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Abstract

Given a 2-connected graph G on n vertices, let G* be its partially
square graph, obtained by adding edges uv whenever the vertices u, v
have a common neighbor z satisfying the condition Ng(x) C Ngu] U
N¢lv], where Ng[z] = Ng(z) U {z}. In particular, this condition
is satisfied if = does not center a claw (an induced K;3). Clearly
G C G* C G?, where G? is the square of G. For any independent
triple X = {x,y, z} we define

53(X) = d() + d(y) + d(=) — |[N(2) N N(y) N N(2)].

Flandrin et al. proved that a 2-connected graph G is hamiltonian if
73(X) > n holds for any independent triple X in G. Replacing X in G
by X in the larger graph G*, Wu et al. improved recently this result. In
this paper we characterize the nonhamiltonian 2-connected graphs G
satisfying the condition &3(X) > n — 1 where X is independent in G*.
Using the concept of dual closure we (i) give a short proof of the above
results and (ii) we show that each graph G satisfying this condition
is hamiltonian if and only if its dual closure does not belong to two
well defined exceptional classes of graphs. This implies that it takes a
polynomial time to check the nonhamiltonicity or the hamiltonicity of
such G.
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1. INTRODUCTION

We use the book of Bondy and Murty [7] for terminology and notation
not defined here and consider simple graphs only G = (V, E). If A, B are
disjoint sets of V, we denote by E(A, B) the set of edges with an end in A
and the other in B. Also G[A] is the subgraph induced by A. A vertex x is
dominating if d(z) = |V| — 1 and we note Q := {d|d is dominating}.

For any vertex u of G, N(u) denotes its neighborhood set and Nu| =
{u}UN(u). If X C V, we denote by Nx (u) the set of vertices of X adjacent
to u. For 1 < k < a, we put I,(G) = {Y | Y is a k-independent set in G},
where a stands for the independence number of G. With each pair (a,b) of
vertices such that d(a,b) = 2 (vertices at distance 2), we associate the set
J(a,b) :={xz € N(a) N N(b) | Ng[z] C Ng[u] U Ng[v]}.

The partially square graph G* (see [4]) of a given graph G = (V, E) is
the graph (V, E U {uv | d(u,v) = 2, J(u,v) # 0}). Clearly G C G* C G?,
where G? is the square of G and every partially square graph is claw-free. For
G1 = (V1, E1) and Go = (Va, E2) on disjoint vertex sets we let G1UG2 denote
the union of G and Gy with G1 UG, = (V1 UV,, E1 U E3) and we let GV Gy
denote the join of Gy and Gy with G1V Gy = (V1 UV, E1 U Es U (Vh X V3)).
Moreover K, denotes the empty graph on p vertices.

For each set S € I1(G), k > 1 we adopt a partition of V by defining
Si:={u €V ||Ng(u)| =i} and s; := |Si|], i = 0,..., k. We also put og :=
Y zes d(x). Obviously, we have |[N(S)| = S L siand og = S8 is;. We
point out that any 2-connected graph G for which a(G*) < 2 is hamiltonian
(see [4]). For any set S := {z,y,z} € I3(G*) in a graph G, such that
a(G*) > 3 we define

73(5) = da(z) + da(y) + da(2) — [Na(x) N Na(y) N Ne(2)] .-

Alternatively we may write 73(S) = s1 + 289 + 2s3 if S is fixed. As in [1],
for each pair (a,b) of nonadjacent vertices we associate:

T (G) == V\(Nela] U NG (b)), @ap(G) =2+ [Top| = [VAN(a) UN(D)],
dap(G) = min{d(z)|x € Ty} if Top # @ and J45(G) = §(G) otherwise.
If there is no confusion, we may omit G and/or the subscript ab. In [8],

Bondy and Chvétal introduced the concept of the k-closure for graph. Ain-
ouche and Christofides [1] proposed the 0-dual closure cfj(G) as an extension
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of the n-closure. To define the 0-dual closure, we use the following weaker
condition than that obtained in ([1]).

Theorem 1.1 ([1]). Let G be a 2-connected graph and let a,b be two non-
adjacent vertices. If

(1) |IN(a) UN()| + 0qp > n (or equivalently @ap(G) < dap),
then G is hamiltonian if and only if (G + ab) is hamiltonian.

The 0-dual closure ¢j(G) is the graph obtained from G by successively joining
nonadjacent vertices satisfying (1). Clearly ¢j(G) is polynomially obtained
from G. As a consequence of Theorem 1.1, G is hamiltonian if and only if
¢y (@) is hamiltonian. Flandrin et al. [9] proved the following result:

Theorem 1.2. A 2-connected graph G of order n is hamiltonian if
(2) 3(S) > n holds for all S € I3(G).

This result is strong enough to dominate a large spectra of sufficient con-
ditions involving degrees and/or neighborhood of pairs or triple of vertices
(see for instance [5]).

Recently Wu et al. [10], improved Theorem 1.2 by using a weaker con-
dition.

Theorem 1.3. A 2-connected graph G of order n is hamiltonian if
(3) 73(S) > n holds for all S € I3(G™).

In this paper we go further by allowing exceptional classes of nonhamiltonian
graphs. More precisely, we prove:

Theorem 1.4. Let G be a 2-connected graph of order n. If 33(S) > n —1
holds for all S € I3(G*), then G is nonhamiltonian if and only if either
(1) ¢§(G) = (K, UKy U Ky) V Ky where r,s,t are positive integers or (2)
CS(G) = KnTA \/?nTJrl

Note that the two classes of graphs are not 1-tough since w(G — Q) > |Q],
where w(H) stands for the number of components of the graph H. They are
of course nonhamiltonian. Theorem 1.4 is sharp even for the class of 1-tough
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graphs. For instance for the Petersen graph we have 53(S) =8 =n — 2 for
any independent triple {z,y, z} such that |[N(z) N N(y) N N(z)| = 1. The
graph (K, UK,;UK,;UT)V K1, where 2 < r,s,t and T is a triangle having a
vertex from each complete graph of (K,UK;UK}) is 1-tough, nonhamiltonian
and 73(S) = n — 2. In both cases, S € I3(G*). Moreover it is possible to
answer in a polynomial time if a graph satisfying the condition of Theorem
1.4 is hamiltonian or not. Indeed (i) the closure is obtained in a polynomial
time, (ii) the set £ of dominating vertices is easily identified, in which case
(iii) it suffices to check whether w(ci(G) — Q) > || or not.

2. PRELIMINARIES

Let C be a longest cycle for which an orientation is given. For z € V/(C), 2™
(resp. &™) denotes its successor (resp. predecessor) on C'. More generally, if
ACV then At :={z€C |z € A} and A~ :={z € C | zT € A}. Given
the vertices a,b of C' we let Cla,b] denote the subgraph of C' from a to b
(and including both a and b) in the chosen direction. We shall write C(a, b],
Cla,b) or C(a,b) if @ and b or both a and b are respectively excluded. The
same vertices, in the reverse order are denoted 6(@, b], 6[@, b) or E(a, b)
respectively. Let H be a component of G — C and let dy,...,d, be the
vertices of the set D = N¢(H), occurring on C' in a consecutive order. For
i > 1, weset P; := C(d;, di+1), where the subscripts are taken modulo m and
n; = |P;|. We define a relation ~ on C by the condition u ~ v if there exists
a path with endpoints u,v in C and no internal vertex in C. Such a path is
called a connecting path between u and v. We say that two connecting paths
are crossing at x,y € C' if there exist two consecutive vertices a, b of C' such
that a ~ x, b ~ y and either a,b € C(x,y), a=b" or a,b € C(y,x), a=b".
We note that the two connecting paths from a to z and from b to y must
be internally disjoint since C' is a longest cycle. In this paper, most of the
time the connecting paths are edges.

For all © € {1,2,...,m}, a vertex u of P; is insertible if there exist
w,w" € C—P; such that u ~ w and v ~ w*. The edge ww™ is referred as an
insertion edge of u. A vertex z ¢ C is C-insertible if there exist w,wt € C
such that w ~ w*' and the path connecting w and w™ passes through z.
Paths and cycles in G = (V, E) are considered as subgraphs, vertex sets or
edge sets.

Throughout, H is a component of G — C, zq is any vertex of H and for
all i € {1,...,m}, z; is the first noninsertible vertex (if it exists) on P;.
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Clearly m > 2 if G is 2-connected. For all i € {1,...,m} for which
z; exists, we define W; = V(C(d;,x;]). Set X := {zo,x1,...,2m} and
Xo = {z1,..., 2y }. Similarly we define the sets Y := {zo,y1,...,ym},
Yo := {y1,-..,Ym}, where y; is the last noninsertible vertex (if it exists)
on P;.

The following key-lemma is mainly an adaptation of Lemmas proved in
[3] and [4].

Lemma 2.1. Let C be a longest cycle of a connected nonhamiltonian graph.
Let i, j be two distinct integers in {1,...,m} and let u; € Wi, uj € Wj. Then

1. x; and y; exist.

2. u; = uj and there are no crossing paths at u;,u;.

3. Any set W = {xo} U{w; € W; | 1 < i < m} and in particular X is
independent in G.

4. N(u;) " N(u;) C V(C)\ U, W;.

5. X, Y are independent sets in G*.

6. For each i, we may assume that N(x;) N Cld;, ;) = {z; }.

Proof. The proof of statements 1 to 4 is given in [2], while the proof of
5 is given in [4]. To prove (6), let u; € C[d;,x;) be the first vertex along
C, adjacent to x; and assume that C(u;,x;) is not empty. The vertices of
C(u;, x;) are insertible by definition. For i = 1,...,m, let F; be the set of
insertion edges of vertices of C(d;,x;). We proved in [2] that F; N F; = @
whenever j # i. Moreover E(W;, W;) = @ by (2). Therefore the vertices of
C'(u4, ;) can be easily inserted into C' — P;. |

The next general Lemma is an extension of Lemma 2.1. Set S := {z;, z;, 21},
where 14, j, k are pairwise distinct integers in {0, ..., m}.

Lemma 2.2. |Sy N C| > s + s3.

Proof. To prove the Lemma, it suffices to show that an injection 6 : Sy U
Sz— > Sp N C exists. By Lemma 2.1(4), So U Sz C V(C) \ U™, W; and by
definition, the sets Sp, S1, 52,53 are disjoint. Choose S := {x;, j, 1} and
let a € So U S3. As a first case, we suppose that a ¢ D and without loss
of generality assume a € (N(z;) N N(zy) N C(ag,d;)\D. If a™ € SonC
then we are done with 6(a) = a™, otherwise we must have a® € ;. Clearly
at ¢ N(z;) since z; is noinsertible and a™ ¢ N(xj) by Lemma 2.1(2).
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Thus a™ € N(z;). If i = 0 then a™ = d;, € D N C(dy,d;]. But then di =
at™ € S9N C and we set 6(a) = a™t. If i > 0, then by Lemma 2.1(2), z; €
C(d(h+1) modm; dj) in which case a™ € Sy N C since a™* ¢ N(x;) U N(ay)
by Lemma 2.1(2) and z; is noinsertible. We set again 6(a) = a™ .

As a second case, we suppose that a = dj,. If h = j then z; € SoNC
and we are done. So, we assume dj, € C(dj,d;). If x; = x¢ then clearly
at = dz € SoNC. If i > 0 the arguments are the same as in the previous
case. The proof is now complete. [

Lemma 2.3. Let G be a nonhamiltonian graph satisfying the conditions of
Theorem 1.4. Then

1. S()ﬁ(G—C) :{.%'0}, ‘S()DC’ = ’SQUSg‘ andig(S) =n—1.

2. For each v € Sy NC, either v— € Sy USg or v™=— € Sy U S3, in which
case v~ € 5.

3. Xo=D" and Yy =D".

Proof. Among all possible components of G — C' we assume that H is
chosen so that |[No(H)| = m is maximum.

(1) Set 73(S) = 81+ 2s2+2s3 =n—1+0 with § > 0. By definition, n =
S0+$1+s2+s3. Thus a3(S) = s1+2s9+2s3 = n—1+0 = sp+S1+s2+s3—1+9.
It follows that so +s3 = so — 1+ 9. As s = |SoNC| + |So N (G — C),
zg € SoN (G —C) and |SoNC| > sy + s3 by Lemma 2.2 we must have
equality throughout. Thus (1) is proved, that is So N (G — C) = {xp},
|So N C| = |52 U S3| and 73(S) =n — 1.

(2) Follows from the proof of Lemma 2.2 and the fact that [Sy N C| =
|So U S3| by (1).

(3) Suppose first m > 3 and assume without loss of generality that
x1 # df . If we set S := {xg, 29,23} then W1 C Sp N C. This contradicts (2)
since dfr € SondC, dy € SoUS3 but df ¢ S1. Suppose next m = 2 and
x1 # df. If df ¢ N(x1) then d € SopN C and we are done. Otherwise,
by Lemma 2.1 (6), 1 = der and z1d; ¢ E. Set S := {xo,x1,x2}. Since
z1 € SoNC and df € N(x1) we have di € N(z¢) N N(x2). Let ww™ be
an insertion edge of d. It follows that w # d; by Lemma 2.1 (2). Since
r1 is not insertible then N(z1) N {w,w™,w™} = & (see [3]). Moreover
N(z2)N{wt,wt*} = & by Lemma 2.1(2). Thus {w™,w™*} C SyNC. This
is a contradiction to (2). We have proved that Xy = D*. By changing the
orientation of C, we get by symmetry Yo = D™. |
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3. PROOFS

3.1. A new proof of Theorems 1.2 and 1.3

Proof. This is a direct consequence of Lemma 2.3 (1). If G is nonhamil-
tonian then 3(S) =n—1, (S C X) € I3(G*). By hypothesis, 53(5) > n, a
contradiction implying that G must be hamiltonian. [ ]

3.2. Proof of Theorem 1.4

By contradiction, we suppose that G satisfies the hypothesis of Theorem 1.4
but ¢(G) # K.

Proof. By Lemma 2.3, Xo = D' and Yy = D~ and we assume that H is
chosen so that m := |[N¢o(H)| is maximum. Two distinct cases are needed.
Each one leads to an exceptional class of nonhamiltonian graphs, whose
dual-closure is well characterized.

Case 1. m = 2.
(1) N[:L’Z] =P UND(.TZ‘), 1=1,2.

Without loss of generality and by contradiction suppose that there exists
v € Po\N(z2). Choose v as close to da as possible. If v € N(x1) then v # yo
since z7 is noninsertible. Moreover, by setting S := {xzg,z1, 22}, we see
that vt € Sy N C by Lemma 2.1(2) and the fact that x; is noninsertible.
In that case v € N(x1) N N(z2) since clearly v~= ¢ N(zg) N N(z2). This
is a contradiction to our assumption. Therefore v € Sy N C and by the
above arguments, v~ € N(x1) N N(x2). At this point we need two sub-
cases. Suppose first vT € N(z3). Clearly G — v contains a cycle C' =
C' U H. Since C' is a longest cycle, we must have H = {x¢} and d(xo) = 2.
Moreover we may assume d(v) = 2 for otherwise, we choose C’ instead of
C. In particular Ng_¢(v) = @. As it is easy to check that {xg,z1,v} is
independent in G*, we have d(z1) +4 >n—1+|N(v) N N(xzo) N N(x1)|. If
v = yo then |[N(v) N N(z9) N N(z1)| = 1 and hence d(z1) > n — 4, that is
N(z1) = V\{zo,z1,z2,v}. If v # yo then d(x1) > n — 5 and more precisely
N(z1) = V\{z0, 21,72, ¥2,v}. So, in either case, z17] € E, implying the
existence of a cycle C” = C U H in G — z3. As previously for the cycle C’,
we obtain d(z2) = 2. This is a contradiction since N(z2) 2 {da,z3,v"}.
Next, suppose vt ¢ N(z2). If v € N(z1)\D, we use the above ar-
guments to get v € N(x1) N N(x2), a contradiction to the choice of wv.
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If vt ¢ N(z1) U N(x2) then v,vT € Sy N C, a contradiction to Lemma
2.3 (1). So, it remains to consider the case where vt = di ¢ N(x2).
Now vxy = yowe ¢ E by assumption and yi1x9 ¢ E as y; is noninsert-
ible. Therefore, setting S := {x¢, y1,y2} we obtain x5 € Sy N C and hence
x5 € N(y1) N N(y2). It follows that G — z2 contains the cycle

«—

—
H{dy,d2) C'[d2, z1])z10~ Clv™, 25 ]2g vdy

in C'U H and consequently d(z2) = 2. Similarly (recall that z3 € N(y1) N
N(y2)) G — y2 contains a cycle in C'U H and hence d(y2) = d(v) = 2. This,
in turn implies that P, = xgx; v. Obviously {xg,z2,v} is independent in
G*. Then d(x¢) +d(z2) +d(v) =6 > n—14|N(xg) "N (z2) NN (v)| =n—1.
It follows that n < 7 and P; = x1. This is a contradiction since now G — 1
contains a cycle C'U H, implying d(z1) = 2. This is a contradiction since
N(z1) = {d1,v,2] }. The proof of (1) is now complete.
For ¢ = 1,2 we let u; be any vertex of P;.

(2) E(P1,P) =@ and {xo,u1,us} is independent in G*.

By contradiction suppose ujug € E. Clearly (u1,us) # (x1,z2), (y1,y2). So,
we may assume u; € P\{z;,y;}, i = 1,2. But then the cycle

H[dl, d2](5[d2, ul)ufxlc[xl, ’LL1]U1U26[’LL2, ZL‘2]$2U;C(U2, dl]

is hamiltonian. Now we show that the set {zg, u1,u2} is independent in G*.
Since E(Py, P2) = @, N(u1) N N(uz) C D. If there exists v € J(u1,ug) = 0,
then v € D and a contradiction arises since there is a vertex of H N N (D)
which cannot be adjacent to neither u; nor to wug. Similarly J(xg,u1) = 0
since N (zo)NN(u1) € D and y2 = d; ¢ N(x9)UN (u1). The same arguments
apply to J(zg, us2).

3) {(G) = (K, UK;U K;) with r, s,t are positive integers.
0

First of all, we point out that we may have G — C # H. By Lemma 2.3 (1),
SoN (G —C) = {xo}, implying that (G —CUH) = Ng_c(x1) U Ng_c(z2).
For simplicity, set H; :== Ng_c(x;) for i = 1,2. We observe that HiNHy = @
for otherwise z1 ~ x9, a contradiction to Lemma 2.1 (2) and HN H; = &
for ¢ = 1,2 by maximality of C.

Since G is nonhamiltonian by assumption, its 0-dual closure ¢j(G) is not
complete. Choose S := {zg,u1,us} and set d(u;) = n; + |H;| + |Np(u;)| —
1 —¢&; where ¢; > 0 for i = 1,2, d(zo) = |H| + |Np(zo)| — 1 — €9 where
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g9 > 0. By (2), S € I3(G*) and hence o5 = d(xg)+d(u1)+d(uz) > n—1+ss.
Since n = 2+ ny + o+ [H| + |Hy| + |Ha| and 37 [Np(u;)| < 6 we get

2 2 2 _
4453+ > 7 g€ < >iiolNp(u;)] < 6. We remark that Y 7 |Np(us)| =
5= s3=1and 222:0 |INp(ui)| = 6 = s3 = 2. Therefore

2 2
(4) D ei=0and4+s3 <> [Np(u;)| <6.
i=0 i=0

As an immediate consequence of (4) we have (i) G[H]| is complete, (ii)
Nlu;] = Np(u;) U P; U H; for i = 1,2 since g = €1 = €2 = 0. In particular
N(z1) N N(z]) 2 Hy if xf # da, in which case H; = @ by maximality
of C. If xf = do then clearly C' U H — x1 contains a cycle C’ for which
|Nc#(x1)| > 3 > m, a contradiction to the choice of H. Similarly we have
Hy =2, thatis G—C = H.

It remains now to show that each vertex of D is dominating in ¢j(G),
that is D = Q. Without loss of generality, suppose diug ¢ E(cj(G)) and
IN(dy) N S| < 3 is minimum. If [N(d;) N8| = 0 then 3.7, |Np(u;)| <
3, a contradiction to (4). If |[N(di) N'S| = 1 then |[N(d2) NS| > 3 and
ss > 1, leading to again a contradiction. So we may assume |N(dy) N
S| = 2 and hence N(d1) D H U P; since xp,u; are arbitrarily chosen. But
then @g,u, < [{d1,d2,u2}| = 3 (recall that Nug] O P»). Because d(dz) >
3 > @gyu,, we contradict the assumption djus ¢ E(cj(G)) by Theorem 1.1.
Therefore N(d;) 2 V\D is true for ¢ = 1,2. It is also easy to see that
dady € E(cf(G)) since @g,a,(c5(G)) < 2. As claimed des(g)(di) = n — 1,
i = 1,2. Since H, P, P, are distinct complete components of G — C' we
obviously have, as claimed, ¢f(G) = (K, U K5 U K;) V K9 where, r = |H|,
s =ni, t =ng and K> is induced by D.

Case 2. m > 2.
We have already proved in Case 1 (3) that (G — C) = H if m > 2. We next
prove

(1) G — z; (G — y; resp.) is hamiltonian for all ¢ = 0,...,m and hence
d(zi) < m (d(y;) <m resp.).

By setting S := {z1,x2, 23}, we get H C SyN(G—C) and hence G—C = {x¢}
by Lemma 2.3. Thus (1) is true for ¢ = 0. Obviously (1) is true whenever
n; = 1. Otherwise, suppose for instance n; > 1 and set S := {xg, x2, x3}.
Clearly xf ¢ So N C by Lemma 2.2 since x1 ¢ S; U Se U S3. Therefore
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z] € N(z2) UN(x3). Whether x9z] € E or x37] € E, G — x1 is obviously
hamiltonian and (1) is true. From now on and by the choice of C', we may
assume d(x;) < m (d(y;) < m by symmetry. As a next step we prove.

(2) |Nx,(d;)] > m —1 and |Ny;(d;)| > m — 1 holds for any d; € D.

Otherwise choose z;, z; with 1 < ¢ < j < m such that N(di) N {z;,z;} = 0.
Set S := {x1,x;,x;}. Clearly z1 € Sp N C and hence, d; = 2] € S; and
di = Ym € N(z;) N N(z;). Suppose first m > 4, set S := {xp, z;,2;} C X
and assume i < j. Choose, if possible, i minimum. If 4 > i then zpd; ¢ E
by Lemma 2.1 (2). By the choice of i, we must have j =m, i =m — 1 and
1 < h < i. Moreover x,dy € E for otherwise x1, d; are consecutive elements
of Sop N C. Consider now S := {xg,x1,z}. Clearly y,, € Sy N C since
x1, ), are noninsertible. But then y € N(x1) U N(x3), a contradiction
to Lemma 2.1 (2). It remains to consider the case m = 3, in which case
di = y3 € N(z1) N N(x2). This implies in turn that ng > 2 and ng > 2.
Since d(y3) < m = 3, we get N(y3) = {di,22, 23,95 }, implying x5 = y3
and hence ng = 2. In G*, we clearly have zoz1 ¢ E(G*) and xoys ¢ E(G™).
It is now easy to check that x1y3 ¢ E(G*) since N(z1) N N(y3) C {d1} and
zo € N(di)\ {z1,y3}. Therefore {zo,z1,y3} € I3(G*). Thus d(y3) + d(zo) +
d(z1) >n—1+s3 =n. As ny > 2, n3g > 2 we must have ny = 1, ny = 2,
n3 = 2 and d(z1) = d(z2) = d(z3) = 3. We note that x3d; ¢ E for otherwise
we have edges crossing at z9 and x3, r3dy ¢ F for otherwise replacing daxo by
doxsysrs and dsxsysd; by dsxod; in C' we get a hamiltonian cycle. Moreover
x3y2 ¢ E since 3 is noinsertible and x3zy ¢ E. Thus N(z3) = {d2,ys3}, a
contradiction to the fact that d(z3) = 3. The proof of (2) is now complete.

3) X =Y.

By contradiction, suppose X # Y. As a first step, we show that (3) is true
if there exists z; € Xo such that Np(z;) = D. Without loss of generality,
assume Np(z1) = D. Since d(z1) < m, we deduce that N(z1) = D and hence
x1 = Y1, that is n; = 1. Suppose next n; > 1 for some ¢, 2 < i < m and set
S := {xo,x1,xi11}. Clearly y; € So N C and hence y; € N(S). Obviously
y; ¢ N(xzo)UN(x1) and consequently y; € N(xit1),y; € N(xg) NN(z1).
This means that y,~ = d;, a contradiction since then y;” = xz;. Therefore
n; = 1 for any ¢,1 < i < m. To prove that n,, = 1 it suffices to consider
S :={xo,r1 = y1,Ym—1} and to use the same arguments.

For the remainder we assume that |Np(z;)| < m is true for all z; € Xj.
Consider the graph G[D U Xy|. By (2) we have |E(D, Xy)| > m(m —1). On
the other hand we have |E(Xg, D)| < m(m — 1) since |Np(z;)| < m for all
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z; € Xo. Therefore the equality holds and |Np(z;)| = m — 1 for all z; € X
and |Nx,(d;)] = m — 1 for all d; € D. By symmetry |Np(y;)| = m — 1 for
all y; € Yo and | Ny, (d;)| = m —1 for all d; € D. Suppose now that dyz; ¢ E
in ¢f(G) for some i > 1. By (3), Nx(d1) = X\{z;} and Ny (di) = X\{y;}
for some j > 0. Therefore Ty, ,, C {y;} and @g,,, < 3. As d(y;) > 3 we have
diz; € E(cj(GQ)) by Theorem 1.1. With this contradiction, (3) is proved.

(4) CS(G) = Kanl \/FnTH

Consider again the dual closure ¢jj(G) and suppose z1dy, ¢ E for some h > 0.
By (3) and the fact that |[Np(xp)| =m — 1, N(x1) UN(dp) U{x1,dp} =V,
implying z1d;, € E(cj(G)). Therefore Np(x;) = D holds for any z; € Xo.
It remains to show that D is a clique in ¢i(G). Indeed, if did; ¢ E then
Og,q5 < |D| = m and 64,4j > m since Ty,q5 C D and d(d;) > m for any
d; € D. By Theorem 1.1, did; € E(cj(G)). It remains to note that |D| =
m = 251 by (3) and hence ¢§(G) = KnT—l \/?%1. |

4. CONCLUDING REMARKS
For any independent triple S = {a, b, c}, we set Apin(S) := min{Aap, Apes Aca },

where Az, zy ¢ E stands for the number of vertices adjacent to both  and
y. In [6], we obtained the following result, related to Theorem 1.4.

Theorem 4.1. Let G be a 2-connected graph. If
(5) Sel(G)=05>n—14+ Ain(5)

The graph C7 is the cycle on 7 vertices. In fact this result is still valid if
we change the condition S € I3(G) by S € I3(G*). From this result one can
derive nearly twenty corollaries which are improvements of known sufficient
conditions (see [6]).

Since Apmin(S) > s3, a natural open question is the following:

Problem 4.2. A 2-connected graph G satisfying the condition S € I3(G*) =
g > n — 1 is hamiltonian if and only if ¢(G) € {C7, K, }.
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