P be an induced-hereditary property of graphs. Let G be a
generating set of P such that G ⊆ S(P). Then dec(G) = dec(P).

Lemma 10. Let P be an additive induced-hereditary property of graphs.
Let G ⊆ S(P) be any generating set of P. Then there exists a set G∗,
G∗ ⊆ G, which is a generating set of P and contains only graphs of P-
decomposability number equal to dec(P).

Now, let us prove the main Lemma of this paper.

Lemma 11. For every R-strict graph G with decR(G) = dec(R) ≥ 2 there
is a uniquely R-decomposable graph G∗ ≥ G.

Proof. Let G be a fixed R-strict graph with decR(G) = n and di =
(Vi1, Vi2, . . . , Vin), i = 0, 1, . . . ,m, m ≥ 0 be all R-decompositions of G.
Since G is a finite graph, m is a nonnegative integer.

We shall construct a uniquely R-decomposable graph G∗ = G∗(m) tak-
ing an appropriate number s of disjoint copies of G so that V (G∗) = V (s.G)
and E(G∗) = E(s.G)∪E∗(m) where new edges e ∈ E∗(m) are joining ver-
tices of different copies of G only. By Lemma 6 we have decR(G∗(m)) =
decR(G) = n.

Every R-decomposition d = (V ∗
1 , V ∗

2 , . . . , V ∗
n ) of G∗ restricted to any

copy G gives some R-decomposition dj of G denoted by d|G = dj . The aim
of our construction is to add new edges E∗(m) to s.G so that the obtained
graph G∗(m) will have only one R-decomposition d such that d|G = d0 for
each copy G of s.G.

To proceed we shall use two types of constructions:

Construction 1. Gi ⇔ Gj :
Let Gi, Gj be two different copies of G in s.G. Since G is R-strict, G∗K1 6⊆
R. Let us fix a graph F ∈ G ∗K1, F /∈ R and let NF (z) be the neighbours
of z ∈ V (K1) in G. Let us denote by Zj = V0j ∩ NF (z), j = 1, 2, . . . , n
the neighbours of z in G[V0j ] with respect to the R-decomposition d0 of
G. Let Gi, Gj , i 6= j be disjoint copies of G, d0 be the R-decomposition
of G and v be a vertex of Gi ∪ Gj . Add new edges E∗(Gi ⇔ Gj) so that
every vertex v ∈ V0k of the corresponding R-decomposition d0 is adjacent
to every vertex of Zj , j 6= k of the other copy of Gi ∪Gj .

The resulting graph Gi ⇔ Gj has the following property: for every
R-decomposition d = (U1, U2, . . . Un) of Gi ⇔ Gj it holds that d|Gi = d0

if and only if d|Gj = d0. The proof of this fact is simple, suppose that
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d|Gi = d0 (d|Gj = d0) and v ∈ V0k of Gj(Gi) does not belong to Uk. Then
d cannot be an R-decomposition of H = Gi ⇔ Gj since there is a graph in
H[U1] ∗H[U2] ∗ . . . ∗H[Un] which contains an induced copy of F (we can
add the appropriate edges between v and Zk.

Construction 2. n • k(r, s).G:
Let dr and ds be different R-decompositions of G, denote by Aij(r, s) =
Vri ∩ Vsj , i, j = 1, 2, . . . , n. Since dr 6= ds at least n + 1 sets Aij(r, s) are
nonempty. Because of decR(G) = n there exists a positive integer k(r, s)
such that k(r, s).G[A11(r, s)]∗k(r, s).G[A12(r, s)]∗. . .∗k(r, s).G[Ann(r, s)] 6⊂
R. Let fix a graph F (r, s) ∈ k(r, s).G[A11(r, s)] ∗ k(r, s).G[A12(r, s)] ∗ . . . ∗
k(r, s).G[Ann(r, s)], F (r, s) /∈ R. Denote by Eij,i′j′(r, s) the set of edges of
F (r, s) joining the vertices of k(r, s).G[Aij(r, s)] and k(r, s).G[Ai′j′(r, s)].

Let us construct the graph H∗(r, s) = n • k(r, s).G taking n disjoint
copies of H = k(r, s).G, denoted by Hj , j = 1, 2, . . . n. Add new edges join-
ing different copies of k(r, s).G so that the edges Eji,ki(r, s), i = 1, 2, . . . , n
be realized between the copies Hj and Hk, j 6= k, i.e. for example the edges
E11,21(r, s) and E12,22(r, s) etc., of the graph F (r, s) are placed between H1

and H2.
The construction 2 gives a graph H∗ = H∗(r, s) without an R-decom-

position d = (W1,W2, . . . ,Wn) such that d|G = ds for each induced copy
of G in H∗ because otherwise the graph F (r, s) would appear in H∗[W1] ∗
H∗[W2] ∗ . . . ∗H∗[Wn].

We are ready to prove the Lemma 11 by constructing G∗:
If m = 0, then G∗ = G and we are done. In this case d0 = (V01, V02, . . . , V0n)
is the unique R-decomposition of G∗.

If m ≥ 1 we proceed recurrently:

Universal Step 0. Let G0 = G be a fixed copy of G and G(m) be
a graph consisting of s copies of G (denoted by G1, G2, . . . , Gs) (to be
described recurrently below). For every m ≥ 1 add edges between G0 and
Gi, i = 1, 2, . . . , s by Construction 1 so that U = V (G0) ∪ V (Gi) induces
in resulting graph G∗ the subgraph G∗[U ] = G0 ⇔ Gi. This part of the
construction of G∗ yields that if for a R-decomposition d of G∗ there exists
a Gk in G(m) such that d|Gk = d0 then for every i = 0, 1, 2, . . . , s d|Gi = d0

implying G∗ has unique R-decomposition.

Step 1. Let us denote by G(1) the graph H∗(0, 1) = n • k(0, 1).G —
see Construction 2. Let G∗(1) be obtained from G0 and G(1) accord-
ing to the Step 0 (s = n.k(0, 1)). If m = 1, then the graph G∗(1) has
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unique R-decomposition d since Construction 2 is forcing at least one copy
of G of G(1) to have d|Gj = d0 so that by Construction 1 all copies
G0, G1, . . . Gn.k(0,1) of G∗(1) must have d|Gi = d0.

Step j. For j ≥ 2, let G(j− 1) be the graph constructed in the Step j− 1.
To construct G(j) let us take n.k(0, j) disjoint copies of G(j − 1) and add
new edges inserting H∗(0, j) = n • k(0, j).G for every choice of n.k(0, j)
copies of G one by one from different copies of G(j − 1).

Let the graph G∗(j) be obtained from G0 and G(j) according to the
Step 0. Let d be a R-decomposition of G∗(j). Suppose that there is a Gk

such that d|Gk 6= d0. Then d|Gi = dj for a copy Gi of G from each copy of
G(j − 1), since otherwise for every Gi d|Gi = d0 by step j − 1. However if
every copy of G(j− 1) should have a copy of G with d|G = dj , then a copy
of H∗(0, j) is forcing a contradiction.

The uniquely R-decomposable graph G∗ = G∗(m) is obtained in the
Step m.

Let G∗(R) denotes the class of all uniquelyR-decomposable graphs withR-
decomposibility number n = dec(R) ≥ 2. By Lemma 11 G∗ is a generating
set of R. Using Lemma 11 we can proceed the same way as for hereditary
properties in [13].

First let us describe the structure of the generators of G∗(R). Let
G∗ = G∗(R) = {Gi; i ∈ I} and let (V 1

i , V 2
i , . . . , V n

i ) be the unique R-
decomposition of Gi. The graphs Gj

i = Gi[V
j
i ] are called indecomposable-

parts of the generator Gi. The set of all indecomposable-parts of graphs
belonging to G∗ will be denoted by Ip (R) so that if Ip (Gi) = {Gj

i , j =
1, 2, . . . n} then Ip (R) =

⋃
i∈I Ip (Gi). For F ∈ Ip (R) and Gk ∈ G∗ let us

denote by m(F,Gk) the number of different (possibly isomorphic) ind-parts
of Gk which m(F ) = max{m(F, Gi);Gi ∈ G∗}. The positive integer m(F )
is called the multiplicity of the ind-part F ∈ Ip (R) in R. Obviously for
every F ∈ Ip (R) : 1 ≤ m(F ) ≤ n = dec(P).

A technical Lemma analogous to Lemma 2.6 from [13] holds.

Lemma 12. Let G∗ ⊆ S(R) be the generating set of R consisting of
uniquely R-decomposable graphs with decomposibility number n = dec(R).
Let G be an arbitrary graph from G∗ and let (V 1, V 2, . . . V n) be its unique
R-decomposition. If a graph H ∈ G∗ contains G as an induced-subgraph,
then the ind-parts Gj of G, j ∈ {1, 2, . . . , n}, are induced-subgraphs of dif-
ferent ind-parts Hk of H, k ∈ {1, 2, . . . , n}.
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Proof. If some ind-parts Gi, Gj , i 6= j are induced-subgraphs of the same
ind-part Hk (k ∈ {1, 2, . . . , n}) of H, then there is at least one ind-part of H
which has empty intersection with G. But this contradicts the assumption
that G is R-strict.

Now, suppose that an ind-part, say G1, be an induced-subgraph of at
least two different ind-parts Hj ,Hk, j 6= k, of H. Then G1[V 1)∩ V (Hj)] ∗
G1[V 1∩V (Hk)]∗G2∗. . .∗Gn ⊆ R which is in contradiction to decR(G) = n.

3. The Proofs of the Main Results

We are prepared to prove the main results. The proof of Theorem 2 is
analagous as for additive hereditary properties in [13]. We recall it to
present full insight into the structure of irreducible factors.

Proofs of Theorems 1 and 2. Let every graph G ∈ R with at least
two vertices be R-decomposable. We will find the factorization of the
property R into at least two irreducible factors P1,P2, . . . ,Pn.

Let G∗ ⊆ S(R) be the generating set consisting of of all uniquely
R-decomposable graphs of decomposability number n = dec(R) and let
Ip (R) be the set of all ind-parts of R. We distinguish two cases:

Case 1. Let us suppose that there exists an ind-part F ∈ Ip (R) of
multiplicity m(F ) = k where k < dec(P). Let G ∈ G∗ be a generator of P
for which m(F, G) = k. Let us consider, in accordance with Lemma 8, the
generating set G∗G ⊆ G∗ such that G∗G = {H ∈ G∗;G ≤ H}. By the definition
of G∗G and by Lemma 12 for every generator H ∈ G∗G, m(F,H) = k. Let
the induced-hereditary property Q1 (Q2) be generated by the subgraphs
induced by union of vertices of k (n − k) ind-parts of generators H ∈ G∗G
containing (not containing) the ind-part F .

Let us show that R = Q1◦Q2. It is easy to see that R ⊆ Q1◦Q2.
Let H∗ ∈ Q1◦Q2. Then H∗ ∈ H∗

1 ∗ H∗
2 where H∗

1 (H∗
2 ) is the subgraph

induced by the union of vertices of k(n − k) ind-parts of some generator
H1(H2) ∈ G∗G which contain (do not contain) the ind-part F . Let G∗ ∈ G∗G
be such a graph that H1 ∪H2 ≤ G∗. By Lemma 12 and by the definition
of G∗G H1 ∗H2 ⊆ R implying H∗ ∈ R. Hence R = Q1◦Q2.

The additivity of Q1,Q2: suppose that the graphs H∗
1 and H∗

2 belong
to Q1(Q2). Then H∗

i is a subgraph of the join of k(n− k) ind-part of some
generator Hi ∈ G∗G containing (not containing) the ind-part F, i ∈ {1, 2}.
If G∗ ∈ G∗G such that H1∪H2 ≤ G∗, then by Lemma 12 and by the definition
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of G∗G, both H∗
1 and H∗

2 are induced subgraphs of k(n− k) ind-parts of G∗

which contain (do not contain) the ind-part F as an induced subgraph.
Then H∗

1 ∪H∗
2 ∈ Q1(Q2) and hence Q1,Q2 are additive.

Case 2. Suppose that m(F ) = n = dec(R) ≥ 2 for each F ∈ Ip (R).
Let Q be an induced-hereditary property generated by Ip (R). It is easy
to see that R ⊆ Qn. The converse inclusion, Qn ⊆ R, and the additivity of
Q follows analogously as in the Case 1. The proof of Theorem 2 is finished.

To complete the proof of Theorem 1 we use induction on n = dec(R). If
n = 1, the property R is irreducible. Let us suppose that every property
with decomposability number 1 ≤ k < n has a unique factorization into
irreducible factors and let R be a property with dec(R) = n.

The structure of the factorization of the property R depends on the
multiplicities of the ind-parts of R as described above. This factoriza-
tion is uniquely determined because the generators of R are uniquely R-
decomposable into ind-parts. Suppose there exists an ind-part F of R with
multiplicity m(F ) = k < dec(P) = n. Then we consider the properties
Q1 and Q2 defined in the Case 1. By the induction hypothesis they are
uniquely factorizable into irreducible factors. Since the generators of R are
uniquely (Q1,Q2)-partitionable, the proof is complete.

If for every ind-part F of R its multiplicity m(F ) in R is equal to n,
then R = Qn by the Case 2.

Proofs of Theorems 3 and 4. Let R be any reducible, additive
induced-hereditary property. We proved above that the property R can be
generated by a class G∗ of graphs with decomposibility number n ≥ 2 which
are uniquely R-decomposable into n indecomposable parts generating the
corresponding irreducible factors. It means that if R = P1◦P2◦ . . . ◦Pn,
n ≥ 2 be the factorization of R into irreducible factors, then every gen-
erator from G∗ is uniquely (P1,P2, . . . ,Pn)-partitionable. On the other
hand, let a property P = P1◦P2 be reducible, then obviously there are no
uniquely (P, n)-partitionable graphs since the parts belonging to P2 in any
(Pn)-partition of G are interchangeable.
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