CONNECTIVITY OF PATH GRAPHS

Martin Knor
Slovak University of Technology
Faculty of Civil Engineering, Department of Mathematics
Radlinského 11, 81368 Bratislava, Slovakia
e-mail: knor@vox.svf.stuba.sk
AND
L'udovít Niepel
Kuwait University, Faculty of Science
Department of Mathematics $\&$ Computer Science
P.O. box 5969 Safat 13060, Kuwait
e-mail: NIEPEL@MATH-1.sci.kuniv.edu.kw.

Abstract

We prove a necessary and sufficient condition under which a connected graph has a connected P_{3}-path graph. Moreover, an analogous condition for connectivity of the P_{k}-path graph of a connected graph which does not contain a cycle of length smaller than $k+1$ is derived.

Keywords: connectivity, path graph, cycle.
2000 Mathematics Subject Classification: 05C40, 05C38.

1 Introduction

Let G be a graph, $k \geq 1$, and let \mathcal{P}_{k} be the set of all paths of length k (i.e., with $k+1$ vertices) in G. The vertex set of a path graph $P_{k}(G)$ is the set \mathcal{P}_{k}. Two vertices of $P_{k}(G)$ are joined by an edge if and only if the edges in the intersection of the corresponding paths form a path of length $k-1$, and their union forms either a cycle or a path of length $k+1$. It means that the

[^0]vertices are adjacent if and only if one can be obtained from the other by "shifting" the corresponding paths in G.

Path graphs were investigated by Broersma and Hoede in [2] as a natural generalization of line graphs, since $P_{1}(G)$ is the line graph of G. We have to point out that, in the pioneering paper [2] the number k in $P_{k}(G)$ denotes the number of vertices of the paths and not their length. However, in some applications our notation is more consistent, see e.g., [3]. Traversability of P_{2}-path graphs is studied in [9], and a characterization of P_{2}-path graphs is given in [2] and [7]. Distance properties of path graphs are studied in [1], [4] and [5], and [6] and [8] are devoted to isomorphisms of path graphs.

Let $V=V(G)$ be a set of n distinct symbols. Consider strings of length $k+1$ of these symbols, in which all $k+1$ symbols are mutually distinct. Let G be a graph on vertex set V, edges of which correspond to pairs of symbols which can be neighbours in our strings. If we do not distinguish between a string and its reverse, then $P_{k}(G)$ is connected if and only if every string can be obtained from any other one sequentially, by removing a symbol from one of its ends and adding a symbol to the other end.

Let G be a connected graph. It is well-known (and trivial to prove) that $P_{1}(G)$, i.e., the line graph of G, is a connected graph. However, this is not the case for P_{k}-path graphs if $k \geq 2$. This causes some problems, especially when studying distances in path graphs. For example, in [1] the authors give an upper bound for the diameter of every component of a P_{k}-path graph, as the whole graph can be disconnected. By [4, Theorem 1], we have:

Theorem A. Let G be a connected graph. Then $P_{2}(G)$ is disconnected if and only if G contains two distinct paths A and B of length two, such that the degrees of both endvertices of A are 1 in G.

In this paper we generalize Theorem A to P_{k}-path graphs when G does not contain a cycle of length smaller than $k+1$. Moreover, we completely solve the case of P_{3}-path graphs.

We use standard graph-theoretic notation. Let G be a graph. The vertex set and the edge set of G, respectively, are denoted by $V(G)$ and $E(G)$. For two subgraphs, H_{1} and H_{2} of G, by $H_{1} \cup H_{2}$ we denote the union of H_{1} and H_{2}, and $H_{1} \cap H_{2}$ denotes their intersection. Let u and v be vertices in G. By $d_{G}(u, v)$ we denote the distance from u to v in G, and by $\operatorname{deg}_{G}(u)$ the degree of u is denoted. For the vertex set of a component of G containing u we use $C o(u)$. A path and a cycle, respectively, of length l are denoted by P_{l} and C_{l}.

The outline of the paper is as follows. In Section 2 we give a (necessary and sufficient) condition for a connected graph (under some restrictions) to have a connected P_{k}-path graph, and Section 3 is devoted to an analogous condition for P_{3}-path graphs of general graphs.

$2 \quad P_{k}$-Path Graphs

Let G be a graph, $k \geq 2,0 \leq t \leq k-2$, and let A be a path of length k in G. By $P_{k, t}^{*}$ we denote an induced subgraph of G which is a tree of diameter $k+t$ with a diametric path $\left(x_{t}, x_{t-1}, \ldots, x_{1}, v_{0}, v_{1}, \ldots, v_{k-t}, y_{1}, y_{2}, \ldots, y_{t}\right)$, such that all endvertices of $P_{k, t}^{*}$ have distance $\leq t$ either to v_{0} or to v_{k-t} and the degrees of $v_{1}, v_{2}, \ldots, v_{k-t-1}$ are 2 in $P_{k, t}^{*}$. Moreover, no vertex of $V\left(P_{k, t}^{*}\right)$ $\left\{v_{1}, v_{2}, \ldots, v_{k-t-1}\right\}$ is joined by an edge to a vertex in $V(G)-V\left(P_{k, t}^{*}\right)$. The path $\left(v_{0}, v_{1}, \ldots, v_{k-t}\right)$ is a base of $P_{k, t}^{*}$, and we say that A lies in $P_{k, t}^{*}$, $A \in P_{k, t}^{*}$, if and only if the base of $P_{k, t}^{*}$ is a subpath of A.

In Figure 1 a $P_{6,3}^{*}$ is pictured. Note that this graph contains also two $P_{6,0}^{*}$ and one $P_{6,1}^{*}$, but it does not contain $P_{6,2}^{*}$. We remark that by thin halfedges are outlined possible edges joining vertices of $P_{6,3}^{*}$ to vertices in $V(G)-V\left(P_{6,3}^{*}\right)$.

In this section we prove the following theorem.
Theorem 1. Let G be a connected graph without cycles of length smaller than $k+1$. Then $P_{k}(G)$ is disconnected if and only if G contains $P_{k, t}^{*}, 0 \leq$ $t \leq k-2$, and a path A of length k such that $A \notin P_{k, t}^{*}$.

For easier handling of paths of length k in G (i.e., the vertices of $P_{k}(G)$) we adopt the following convention. We denote the vertices of $P_{k}(G)$ (as well as the vertices of G) by small letters a, b, \ldots, while the corresponding paths of length k in G will be denoted by capital letters A, B, \ldots. It means that if A is a path of length k in G and a is a vertex in $P_{k}(G)$, then a must be the vertex corresponding to the path A.

Lemma 2. Let G be a connected graph without cycles of length smaller than $k+1$. Moreover, let $A=\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ be a path of length k in G which is not in $P_{k, t}^{*}, 0 \leq t \leq k-2$. Then for every $i, 0 \leq i \leq k$, there is an $a_{i} \in C o(a)$ such that x_{i} is an endvertex of A_{i} and the edge of A_{i} incident with x_{i} lies in A.

Proof. Observe that if there is a vertex $a_{i} \in C o(a)$ such that x_{i} is an endvertex of A_{i}, then choosing a_{i} with $d_{P_{k}(G)}\left(a, a_{i}\right)$ smallest possible, the endedge of A_{i} incident with x_{i} is in A.

Thus, suppose that for some $i, 0<i<k$, there is no $a_{i} \in C o(a)$ such that x_{i} is an endvertex of A_{i}. Let H be a subgraph of G formed by the vertices and edges of paths A^{\prime}, where $a^{\prime} \in C o(a)$. Clearly, $\left(x_{i-1}, x_{i}, x_{i+1}\right) \subseteq A^{\prime}$ for every $a^{\prime} \in \operatorname{Co}(a)$. Let $R=\left(v_{0}, v_{1}, \ldots, v_{k-t}\right)$ be the longest path that share all $A^{\prime}, a^{\prime} \in \operatorname{Co}(a)$. As $k-t \geq 2$, we have $t \leq k-2$. Further, $\operatorname{deg}_{H}\left(v_{1}\right)=$ $\operatorname{deg}_{H}\left(v_{2}\right)=\ldots=\operatorname{deg}_{H}\left(v_{k-t-1}\right)=2$, and every endvertex of H has distance $\leq t$ either to v_{0} or to v_{k-t}. Since H does not contain cycles (recall that the length of every cycle in G is at least $k+1$), H is $P_{k, t}^{*}, 0 \leq t \leq k-2$. As $R \subseteq A$ we have $A \in P_{k, t}^{*}$, a contradiction.
Let A and B be two paths of length k in G. If one endvertex of B, say x, lies in A, but the edge of B incident with x is not in A, then we say that the pair (A, B) forms T with a touching vertex x.

Note that if (A, B) forms T in G, then $A \cup B$ is not necessarily a tree even if G does not contain a cycle of length $\leq k$.

Lemma 3. Let G be a graph without cycles of length smaller than $k+1$. Moreover, suppose G does not contain $P_{k, t}^{*}, 0 \leq t \leq k-2$, and let (A, B) form T in G. Then $b \in \operatorname{Co}(a)$.

Proof. Let (A, B) form T with a touching vertex x. By Lemma 2, there is $a^{\prime} \in C o(a)$ such that x is an endvertex of A^{\prime} and the edge of A^{\prime} incident with x lies in A. As G does not contain a cycle of length smaller than $k+1$, we have $d_{P_{k}(G)}\left(a^{\prime}, b\right) \leq k$, and hence $b \in C o(a)$.
Now we are able to prove Theorem 1.
Proof of Theorem 1. We arrange the proof into three steps.
(i) First suppose that G contains some $P_{k, t}^{*}, 0 \leq t \leq k-2$, with a base $R=\left(v_{0}, v_{1}, \ldots, v_{k-t}\right)$, and a path A of length k such that $A \notin P_{k, t}^{*}$. Since the diameter of $P_{k, t}^{*}$ is $k+t$, there is a path B of length k in G such that $B \in P_{k, t}^{*}$, i.e., $R \subseteq B$. By the structure of $P_{k, t}^{*}$, for every vertex b^{\prime} of $P_{k}(G)$
which is adjacent to b we have $R \subseteq B^{\prime}$, too. Hence, for every $b^{\prime} \in C o(b)$ it holds $R \subseteq B^{\prime}$. Since A does not contain R, we have $a \notin C o(b)$, so that $P_{k}(G)$ is a disconnected graph.
(ii) Now suppose that G contains some $P_{k, t}^{*}, 0 \leq t \leq k-2$, such that for every $a \in V\left(P_{k}(G)\right)$ it holds $A \in P_{k, t}^{*}$. We show that either $P_{k}(G)$ is a connected graph, or G contains $P_{k, t^{\prime}}^{*}, 0 \leq t^{\prime}<t$, and a path B of length k such that $B \notin P_{k, t^{\prime}}^{*}$.

Let $R=\left(v_{0}, v_{1}, \ldots, v_{k-t}\right)$ be the base of $P_{k, t}^{*}$, and let b be a vertex of $P_{k}(G)$ such that $B \in P_{k, t}^{*}$ and v_{0} is an endvertex of B (e.g., choose B as a part of a diametric path of $P_{k, t}^{*}$). Let a be a vertex of $P_{k}(G), A \in P_{k, t}^{*}$. If there is $a^{\prime} \in C o(a)$ such that either v_{0} or v_{k-t} is an endvertex of A^{\prime}, then either $d_{P_{k}(G)}\left(a^{\prime}, b\right) \leq 2 t$ or $d_{P_{k}(G)}\left(a^{\prime}, b\right)=t$ (by the structure of $P_{k, t}^{*}$ we have $\left.R \subseteq A^{\prime}\right)$. Hence, $a \in C o(b)$.

Thus, suppose that there is a vertex a in $P_{k}(G), A \in P_{k, t}^{*}$, such that for every $a^{\prime} \in C o(a)$ neither v_{0} nor v_{k-t} is an endvertex of A^{\prime}. Let H be a subgraph of G formed by the vertices and edges of paths A^{\prime}, for which $a^{\prime} \in$ $C o(a)$. Clearly, $R \subseteq A^{\prime}$ for every $a^{\prime} \in C o(a)$. Let $R^{\prime}=\left(v_{0}^{\prime}, v_{1}^{\prime}, \ldots, v_{k-t^{\prime}}^{\prime}\right)$ be the longest path that share all $A^{\prime}, a^{\prime} \in C o(a)$. Since $R \subset R^{\prime}$, by the choice of A we have $v_{0}=v_{i}^{\prime}, v_{1}=v_{i+1}^{\prime}, \ldots, v_{k-t}=v_{i+k-t}^{\prime}$, where $i>0$ and $i+k-t<k-t^{\prime}$, i.e., $t^{\prime}<t-i$. Further, $\operatorname{deg}_{H}\left(v_{1}^{\prime}\right)=\operatorname{deg}_{H}\left(v_{2}^{\prime}\right)=\ldots=\operatorname{deg}_{H}\left(v_{k-t-1}^{\prime}\right)=2$, and every endvertex of H has distance $\leq t^{\prime}$ either to v_{0}^{\prime} or to $v_{k-t^{\prime}}^{\prime}$. Since H does not contain cycles, H is $P_{k, t^{\prime}}^{*}, 0 \leq t \leq k-2$. As $R^{\prime} \nsubseteq B$, we have $B \notin P_{k, t^{\prime}}^{*}$.
(iii) Finally, suppose that G does not contain $P_{k, t}^{*}, 0 \leq t \leq k-2$. We show that $P_{k}(G)$ is a connected graph.

Let $a, b \in V\left(P_{k}(G)\right)$. First suppose that $A \cap B$ does not contain an edge. Let $P=\left(y_{0}, y_{1}, \ldots, y_{l}\right)$ be a shortest path in G joining a vertex of A with a vertex of B (i.e., $y_{l} \in V(B)$). By Lemma 2 , there is $b^{\prime} \in C o(b)$ such that y_{l} is an endvertex of B^{\prime} and the edge of B^{\prime} incident with y_{l} lies in B. Let $B^{\prime}=\left(b_{0}^{\prime}, b_{1}^{\prime}, \ldots, b_{k-1}^{\prime}, y_{l}\right)$. Then $P^{\prime}=\left(b_{0}^{\prime}, b_{1}^{\prime}, \ldots, b_{k-1}^{\prime}, y_{l}, y_{l-1}, \ldots, y_{0}\right)$ is a walk of length $k+l$. Since G does not contain a cycle of length $\leq k$, every subwalk of P^{\prime} of length k is a path. Let $B^{\prime \prime}$ be a subpath of length k of P^{\prime} with endvertex y_{0}. Then $d_{P_{k}(G)}\left(b^{\prime}, b^{\prime \prime}\right) \leq l$, and hence $b^{\prime \prime} \in C o(b)$. As $\left(A, B^{\prime \prime}\right)$ forms T in G, we have $b \in C o(a)$, by Lemma 3 .

Now suppose that $A \cap B$ contains an edge. Let $P=\left(y_{0}, y_{1}, \ldots, y_{l}\right)$ be a longest path that is shared by A and B. By Lemma 2, for every i, $0 \leq i \leq l$, there is $b_{i} \in \operatorname{Co}(b)$ such that y_{i} is an endvertex of B_{i}, and the edge of B_{i} incident with y_{i} lies in B. If B_{0} does not contain the edge $y_{0} y_{1}$, then $\left(A, B_{0}\right)$ forms T in G, so that $b \in C o(a)$, by Lemma 3. Analogously, if
B_{l} does not contain $y_{l-1} y_{l}$, then $b \in C o(a)$. Thus, suppose that B_{0} contains the edge $y_{0} y_{1}$ and B_{l} contains $y_{l-1} y_{l}$. Then there is some $i, 0 \leq i<l$, such that both B_{i} and B_{i+1} contain the edge $y_{i} y_{i+1}$. By Lemma 2, there is $a^{\prime} \in C o(a)$ such that y_{i} is an endvertex of A^{\prime} and the edge of A^{\prime} incident with y_{i} lies in A. If A^{\prime} contains the edge $y_{i} y_{i+1}$, then $d_{P_{k}(G)}\left(a^{\prime}, b_{i+1}\right) \leq k-1$, and hence $b \in \operatorname{Co}(a)$. On the other hand, if A^{\prime} does not contain $y_{i} y_{i+1}$, we have $d_{P_{k}(G)}\left(a^{\prime}, b_{i}\right) \leq k$, and hence $b \in C o(a)$ as well.

$3 \quad P_{3}$-Path Graphs

Let G be a graph and let A be a path of length three in G. By P_{3}° we denote a subgraph of G induced by vertices of a path of length 3 , say $\left(v_{0}, v_{1}, v_{2}, v_{3}\right)$, such that neither v_{0} nor v_{3} has a neighbour in $V(G)-\left\{v_{1}, v_{2}\right\}$. We say that the path A is in $P_{3}^{\circ}, A \in P_{3}^{\circ}$, if $A=\left(v_{0}, v_{1}, v_{2}, v_{3}\right)$.

By P_{4}° we denote an induced subgraph of G with a path $\left(x, v_{0}, v_{1}, v_{2}, y\right)$, in which every neighbour of v_{0} (and analogously every neighbour of v_{2}), except v_{0}, v_{1} and v_{2}, has degree 1 , or it has degree 2 and in this case it is adjacent to v_{1}. Moreover, no vertex of $V\left(P_{4}^{\circ}\right)-\left\{v_{1}\right\}$ is joined by an edge to a vertex of $V(G)-V\left(P_{4}^{\circ}\right)$ in G. The path $\left(v_{0}, v_{1}, v_{2}\right)$ is a base of P_{4}°, and we say that the path A lies in $P_{4}^{\circ}, A \in P_{4}^{\circ}$, if the base of P_{4}° is a subpath of A.

On example of a graph P_{3}° is pictured in Figure 2 and a graph P_{4}° in Figure 3. The edges that must be in G are painted thick, while edges, that are not necessarily in G, are painted thin.

Let K_{4} be a complete graph on 4 vertices, and let S be a set (possibly empty) of independent vertices. A graph obtained from $K_{4} \cup S$ by joining all vertices of S to one special vertex of K_{4} is denoted by K_{4}^{*}, see Figure 4. Let $K_{2, t}$ be a complete bipartite graph, $t \geq 1$, and let (X, Y) be the bipartition of $K_{2, t}, X=\left\{v_{1}, v_{2}\right\}$. Join t sets of independent vertices by edges, each to one vertex of Y; further, glue a set of stars (each with at least 3 vertices) by one endvertex, each either to v_{1} or to v_{2}; glue a set of triangles by one
vertex, each either to v_{1} or to v_{2}; and finally, join v_{1} to v_{2} by an edge. The resulting graph is denoted by $K_{2, t}^{*}$, see Figure 5 .

Figure 4

Figure 5

Theorem 4. Let G be a connected graph such that $P_{3}(G)$ is not empty. Then $P_{3}(G)$ is disconnected if and only if one of the following holds:
(1) G contains $P_{t}^{\circ}, t \in\{3,4\}$, and a path A of length 3 such that $A \notin P_{t}^{\circ}$;
(2) G is isomorphic to K_{4}^{*};
(3) G is isomorphic to $K_{2, t}^{*}, t \geq 1$.

If $A \in P_{3}^{\circ}$ in G, then a is an isolated vertex in $P_{3}(G)$, and if $A \in P_{4}^{\circ}$, then a lies in a complete bipartite graph. Thus, we have the following corollary of Theorem 4.

Corollary 5. Let G be a connected graph that is not isomorphic to K_{4}^{*} or to $K_{2, t}^{*}, t \geq 1$. Then at most one nontrivial component of $P_{3}(G)$ is different from a complete bipartite graph.

In the proof of Theorem 4 we use 6 lemmas.
Lemma 6. Let G be a connected graph, and let a and b be vertices in $P_{3}(G)$. If neither A nor B is in some P_{3}° or P_{4}° in G, then there are vertices c and d in $P_{3}(G)$, such that $c \in C o(a), d \in C o(b)$ and C and D share an edge in G.

Proof. Let $A \cap B$ do not contain an edge, and let $P=\left(y_{0}, y_{1}, \ldots, y_{l}\right)$ be a shortest path in G joining a vertex of A with a vertex of B (i.e., $y_{l} \in V(B)$). We show that there is a vertex b^{\prime} in $C o(b)$, such that y_{l} is an endvertex of B^{\prime}.

Suppose that there is no vertex b^{\prime} with the required property. Then $B=\left(x_{0}, x_{1}, y_{l}, x_{3}\right)$, and since B is not in P_{3}° in G, there is a vertex \bar{b} in $P_{3}(G)$ such that $\bar{b} b \in E\left(P_{3}(G)\right)$. By our assumption, $\bar{B}=\left(x_{1}, y_{l}, x_{3}, x_{4}\right)$ for some $x_{4} \in V(G)$. Moreover, for every neighbour u of b we have $U=\left(x_{1}, y_{l}, x_{3}, z\right)$,
where z has no neighbours in $V(G)-\left\{y_{l}, x_{3}\right\}$; and for every neighbour v of \bar{b} we have $V=\left(z, x_{1}, y_{l}, x_{3}\right)$, where z has no neighbours in $V(G)-\left\{x_{1}, y_{l}\right\}$. Hence B is in some P_{4}°, a contradiction.

Thus, there is a vertex $b^{\prime} \in C o(b)$, such that y_{l} is an endvertex of B^{\prime}. Let $b^{\prime \prime}$ be the first vertex on a shortest $b-b^{\prime}$ path in $P_{3}(G)$, such that one endvertex of $B^{\prime \prime}$ is in P. Assume that $B^{\prime \prime}=\left(b_{3}^{\prime \prime}, b_{2}^{\prime \prime}, b_{1}^{\prime \prime}, y_{i}\right)$. Then $P^{\prime}=$ $\left(b_{3}^{\prime \prime}, b_{2}^{\prime \prime}, b_{1}^{\prime \prime}, y_{i}, y_{i-1}, \ldots, y_{0}\right)$ is a path of length $i+3 \geq 3$. Let B^{*} be a subpath of P of length 3 , such that y_{0} is an endvertex of B^{*}. Then $d_{P_{3}(G)}\left(b^{\prime \prime}, b^{*}\right)=i$, and hence, $b^{*} \in C o(b)$.

Denote $B^{*}=\left(y_{0}, b_{1}^{*}, b_{2}^{*}, b_{3}^{*}\right)$, and suppose that $A \cap B^{*}$ does not contain an edge. Let $A=\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$. Distinguish two cases.
(i) $y_{0}=a_{1}$. Then $b_{1}^{*} \neq a_{0}$ and $b_{1}^{*} \neq a_{2}$, so that at least one of a_{0} and a_{2}, say a_{0}, is different from b_{2}^{*}. Since a_{0} is not an interior vertex of B^{*}, $D=\left(a_{0}, y_{0}, b_{1}^{*}, b_{2}^{*}\right)$ is a path of length 3 in G. As $b^{*} d \in E\left(P_{3}(G)\right)$, we have $d \in C o(b)$ and $A \cap D$ contains an edge.
(ii) $y_{0}=a_{0}$. If $b_{1}^{*} \neq a_{2}$ then $C=\left(b_{1}^{*}, y_{0}, a_{1}, a_{2}\right)$ is a path of length 3 in G, $c \in C o(a), b^{*} \in C o(b)$, and $C \cap B^{*}$ contains an edge. On the other hand, if $b_{1}^{*}=a_{2}$ then $D=\left(a_{1}, y_{0}, a_{2}, b_{2}^{*}\right)$ is a path of length 3 in $G, d \in C o(b)$, and $A \cap D$ contains an edge.

Lemma 7. Let G be a connected graph, and let a and b be two vertices in $P_{3}(G)$ such that $b \notin \operatorname{Co}(a)$ and $A \cap B$ contains a path of length two. Moreover, suppose G does not contain P_{3}° or P_{4}°. Then G is isomorphic either to K_{4}^{*} or to $K_{2, t}^{*}$ for some $t \geq 1$.

Proof. Let $A=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ and $B=\left(x_{0}, x_{1}, x_{2}, x_{4}\right), x_{3} \neq x_{4}$. Since $b \notin C o(a), x_{0}$ has no neighbour in $V(G)-\left\{x_{1}, x_{2}\right\}$. Thus, both x_{3} and x_{4} have some neighbours in $V(G)-\left\{x_{1}, x_{2}\right\}$, as G does dot contain P_{3}°. Let y be a vertex of G such that $x_{1} y \in E(G)$ and $y \notin\left\{x_{0}, x_{2}, x_{3}, x_{4}\right\}$. Then $a^{\prime} \in C o(a)$ and $b^{\prime} \in C o(b)$, where $A^{\prime}=\left(y, x_{1}, x_{2}, x_{3}\right)$ and $B^{\prime}=\left(y, x_{1}, x_{2}, x_{4}\right)$. Since $b \notin C o(a)$ we have $b^{\prime} \notin C o\left(a^{\prime}\right)$, and hence, y has no neighbour in $V(G)-\left\{x_{1}, x_{2}\right\}$.

Suppose that $x_{3} x_{4} \in E(G)$ and distinguish three cases.
Case 1. $x_{1} x_{3}, x_{1} x_{4} \in E(G)$, see Figure 6.
Let G^{\prime} be a graph obtained from G by joining x_{0} to x_{2}. Then A, $\left(x_{1}, x_{2}, x_{3}, x_{4}\right),\left(x_{2}, x_{3}, x_{4}, x_{1}\right),\left(x_{3}, x_{4}, x_{1}, x_{0}\right),\left(x_{4}, x_{1}, x_{0}, x_{2}\right),\left(x_{1}, x_{0}, x_{2}, x_{4}\right)$, $\left(x_{0}, x_{2}, x_{4}, x_{3}\right),\left(x_{2}, x_{4}, x_{3}, x_{1}\right),\left(x_{1}, x_{2}, x_{4}, x_{3}\right), B$ is a sequence of paths
whose images produce a walk of length 9 from a to b in $P_{3}\left(G^{\prime}\right)$. (We remark that $d_{P_{3}\left(G^{\prime}\right)}(a, b)=9$.) Thus $b \in C o(a)$, a contradiction. Hence $\operatorname{deg}_{G}\left(x_{0}\right)=1$.

Let $C_{1}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and $C_{2}=\left(x_{1}, x_{2}, x_{4}, x_{3}\right)$ be two cycles of length 4 in G. For every subpath A^{\prime} of C_{1} of length 3 we have $a^{\prime} \in C o(a)$, and for every subpath B^{\prime} of C_{2} of length 3 we have $b^{\prime} \in C o(b)$. Let y be a vertex in $V(G)-\left\{x_{1}, \ldots, x_{4}\right\}$ which is joined to some $x \in\left\{x_{1}, \ldots, x_{4}\right\}$. Since $C_{1} \cap C_{2}$ contains an edge incident with x, there are paths $A^{\prime \prime}$ and $B^{\prime \prime}$ of length 3 in G, both containing the edge $y x$, such that $a^{\prime \prime} \in C o(a), b^{\prime \prime} \in C o(b)$ and $A^{\prime \prime} \cap B^{\prime \prime}$ contains P_{2}. Thus, analogously as above it can be shown that $\operatorname{deg}_{G}(y)=1$. Finally, as G does not contain P_{3}° we have $x=x_{1}$, and hence $G \cong K_{4}^{*}$.

Figure 6

Figure 7

Figure 8

Case 2. $x_{1} x_{3} \in E(G)$ and $x_{1} x_{4} \notin E(G)$, see Figure 7 and Figure 8 (by dotted lines edges that are missing in G are pictured).

Since $\left(x_{1}, x_{2}, x_{3}\right)$ is not a base of P_{4}°, either there is a vertex $y \in V(G)-$ $\left\{x_{0}, \ldots, x_{4}\right\}$ such that $y x_{4} \in E(G)$, or there is a path of length 2 glued by one endvertex to x_{3} (the other vertices of the path are not in $\left\{x_{0}, \ldots, x_{4}\right\}$).

First suppose that there is $x_{5} \in V(G)-\left\{x_{0}, \ldots, x_{4}\right\}$ such that $x_{4} x_{5} \in$ $E(G)$, see Figure 7. Let G^{\prime} be a graph obtained from G by joining x_{0} to x_{2}. Then $A,\left(x_{1}, x_{2}, x_{3}, x_{4}\right),\left(x_{2}, x_{3}, x_{4}, x_{5}\right),\left(x_{0}, x_{2}, x_{3}, x_{4}\right),\left(x_{1}, x_{0}, x_{2}, x_{3}\right)$, $\left(x_{3}, x_{1}, x_{0}, x_{2}\right),\left(x_{4}, x_{3}, x_{1}, x_{0}\right),\left(x_{2}, x_{4}, x_{3}, x_{1}\right),\left(x_{1}, x_{2}, x_{4}, x_{3}\right), B$ is a sequence of paths whose images produce a walk of length 9 from a to b in $P_{3}\left(G^{\prime}\right)$. Thus $b \in C o(a)$, a contradiction.

Hence $\operatorname{deg}_{G}\left(x_{0}\right)=1$. Analogously, for every vertex x, such that $x x_{2}, x x_{3} \in E(G)$, every neighbour of x (different from x_{2} and x_{3}) has degree 1 in G.

Let y_{1} and y_{2} be vertices in $V(G)-\left\{x_{0}, \ldots, x_{5}\right\}$, such that $x_{2} y_{1}, y_{1} y_{2} \in$ $E(G)$. If y_{2} is joined by an edge to a vertex, say z, of $V(G)-\left\{x_{2}, y_{1}\right\}$, then for $C=\left(x_{2}, y_{1}, y_{2}, z\right)$ we have $c \in C o(a)$ and $c \in C o(b)$. Hence $b \in C o(a)$, a contradiction. Since G contains P_{3}° if there is a vertex of degree 1 joined to x_{2}, we have $G \cong K_{2, t}^{*}$ for some $t \geq 2$.

Now suppose that there are $x_{5}, x_{6} \in V(G)-\left\{x_{0}, \ldots, x_{4}\right\}$ such that $x_{3} x_{5}, x_{5} x_{6} \in E(G)$, see Figure 8. (Observe that the cases $x_{6} \in\left\{x_{0}, x_{1}, x_{4}\right\}$ imply $b \in C o(a)$.)

Let G^{\prime} be a graph obtained from G by joining x_{0} to x_{2}. Then A, $\left(x_{1}, x_{2}, x_{3}, x_{5}\right),\left(x_{2}, x_{3}, x_{5}, x_{6}\right),\left(x_{0}, x_{2}, x_{3}, x_{5}\right),\left(x_{1}, x_{0}, x_{2}, x_{3}\right),\left(x_{3}, x_{1}, x_{0}, x_{2}\right)$, $\left(x_{4}, x_{3}, x_{1}, x_{0}\right),\left(x_{2}, x_{4}, x_{3}, x_{1}\right),\left(x_{1}, x_{2}, x_{4}, x_{3}\right), B$ is a sequence of paths whose images produce a walk of length 9 from a to b in $P_{3}\left(G^{\prime}\right)$. Thus $b \in C o(a)$, a contradiction.

Hence $\operatorname{deg}_{G}\left(x_{0}\right)=1$. Analogously, for every vertex x, such that $x x_{2}, x x_{3} \in E(G)$, every neighbour of x (different from x_{2} and x_{3}) has degree 1 in G. Now analogously as above it can be shown that $G \cong K_{2, t}^{*}$ for some $t \geq 2$.

Case 3. $x_{1} x_{3}, x_{1} x_{4} \notin E(G)$, see Figure 9.
Since neither $\left(x_{1}, x_{2}, x_{3}\right)$ nor $\left(x_{1}, x_{2}, x_{4}\right)$ is a base of P_{4}°, there is a vertex $x_{5} \in V(G)-\left\{x_{0}, \ldots, x_{4}\right\}$ which is adjacent either to x_{3} or to x_{4}. Assume that $x_{3} x_{5} \in E(G)$. As $b \notin C o(a), x_{5}$ has no neighbour in $\left\{x_{0}, x_{1}, x_{4}\right\}$. Since $\left(x_{1}, x_{2}, x_{3}\right)$ is not a base of P_{4}°, there is a vertex $y \in V(G)-\left\{x_{0}, \ldots, x_{5}\right\}$ such that either $y x_{5} \in E(G)$ or $y x_{4} \in E(G)$.

First suppose that there is a vertex $x_{6} \in V(G)-\left\{x_{0}, \ldots, x_{5}\right\}$ such that $x_{5} x_{6} \in E(G)$. Then every neighbour of x_{4} (different from x_{2} and x_{3}) has degree 1 in G, otherwise $b \in \operatorname{Co}(a)$. Analogously, for every vertex x, such that $x x_{2}, x x_{3} \in E(G)$, every neighbour of x (different from x_{2} and x_{3}) has degree 1 in G. Thus, analogously as above we have $G \cong K_{2, t}^{*}$ for some $t \geq 1$.

If there is $x_{6} \in V(G)-\left\{x_{0}, \ldots, x_{5}\right\}$ such that $x_{4} x_{6} \in E(G)$, then the problem is reduced to the previous case as $\left(x_{3}, x_{2}, x_{4}\right)$ is not a base of P_{4}°.

Figure 9

Figure 10

To prove the lemma it remains to consider the case $x_{3} x_{4} \notin E(G)$, see Figure 10.

As $b \notin C o(a)$, there is no cycle $\left(x_{3}, x_{2}, x_{4}, \ldots\right)$ of length at least 4 in G. Since neither A nor B is in P_{3}° in G, there are $x_{5}, x_{6} \in V(G)-\left\{x_{0}, \ldots, x_{5}\right\}$, $x_{5} \neq x_{6}$, such that $x_{3} x_{5}, x_{4} x_{6} \in E(G)$. Moreover, as G does not contain
P_{4}° with base $\left(x_{1}, x_{2}, x_{3}\right)$, there is $x_{7} \in V(G)-\left\{x_{0}, \ldots, x_{6}\right\}$ such that $x_{5} x_{7} \in$ $E(G)$, and analogously, there is $x_{8} \in V(G)-\left\{x_{0}, \ldots, x_{7}\right\}$ such that $x_{6} x_{8} \in$ $E(G)$. (Observe that $b \in C o(a)$ if $x_{7}=x_{1}$, and the same holds if $x_{8}=x_{1}$.) But now $d_{P_{3}(G)}(a, b) \leq 7$, and hence $b \in C o(a)$, a contradiction.

Lemma 8. Let G be a connected graph, and let a and b be two vertices in $P_{3}(G)$ such that $b \notin C o(a)$ and $A \cap B$ contains two independent edges. Moreover, suppose G does not contain P_{3}° or P_{4}°. Then G is isomorphic either to K_{4}^{*} or to $K_{2, t}^{*}$ for some $t \geq 1$, or there are $a^{\prime} \in C o(a)$ and $b^{\prime} \in C o(b)$ such that $A^{\prime} \cap B^{\prime}$ contains a path of length 2 .

Proof. Let $A=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$. Since $b \notin \operatorname{Co}(a), B=\left(x_{0}, x_{1}, x_{3}, x_{2}\right)$. We may assume that x_{0} has no neighbour in $V(G)-\left\{x_{0}, \ldots, x_{3}\right\}$, otherwise there are $a^{\prime} \in C o(a)$ and $b^{\prime} \in C o(b)$ such that $A^{\prime} \cap B^{\prime}$ contains P_{2}.

Distinguish three cases.
Case 1. $x_{0} x_{2}, x_{0} x_{3} \in E(G)$. Then both A and B lie in cycles of length 4. If there is a vertex y adjacent to a vertex of $\left\{x_{0}, \ldots, x_{4}\right\}$, then there are $a^{\prime} \in C o(a)$ and $b^{\prime} \in C o(b)$ such that $A^{\prime} \cap B^{\prime}$ contains P_{2}. Thus, $G \cong K_{4}$ which is a special K_{4}^{*}.

Case 2. $x_{0} x_{2} \in E(G)$ and $x_{0} x_{3} \notin E(G)$, see Figure 11. Since A is not in P_{3}° in G, there is a vertex $x_{4} \in V(G)-\left\{x_{0}, \ldots, x_{3}\right\}$ such that $x_{3} x_{4} \in$ $E(G)$. But then $a^{\prime} \in C o(a), b^{\prime} \in C o(b)$ and $A^{\prime} \cap B^{\prime}$ contains P_{2}, where $A^{\prime}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and $B^{\prime}=\left(x_{0}, x_{2}, x_{3}, x_{4}\right)$.

Case 3. $x_{0} x_{2}, x_{0} x_{3} \notin E(G)$, see Figure 12. Since neither A nor B is in P_{3}° in G, there are vertices $x_{4}, x_{5} \in V(G)-\left\{x_{0}, \ldots, x_{3}\right\}$ such that $x_{2} x_{4}, x_{3} x_{5} \in E(G)$. We may assume that the degree of every neighbour of x_{1} (except x_{2} and x_{3}) is 1 in G, as the other possibilities we have already solved.

If $x_{4} \neq x_{5}$, then there are $x_{6}, x_{7} \in V(G)-\left\{x_{0}, \ldots, x_{3}\right\}$ such that $x_{4} x_{6}, x_{5} x_{7} \in E(G)$, as neither $\left(x_{1}, x_{3}, x_{2}\right)$ nor $\left(x_{1}, x_{2}, x_{3}\right)$ is a base of P_{4}°. But then $b \in C o(a)$, a contradiction.

Thus, suppose that $x_{4}=x_{5}$. By previous subcase, we may assume that $\operatorname{deg}_{G}\left(x_{2}\right)=\operatorname{deg}_{G}\left(x_{3}\right)=3$. As $\left(x_{1}, x_{2}, x_{3}\right)$ is not a base of P_{4}°, there is $x_{5} \in V(G)-\left\{x_{0}, \ldots, x_{4}\right\}$ such that $x_{4} x_{5} \in E(G)$. By our assumptions, $\operatorname{deg}_{G}\left(x_{5}\right)=1$. Hence, $\operatorname{deg}_{G}\left(x_{0}\right)=\operatorname{deg}_{G}\left(x_{5}\right)=1, \operatorname{deg}_{G}\left(x_{2}\right)=\operatorname{deg}_{G}\left(x_{3}\right)=3$,
and all neighbours of x_{1} and x_{4} (except x_{2} and x_{3}) have degree 1 in G. Thus, $G \cong K_{2,2}^{*}$.

Figure 11

Figure 12

Lemma 9. Let G be a connected graph, and let a and b be two vertices in $P_{3}(G)$ such that $b \notin \operatorname{Co}(a)$ and $A \cap B$ contains exactly one edge and two vertices outside this edge. Moreover, suppose G does not contain P_{3}° or P_{4}°. Then there are $a^{\prime} \in C o(a)$ and $b^{\prime} \in C o(b)$ such that $A^{\prime} \cap B^{\prime}$ contains two independent edges.

Proof. Let $A=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$. Then either $B=\left(x_{0}, x_{2}, x_{1}, x_{3}\right)$ or $B=$ $\left(x_{1}, x_{2}, x_{0}, x_{3}\right)$.

First suppose that $B=\left(x_{0}, x_{2}, x_{1}, x_{3}\right)$. Since A is not in P_{3}° in G, either $x_{0} x_{3} \in E(G)$ or $x_{3} x_{4} \in E(G)$ for some $x_{4} \in V(G)-\left\{x_{0}, \ldots, x_{3}\right\}$. In both these cases there are $a^{\prime} \in C o(a)$ and $b^{\prime} \in C o(b)$ such that $A^{\prime} \cap B^{\prime}$ contains two independent edges.

Now suppose that $B=\left(x_{1}, x_{2}, x_{0}, x_{3}\right)$. Then for $A^{\prime}=\left(x_{1}, x_{2}, x_{3}, x_{0}\right)$ we have $a^{\prime} \in C o(a)$, and $A^{\prime} \cap B$ contains two independent edges.

Lemma 10. Let G be a connected graph, and let a and b be two vertices in $P_{3}(G)$ such that $b \notin C o(a)$ and $A \cap B$ contains exactly one edge and one vertex outside this edge. Moreover, suppose G does not contain P_{3}° or P_{4}°. Then there are $a^{\prime} \in \operatorname{Co}(a)$ and $b^{\prime} \in C o(b)$ such that $A^{\prime} \cap B^{\prime}$ contains two edges.

Proof. Let $A=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$, and let x_{4} be a vertex of B lying outside A. Distinguish four cases.

Case 1. Suppose that $x_{1} x_{2}$ is the middle edge of B. Then $B=\left(x_{3}, x_{1}\right.$, $\left.x_{2}, x_{4}\right)$. If x_{4} has a neighbour in $V(G)-\left\{x_{1}, x_{2}\right\}$, then for $B^{\prime}=\left(x_{0}, x_{1}\right.$, $\left.x_{2}, x_{4}\right)$ we have $b^{\prime} \in C o(b)$ and $A \cap B^{\prime}=P_{2}$. Thus, we may assume that both x_{0} and x_{4} have no neighbour in $V(G)-\left\{x_{1}, x_{2}\right\}$. However, then there is some P_{3}° in G, a contradiction.

Case 2. Suppose that $x_{1} x_{2}$ is an endedge of B.
If $B=\left(x_{1}, x_{2}, x_{0}, x_{4}\right)$, then for $A^{\prime}=\left(x_{4}, x_{0}, x_{1}, x_{2}\right)$ we have $a^{\prime} \in C o(a)$ and $A^{\prime} \cap B$ contains two independent edges.

If $B=\left(x_{1}, x_{2}, x_{4}, x_{0}\right)$ then $b \in C o(a)$; and if $B=\left(x_{1}, x_{2}, x_{4}, x_{3}\right)$, then for $B^{\prime}=\left(x_{0}, x_{1}, x_{2}, x_{4}\right)$ we have $b^{\prime} \in C o(b)$ and $A \cap B^{\prime}=P_{2}$.

Figure 13

Figure 14

Case 3. Suppose that $x_{0} x_{1}$ is an endedge of B and x_{1} is an endvertex of B. If $B=\left(x_{1}, x_{0}, x_{4}, x_{2}\right), B=\left(x_{1}, x_{0}, x_{3}, x_{4}\right)$, or $B=\left(x_{1}, x_{0}, x_{4}, x_{3}\right)$, then $b \in C o(a)$. Thus, suppose that $B=\left(x_{1}, x_{0}, x_{2}, x_{4}\right)$, see Figure 13 .

If $\operatorname{deg}_{G}\left(x_{1}\right)>2$, then for $B^{\prime}=\left(x_{1}, x_{0}, x_{2}, x_{3}\right)$ we have $b^{\prime} \in C o(b)$ and $A \cap B^{\prime}$ contains two independent edges. Thus, suppose that $\operatorname{deg}_{G}\left(x_{0}\right)=$ $\operatorname{deg}_{G}\left(x_{1}\right)=2$.

If $x_{3} x_{4} \in E(G)$, then analogously as above we have $\operatorname{deg}_{G}\left(x_{3}\right)=$ $\operatorname{deg}_{G}\left(x_{4}\right)=2$, and hence, there is P_{4}° with base $\left(x_{0}, x_{2}, x_{3}\right)$ in G, a contradiction. Thus, suppose that $x_{3} x_{4} \notin E(G)$.

As $b \notin C o(a)$, there is no cycle $\left(x_{3}, x_{2}, x_{4}, \ldots\right)$ of length at least 4 in G. Since neither A nor B is in P_{3}° in G, there are $x_{5}, x_{6} \in V(G)-\left\{x_{0}, \ldots, x_{4}\right\}$, $x_{5} \neq x_{6}$, such that $x_{3} x_{5}, x_{4} x_{6} \in E(G)$. Moreover, as G does not contain P_{4}° with base $\left(x_{0}, x_{2}, x_{3}\right)$, there is a vertex $x_{7} \in V(G)-\left\{x_{0}, \ldots, x_{6}\right\}$ such that $x_{5} x_{7} \in E(G)$. Thus, for $A^{\prime}=\left(x_{6}, x_{4}, x_{2}, x_{3}\right)$ and $B^{\prime}=\left(x_{0}, x_{2}, x_{4}, x_{6}\right)$ we have $a^{\prime} \in C o(a), b^{\prime} \in C o(b)$ and $A^{\prime} \cap B^{\prime}=P_{2}$.

Case 4. Suppose that $x_{0} x_{1}$ is an endedge of B and x_{0} is an endvertex of B.

If $B=\left(x_{0}, x_{1}, x_{4}, x_{3}\right)$, then $b \in \operatorname{Co}(a)$. Since the cases $B=\left(x_{0}, x_{1}\right.$, $\left.x_{4}, x_{2}\right)$ and $B=\left(x_{0}, x_{1}, x_{3}, x_{4}\right)$ are equivalent, suppose that $B=\left(x_{0}, x_{1}\right.$, x_{4}, x_{2}), see Figure 14.

We have $x_{0} x_{3} \notin E(G)$, otherwise $b \in \operatorname{Co}(a)$. Since A is not in P_{3}° in G, there is $y \in V(G)-\left\{x_{0}, \ldots, x_{3}\right\}$ such that either $x_{0} y \in E(G)$ or $x_{3} y \in E(G)$. Assume that $x_{0} y \in E(G)$. If $y \neq x_{4}$, then for $A^{\prime}=\left(y, x_{0}, x_{1}, x_{2}\right)$ and $B^{\prime}=\left(y, x_{0}, x_{1}, x_{4}\right)$ we have $a^{\prime} \in C o(a), b^{\prime} \in C o(b)$ and $A^{\prime} \cap B^{\prime}=P_{2}$. On the other hand, if $y=x_{4}$, then for $A^{\prime}=\left(x_{2}, x_{4}, x_{0}, x_{1}\right)$ we have $a^{\prime} \in C o(a)$ and
$A^{\prime} \cap B$ contains two independent edges.
Lemma 11. Let G be a connected graph, and let a and b be two vertices in $P_{3}(G)$ such that $b \notin C o(a)$ and $A \cap B$ contains exactly one edge and no vertex outside this edge. Moreover, suppose G does not contain P_{3}° or P_{4}°. Then there are $a^{\prime} \in C o(a)$ and $b^{\prime} \in C o(b)$ such that $A^{\prime} \cap B^{\prime}$ contains two edges.

Proof. Let $A=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$, and let x_{4} and x_{5} be vertices of B lying outside A. If $A^{\prime} \cap B^{\prime}$ does not contain P_{2} for every $a^{\prime} \in C o(a)$ and $b^{\prime} \in C o(b)$, then either $B=\left(x_{0}, x_{1}, x_{4}, x_{5}\right)$ or $B=\left(x_{4}, x_{1}, x_{2}, x_{5}\right)$.

First suppose that $B=\left(x_{0}, x_{1}, x_{4}, x_{5}\right)$, see Figure 15. If there is $y \in$ $V(G)-\left\{x_{1}, x_{2}\right\}$ such that $y x_{3} \in E(G)$, then for $A^{\prime}=\left(x_{5}, x_{4}, x_{1}, x_{2}\right)$ we have $a^{\prime} \in C o(a)$ and $A^{\prime} \cap B=P_{2}$. Hence, we may assume that x_{3} has no neighbour in $V(G)-\left\{x_{1}, x_{2}\right\}$. Since A is not in P_{3}° in G, there is $y \in V(G)-\left\{x_{1}, x_{2}\right\}$ such that $y x_{0} \in E(G)$. If $y \neq x_{4}$, then for $A^{\prime}=\left(y, x_{0}, x_{1}, x_{2}\right)$ and $B^{\prime}=$ (y, x_{0}, x_{1}, x_{4}) we have $a^{\prime} \in C o(a), b^{\prime} \in C o(b)$ and $A^{\prime} \cap B^{\prime}=P_{2}$. On the other hand, if $x_{0} x_{4} \in E(G)$, then for $A^{\prime}=\left(x_{5}, x_{4}, x_{0}, x_{1}\right)$ we have $a^{\prime} \in C o(a)$ and $A^{\prime} \cap B$ contains two edges.

Thus, suppose that $B=\left(x_{4}, x_{1}, x_{2}, x_{5}\right)$. Since A is not in P_{3}° in G, we may assume that there is $y \in V(G)-\left\{x_{1}, x_{2}\right\}$ such that $x_{0} y \in E(G)$. Then for $A^{\prime}=\left(x_{0}, x_{1}, x_{2}, x_{5}\right)$ we have $a^{\prime} \in C o(a)$ and $A^{\prime} \cap B=P_{2}$.

Figure 15
Now we prove Theorem 4.
Proof of Theorem 4. First suppose that G contains P_{3}° and a path A of length 3 such that $A \notin P_{3}^{\circ}$. Then there is a path B of length 3 in G such that $B \in P_{3}^{\circ}$. Since b is an isolated vertex in $P_{3}(G), b \notin C o(a)$. Now suppose that G contains P_{4}°, and choose $B \in P_{4}^{\circ}$. For every vertex $b^{\prime} \in C o(b), B^{\prime}$ contains the base of P_{4}°. Hence, $P_{3}(G)$ is disconnected if there is a path A of length 3 such that $A \notin P_{4}^{\circ}$.

If G is isomorphic to K_{4}^{*}, then $P_{3}(G)$ has three components, each containing C_{4}. Finally, if G is isomorphic to $K_{2, t}^{*}, t \geq 1$, and $P_{3}(G)$ is not empty, then some paths of length 3 in G contain the edge $v_{1} v_{2}$, while the
other do not, see Figure 5. Let $a \in V\left(P_{3}(G)\right)$ such that $v_{1} v_{2} \in A$. Then $v_{1} v_{2} \in A^{\prime}$ for every $a^{\prime} \in C o(a)$, so that $P_{3}(G)$ is a disconnected graph. To prove the "only if" part of Theorem 4, first suppose that G contains P_{t}°, $t \in\{3,4\}$, but no path A of length 3 such that $A \notin P_{t}^{\circ}$. If G contains P_{3}°, then our assumption implies that G is a path of length 3. On the other hand, if G contains P_{4}° and there is no P_{3}° in G, then G is a tree of diameter 4 and $P_{3}(G)$ is a complete bipartite graph. Thus, in what follows we restrict our considerations to graphs which do not contain $P_{t}^{\circ}, t \in\{3,4\}$.

Let G be a graph which does not contain P_{3}° or P_{4}°, and let a and b be vertices of $P_{3}(G)$ such that $b \notin C o(a)$. By Lemma 6 , there are $a^{\prime} \in C o(a)$ and $b^{\prime} \in C o(b)$ such that $A^{\prime} \cap B^{\prime}$ contains an edge. Hence, G is either isomorphic to K_{4}^{*} or to $K_{2, t}^{*}, t \geq 1$, by Lemmas $7,8,9,10$ and 11 .

Acknowledgement

The authors sincerely acknowledge the helpful remarks and corrections of the referee.

References

[1] A. Belan and P. Jurica, Diameter in path graphs, Acta Math. Univ. Comenian. LXVIII (1999) 111-126.
[2] H.J. Broersma and C. Hoede, Path graphs, J. Graph Theory 13 (1989) 427-444.
[3] M. Knor and L'. Niepel, Path, trail and walk graphs, Acta Math. Univ. Comenian. LXVIII (1999) 253-256.
[4] M. Knor and L. Niepel, Distances in iterated path graphs, Discrete Math. (to appear).
[5] M. Knor and L'. Niepel, Centers in path graphs, (submitted).
[6] M. Knor and L. Niepel, Graphs isomorphic to their path graphs, (submitted).
[7] H. Li and Y. Lin, On the characterization of path graphs, J. Graph Theory 17 (1993) 463-466.
[8] X. Li and B. Zhao, Isomorphisms of P_{4}-graphs, Australasian J. Combin. 15 (1997) 135-143.
[9] X. Yu, Trees and unicyclic graphs with Hamiltonian path graphs, J. Graph Theory 14 (1990) 705-708.

[^0]: Supported by VEGA grant 1/6293/99.
 Supported by Kuwait University grant \#SM 172.

