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Abstract

A cycle C is a vertex-dominating cycle if every vertex is adjacent to
some vertex of C'. Bondy and Fan [4] showed that if G is a 2-connected
graph with 6(G) > $(|V(G)| —4), then G has a vertex-dominating
cycle. In this paper, we prove that if G is a 2-connected bipartite graph
with partite sets Vi and V5 such that 6(G) > £ (max{|Vil,|Va|} + 1),
then G has a vertex-dominating cycle.
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1. INTRODUCTION

In this paper, we only consider finite undirected graphs without loops or
multiple edges. We denote the degree of a vertex z in a graph G by dg(z).
Let §(G) be the minimum degree of a graph G. We denote the number of
components of G by w(G). A connected graph G is defined to be t-tough if
|S| > t-w(G—S) for every cutset S of V(G). The toughness of G, denoted by
t(G), is the maximum value of ¢ for which G is t-tough (taking ¢(K,) = oo
for all n > 1). A set S of vertices in a graph G is said to be d-stable if the
distance of each pair of distinct vertices in S is at least d.

In 1960, Ore introduced a degree sum condition for hamiltonian cycles.

Theorem 1 (Ore [8]). Let G be a graph on n > 3 wvertices. If dg(x) +
dg(y) > n for any nonadjacent vertices x and y, then G is hamiltonian.
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It is observed that weaker conditions guarantee the existence of hamiltonian
cycles by putting a further assumption on graphs. For example, Jung (1972)
and Moon and Moser (1963) showed that weaker degree sum conditions
guarantee hamiltonian cycles in 1-tough graphs and in bipartite graphs,
respectively.

Theorem 2 (Jung [6]). Let G be a 1-tough graph of order n > 11. If
dg(x) + dg(y) > n — 4 for any nonadjacent vertices x and y, then G is
hamiltonian.

Theorem 3 (Moon and Moser [7]). Let G be a bipartite graph with partite
sets Vi and Va, where |Vi| = |Va| = n. If dg(z) + dg(y) > n+ 1 for each
pair of nonadjacent vertices x € Vi and y € Va, then G is hamiltonian.

A cycle C is a dominating cycle if every edge is incident with some vertex of
C. A cycle C is called a vertex-dominating cycle if every vertex is adjacent to
some vertex of C. A dominating cycle is can be consider as a generalization
of a hamiltonian cycle, and a vertex-dominating cycle as a generalization
of a dominating cycle. Therefore there may be weaker sufficient conditions
for the existence of dominating cycles or vertex-dominating cycles which
correspond to that for hamiltonicity.

Bondy (1980) and Bondy and Fan (1987) gave a degree sum condition
for dominating cycles and vertex-dominating cycles, respectively.

Theorem 4 (Bondy [3]). Let G be a 2-connected graph on n vertices. If
da(z) +da(y) + dg(z) > n+ 2 for any independent set of three vertices x,
y and z, then any longest cycle is a dominating cycle.

Theorem 5 (Bondy and Fan [4]). Let k > 2 and let G be a k-connected
graph on n vertices. If Y odg(x) > n — 2k for every 3-stable set S of G
of order k + 1, then G has a vertex-dominating cycle.

Like hamiltonian cycles, some sufficient conditions for the existence of dom-
inating cycles can be relaxed if we put a further assumption on a graph. In
1989, Bauer, Veldman, Morgana and Schmeichel showed the following result
for 1-tough graphs.

Theorem 6 (Bauer et al. [2]). Let G be a 1-tough graph of order n. If
da(z) + da(y) + da(z) > n for any independent set of three vertices x, y
and z, then any longest cycle in G is a dominating cycle.
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In 1984, Ash and Jackson gave a minimum degree condition for a bipartite
graph.

Theorem 7 (Ash and Jackson [1]). Let G be a 2-connected bipartite graph
with partite sets Vi and Va, where max{|Vy|,|Va|} = n. If §(G) > (n+3)/3,
then there exists a longest cycle which is a dominating cycle.

In 2003, Saito and the author showed that Theorem 5 also admits a similar
relaxation under an additional assumption on toughness.

Theorem 8 (Saito and Yamashita [9]). Let k > 2 and G be a k-connected
graph on n wvertices with t(G) > k/(k+1). If Y gdg(x) >n —2k —2 for
every 4-stable set S of order k + 1, then G has a vertex-dominating cycle.

In this paper, we give a minimum degree condition for a bipartite graph to
have a vertex-dominating cycle.

Theorem 9. Let G be a 2-connected bipartite graph with partite sets Vi
and Vo, where max{|Vi|,|Va|} = n. If 6(G) > (n+ 1)/3, then G has a
verter-dominating cycle.

In Theorem 9, the degree condition is sharp in the following sense. Let
m;,n; be positive integers, where 1 < i < 3. The graph G is obtained from
Ky U Ko ny U Koy s, by adding new two vertices x and y, and joining
both x and y to every vertex in three partite sets of order n;. It is easy to
see that GG is a 2-connected bipartite graph with partite sets V; and Vs and
)(G) < max{|V1]|,|V2|}/3, but has no vertex-dominating cycle.

2. PROOF OF THEOREM 9

Before proving Theorem 9, we prepare some definitions and notations, and
refer to Diestel [5] for terminology and notations not defined here. For a
subgraph H of G and a vertex x € V(G) — V(H), we also denote Ny (x) :=
Ng(z)NV(H) and dg(z) := |[Ng(x)|. For X C V(G), Ng(X) denote the set
of vertices in G—X which are adjacent to some vertex in X. Furthermore, for
a subgraph H of G and X C V(G) — V(H), we sometimes write Ny (X) :=
Na(X)NV(H). If there is no fear of confusion, we often identify a subgraph
H of a graph G with its vertex set V(H). For example, we often write G — H
instead of G — V(H).
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We write a cycle C' with a given orientation by C. For z,y € V(C), we
denote by C[z,y] a path from = to y on C'. The reverse sequence of C[z,y] is
denoted by <E[y, z]. We define C'(z,y] = Clz,y]|—{z}, Clz,y) = Clz,y|—{y}
and C(z,y) = C[z,y]—{z,y}. For convenience, we consider C[z,z) = (). For
x € V(C), we denote the successor and the predecessor of z on C' by x+ and
x~, respectively. A path P connecting x and y is denoted by P[z,y]. For a
subgraph H of G, a path Pz, y] is called an H-path if Pz, y|NV (H) = {z,y}
and E(H)N E(P) = 0.

Let S and T be subsets of V(G). Then S is said to dominate T if every
vertex in T" either belongs to S or has a neighbor in S. If S dominates V(G),
then S is called a dominating set.

We define the following sets Fj and Hj of graphs for each odd integer
k> 5. Letl,by,ba,...,b beintegers with > 3 and b; > (k+1)/2 (1 <i <1).
Let Ué:l K(;_3)/2, denote the vertex-disjoint union of K(;_3)/ap, for all
i €{1,2,...,l}. Then the graph Fj;, p, is obtained from Ui:l K(k—3)/2,;
by adding two new vertices x and y, and joining both x and y to every vertex
of Ui:l K (;—3) /2,5, Whose degree in Uizl K(k—3)/2,, 15 (k — 3)/2. Let Fj, be
the set of all such graphs. To define Hg, let m,cy,...,c, be integers at
least (k+1)/2. The graph Hy, . ., is obtained from [ J", K, by adding
(k — 1)/2 new vertices x1, ... , T(k—1)/2, and joining each x; to every vertex
of Ui~ , K1, whose degree in |J" | K, is 1. Let Hj, be the set of all such
graphs.

k-3 k-3 k-3
2 2 2

b1 b2 bi

Figure 1. Fj and Hy,
To prove Theorem 9, we use the following result due to Wang.

Theorem 10 (Wang [10]). Let k > 2 and let G be a 2-connected bipartite
graph with partite sets Vi and Va. If dg(x) + dg(y) > k+ 1 for every pair
of nonadjacent vertices x and y, then G contains a cycle of length at least
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min{2a, 2k} where a = min{|V1|,|Va|}, unless 5 < k < a, k is odd and
G e Fi, UHy.

Proof of Theorem 9. Suppose that G has no vertex-dominating cycle.
Let C be a longest cycle in G such that w(G — C) is as small as possible,
and let |Vi| = n1, |Va| = ng and ny < na.

Claim 1. |C| = 2(2ny — 1) and [V2 — C| = 3(n2 + 1).
b

)
Proof. First suppose that G € Fy. Since §(G) = 1(k+1) and | > 3, we
have

I
%(n2+1) :% (;bmq) > é (l(k;‘l) +1) = é&(G)+%>5(G).

This contradicts the degree condition. Hence G ¢ Fj. Next suppose that
G € Hy. Since 6(G) = 3(k +1) and m > 3, we get

;(n2+1):;<2@+1> 2;<m(k2+1)+1> :%5(@)+é>5(a),

a contradiction. Therefore G ¢ Hy.

Since dg(z) + da(y) > 2(ne + 1) = $(2ny — 1) + 1 for any z,y € V(G),
we obtain |C| > min {2n4, (2ns — 1)} by Theorem 10. Suppose that [C| >
2ny. Then Vi C V(C). Since G is 2-connected, No(vg) # ) for any vy €
Vo —C'. Hence C is a vertex-dominating cycle, a contradiction. Suppose that
’C| > %(2712 — 1). Then |V1 —C| < |V2 —C| < ng — %(2712 — 1) = %(?7,2 + 1).
Since 6(G) > %(ng +1), No(v) # 0 for any v € V(G — C), that is, C is a
vertex-dominating cycle, a contradiction. Thus we obtain |C| = 2(2ng — 1)
and Vo — C| = $(ng + 1). ]

Note that 2(2n; — 1) and 1(ng + 1) are integers. We shall partition V; — C
(1 = 1,2) into three subsets as follows:

X; :={a; € V; — C: Ne(x;) # 0, Na—c(z;) # 0},
Yi:={y; € Vi—C: Ng_c(y;) =0} and
Z; = {Zi eV,-C: Nc(zz‘) = @}

Claim 2. For any 25 € Xo, [Nco(22)| > $(na + 1) — (| X1| +|Z1]) > |Y4].
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Proof. By the degree condition, for any xo € Xs, |No(z2)| > 6(G)—
(IX1]+121]) = 3(n2 + 1) = (|X1] 4 |Z1]). Moreover, it follows from Claim 1
that |Ne(w2)| > $(n2+ 1) = (1X1] + |Z10) 2 H(na + 1) — (3(na + 1) — Ya])
> V1. m

Claim 3. Let z; € Z;. Then Ng(z;) = Va—; — C and [V3_; — C| = 3(ns + 1).

Proof. Suppose that z; € Z;. By Claim 1 and the definition of Z;,
T(na+1) > |Va_; — C| > d(z) > 2(ng +1). This implies [V3_; — C| =
dc(z) = (n2 + 1), and so Neg(z;) = Va—; — C and [V3_; — C| = £(n2 + 1).

|

Claim 4. Z; or Zj is non-empty. If Z, is not empty, then |V;| = |V2| and
Y] is empty.

Proof. If Zy =) and Zs = (), then C is a vertex-dominating cycle. Hence
Z1#Wor Zy #£ 0. If Zy # () then, by Claims 1 and 3, |V} —C| = |Vo —C| =
$(ng + 1), that is, |V4| = [V|. By Claim 3 and the definition of Y;, we have
Y1 = 0. [

In view of Claim 4 and the symmetry, we may assume in the rest of the
proof that Z; is non-empty and consequently Y5 is empty.

If Xo =0, let 24,7, € X1; otherwise let z, € X1 U X5 and z;, € X5. By
Claims 3 and 4, X1 U Xy U Z; U Zs is contained in a component of G — C.
Hence there exists a path Py[z,, 23] in G—C. We can choose z,, 3 such that
(i) @ € Ne(zq) and b € Ne(xp) (a # b) are as close as possible on C, and
(ii) | Pyl is as large as possible, subject to (i). Let Cy = x,C[b, a|Py[xq, xp),
U; == C(b,a) NV; and U] := C(a,b) N'V;. We give an orientation on C' such
that |C'(a,b)| < |C(b,a)|. By the choice of =, and xp, we have

1) 1G] < 4101~ 1=3em =1 -1 =2 (G +1-1).

Claim 5. C[b,a] dominates X; U Xy UY; U Uj.

Proof. By the choice of z, and zp, Ng(x)NC(a,b) = 0 for any x € X1UX5.
Hence Ng(xyNClb,a] # 0 for any x € X; U Xy, and so C[b, a] dominates X
and Xo. It follows from (1) that |Us| < %(n2 + 1) — 1. Therefore Ng(y1) N
C[b,a] # 0 for any y; € Y1. Moreover, by the choice of z, and xy, Ng(Uy) N
X9 =0, and so Ng(u1)NC[b,a] # 0 for any uy € U;. Hence Cb, a] dominates
Y: and U;. [ |



VERTEX-DOMINATING CYCLES IN 2-CONNECTED ... 329

Case 1. |C(a,b)| is even.
Then z, € X; and x, € Xo. By Claim 3, {4, 23} dominates Z; and Zs.
Hence if Cy dominates Us then by Claim 5, Cj is a vertex-dominating cycle.
Thus, we may assume that Cy does not dominate Us, that is, there exists
ug € Uy such that Ng(ug) C Uy UY;. By the degree condition, we have

1 1
(2) 3(n2 +1) < da(uz) <[] + V1] < 5|C(a, b)[ + Y],

and by Claim 1,
3
(3) |IC| = 5(2712 —1) <2|C(a,b)| + 4|Y1| — 2.

By combining (1) and (2), we have |Y7| > 1. Assume that |Y;| > 2. Since
ug # b7, |C(a,b)| > 4. It follows from Claim 2 and (3) that

(INe(X2)| + 1)(|C(a, b)[ + 1) = |C]
> (Ml +1D(C(a, )] + 1) = (2|C(a, b)| + 4[Y1| = 2)
= (V1] = D(|C(a,b)[ = 3) > 0,

and so ([Nc(X2)|+1)(|C(a,b)|+1) > |C|. On the other hand, by the choice
of z, and xp,, C — No({zs} U X2) consists of at least |N¢(X2)| + 1 paths
of order at least |C(a,b)|. This implies |C| > (|[Nc(X2)| + 1)(|C(a,b)| +1).
Thus we get a contradiction.

Hence |Yi| = 1, say y1 € Y1. By (1) and (2), |C(a,b)| = |C(b,a)| =
2 (3(n2 +1) — 1). Therefore N¢ (X1 UX3) = {a,b}, and so {a, b} dominates
X1 and Xj. By using the same argument as the proof of Claim 5, C|a, b
dominates U{ and Y;. Hence there exists u), € Uj such that Ng(u)) C
U{UY1, otherwise z,Cla, blzy Pox, is a vertex-dominating cycle. Since |Uy| =
U7 = +(n2 4+ 1) — 1, we see that y1 € Ng(u2) and y1 € Ne(ub).

Let v}, € C(a,ub] and vy € C(b,ug] such that (i) y1 € Ng(v2) and
y1 € Ng(vh) and (ii) C(a,vh] U C(b,ve] is inclusion-minimal, subject to (i).
By the existence of the C-path vay; v}, there exists a C-path Pj[ws, wh] join-
ing C'(b, v2] and C(a, v}]. Choose P; such that C(a, w)]UC (b, ws] is inclusion-
minimal. By the choice of v and Py, N(w)N(Y1UC(b,ws)) = 0 for any w €
C(a,w}). Thus, since |C(a,wh)| < |C(a,b)| < 2(3(n2+1)—1), N(w) N
(Clwh, b] U Clwa,a)) # 0 for any w € C(a,w)). Hence Clw}, bl U Clws, al
dominates C(a,w}). Similarly, Cw}, bjUC|ws, a] dominates C'(b,wz). More-
over, since ug € C[b, wh] U Clwe, a], C[wh, b] U Clws, a] dominates Y;. Hence
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acJE[a, wa) Py [wa, wh]C(wh, b Py, x4] is a vertex-dominating cycle. This
completes the proof of Case 1.

Case 2. |C(a,b)| is odd.
Note that z, € X; and xp € X; fori =1 or i = 2.

Case 2.1. Zy = 0.
Then X3 # () and | Xo| = %(ng + 1), otherwise C' is a hamiltonian cycle by
Claim 4. By the choice of z, and xp, note that z,,x;, € Xo. By Claim
3, {zq,xp} dominates Z;. Hence there exists ug € Uy such that Ng(u2) C
Uy UY7, otherwise Cj is a vertex-dominating cycle. Since ug # a*,b™, we
have

(4) |C(a,b)| > 5.

Since a™, b~ € V4 and |C(a,b)| is odd,

1
Z(n2 +1) <dg(uz) < [Uh] + V1] < (\C(a b)| = 1) + 1l,

6 3

and by Claim 1,
(6) ICf = (2n2—1) < 2[C(a,b)| + 411| — 4.

By (1) and (5), we have |Y7| > 2. Since C — N¢(X3) has at least |[No(X32)|
paths of order at least |C'(a,b)|, we have |C| > |N¢(X2)|(|C(a,bd)| + 1).
Assume that |Y7| > 4. It follows from Claim 2, (4) and (6) that

[Ne(X2)|(IC(a, 0)[ +1) = [C]
> M[(IC(a,b)| +1) = (2|C(a, b)| + 4[Y1] — 4)
= (N[ =2)(IC(a, )] = 3) =2 >0,

a contradiction. Therefore |Y1| = 2 or |Y1| = 3.

Claim 6. (i) X; =0,
(ii) |Z1] = %(ng + 1) |Y1| and
)=

(iii) Neo(X2) = Neo(xz) for any o € Xo.
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Proof. First, suppose that X7 # (), say x1 € X;. Since C' — No({z1} U X>)
has at least |[No(X2)|+ 1 paths of order at least |C(a,b)|, |C| > |No({z1}U
X2)|(|C(a,b)| +1). By Claim 2, (4) and (6),

[Ne({z1} U X2)[(IC(a, b)] + 1) — |C]
> (Ml +1D(|C(a, )] + 1) = (2|C(a, b)| + 4[Y1| — 4)
= (M| = D(|C(a,b)| = 3) +2 >0,

a contradiction. Next suppose that |Z1] < %(ng + 1) — |Y1] or Neg(X3) >
Nc(x2) for some xg € Xo. Then, by Claim 2, |[No(X2)| > |Y1| + 1. By a
similar argument as above, we obtain a contradiction. [

Since |Y1| > 2, we have |X3| > 2 and by Claim 6 (iii), we can choose
Zq,xp With z, # zp. By Claim 3 and Claims 6 (i) and (ii), we obtain
|Po| = |Xo| +|Z1] = Yi| + 1 = 2(n2 + 1) — 2|Y3| + 1. On the other hand,
by (1) and (5), |C(a,b)| = 2(nz + 1) — 2|Y1| 4+ 1. Hence Cp and C have the
same length. Since C(a,b) UY) is contained in a component of G — Cj and
| Xo—Py| = |Y1]—1, we have w(G—C)) = |Y1|. Note that w(G—C) = |Y1|+1.
Therefore w(G — C) > w(G — Cp). This contradicts the choice of C.

Case 2.2. Zy # .
Then Y7 = () by Claim 3. Since |U;] < %(ng +1)—1, N(u2) NC[b,a] # 0 for
any ug € Us, that is, C[b, a] dominates Us. Suppose that z, # 2. By Claim
3, Polzq, xp] dominates Z; and Zs, and so C is a vertex-dominating cycle.
Therefore z, = zp. By the 2-connectivity of G and the choice of x, and
xp, there exists x4 € X7 U Xy such that x4 # x4 and No(zq) N C(b,a) # 0,
say d € No(zq) N C(b,a). Choose x4 such that min{|C(b,d)|,|C(d,a)|} as
small as possible. Without loss of generality, we may assume that |C' (b, d)| >
|C(d,a)|. By the choice of 24, Cla,d] dominates X; and Xs. By Claim 3,
there exists a path Ps[x,,x4] in G — C, which dominates Z; and Zs. Since
|Cla,b]| > 3, we have |C(d, a)| < $(|C|-2)—1 < 2(3(nz + 1) — 1) —1. Since
1C(d,a)NVi],|C(d,a)NVa| < $(na+1)—1and Y, = Y = 0, we can see that
Cla,d] dominates C(d,a). Hence z,C|[a, d)Ps3[zq4, x4 is a vertex-dominating
cycle. This completes the proof of Case 2.2 and the proof of Theorem 9. m
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