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Abstract

An additive hereditary property of graphs is a class of simple graphs
which is closed under unions, subgraphs and isomorphism. Let P and
Q be additive hereditary properties of graphs. A (P ,Q)-total coloring
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of a simple graphG is a coloring of the vertices V (G) and edgesE(G) of
G such that for each color i the vertices colored by i induce a subgraph
of property P , the edges colored by i induce a subgraph of property
Q and incident vertices and edges obtain different colors. In this pa-
per we present some general basic results on (P ,Q)-total colorings.
We determine the (P ,Q)-total chromatic number of paths and cycles
and, for specific properties, of complete graphs. Moreover, we prove a
compactness theorem for (P ,Q)-total colorings.

Keywords: hereditary properties, generalized total colorings, paths,
cycles, complete graphs.
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1. Introduction

We denote the class of all finite simple graphs by I (see [1]). A graph property

P is a non-empty isomorphism-closed subclass of I. A property P is called
additive if G ∪H ∈ P whenever G ∈ P and H ∈ P. A property P is called
hereditary if G ∈ P and H ⊆ G implies H ∈ P.

We use the following standard notations for specific hereditary proper-
ties:

O = {G ∈ I : E(G) = ∅},
Ok= {G ∈ I : χ(G) ≤ k},
Dk= {G ∈ I : each subgraph of G contains a vertex of degree at most k},
Ik = {G ∈ I : G does not contain Kk+2},
Jk= {G ∈ I : χ′(G) ≤ k},
Ok= {G ∈ I : each component of G has at most k + 1 vertices},
Sk = {G ∈ I : ∆(G) ≤ k},

where χ(G) is the chromatic number, χ′(G) the chromatic index and ∆(G)
the maximum degree of the graph G = (V,E).

A total coloring of a graph G is a coloring of the vertices and edges
(together called the elements of G) such that all pairs of adjacent or incident
elements obtain distinct colors. The minimum number of colors of a total
coloring of G is called the total chromatic number χ′′(G) of G.

Let P ⊇ O andQ ⊇ O1 be two additive and hereditary graph properties.
Then a (P,Q)-total coloring of a graph G is a coloring of the vertices and
edges of G such that for any color i all vertices of color i induce a subgraph
of property P, all edges of color i induce a subgraph of property Q and
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vertices and incident edges are colored differently. The minimum number
of colors of a (P,Q)-total coloring of G is called the (P,Q)-total chromatic

number χ′′
P,Q(G) of G.

If G contains edges then χ′′
P,Q(G) is only defined if K2 ∈ Q and therefore

O1 ⊆ Q. Since O ⊆ P for all additive hereditary properties we obtain
χ′′
P,Q(G) ≤ |V |+|E| which guarantees the existence of (P,Q)-total chromatic

numbers.

(P,Q)-total colorings are generalized total colorings since χ′′
O,O1

(G) =
χ′′(G) for all graphs G.

Generalized P-vertex colorings and P-chromatic numbers χP(G) as well
as generalized Q-edge colorings and Q-chromatic indices χ′

Q(G) are analo-
gously defined (see [3, 9] for some results). Evidently, these are generaliza-
tions of proper vertex colorings and proper edge colorings since χO(G) =
χ(G) and χ′

O1
(G) = χ′(G).

The P-chromatic number and the Q-chromatic index of G provide gen-
eral lower and upper bounds for χ′′

P,Q(G).

Theorem 1.

(a) max{χP(G), χ′
Q(G)} ≤ χ′′

P,Q(G) ≤ χP(G) + χ′
Q(G),

(b) χP(G) ≤ χ′′
P,Q(G) ≤ χP(G) + 1 if G ∈ Q,

(c) χ′
Q(G) ≤ χ′′

P,Q(G) ≤ χ′
Q(G) + 1 if G ∈ P,

(d) χ′′
P,Q(G) = 1 iff G ∈ O,

(e) χ′′
P,Q(G) = 2 iff G ∈ (P ∩ Q) \ O,

(f) χ′′
P,Q(G) ≥ 3 iff G ∈ I \ (P ∩ Q).

Proof. Since a (P,Q)-total coloring induces a P-vertex coloring and a
Q-edge coloring it follows that χP(G) ≤ χ′′

P,Q(G) and χ′
Q(G) ≤ χ′′

P,Q(G). A
P-vertex coloring of G with χP(G) colors and a Q-edge coloring with χ′

Q(G)
additional colors induce a (P,Q)-total coloring of G with χP(G) + χ′

Q(G)
colors.

If G ∈ Q or G ∈ P, respectively, then all edges or all vertices can
obtain the same additional color which implies χ′′

P,Q(G) ≤ χP(G) + 1 or
χ′′
P,Q(G) ≤ χ′

Q(G) + 1, respectively.

If G has no edges then G ∈ O ⊆ P and therefore all vertices can obtain
the same color which implies χ′′

P,Q(G) = 1. If G has edges then G /∈ O and
therefore at least two colors are needed to color a vertex and an incident
edge which implies χ′′

P,Q(G) ≥ 2.
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It holds χ′′
P,Q(G) = 2 if and only if G contains edges and for each non-trivial

component of G all vertices as well as all edges can be colored with one color
each, that is, if and only if G ∈ (P ∩Q) \ O.

Obviously, if G /∈ P ∩ Q then χ′′
P,Q(G) ≥ 3.

The following monotonicity and additivity results are obvious.

Lemma 1. If P1 ⊆ P2 and Q1 ⊆ Q2, then χ′′
P2,Q2

(G) ≤ χ′′
P1,Q1

(G).

Proof. If P1 ⊆ P2 and Q1 ⊆ Q2 then each (P1,Q1)-total coloring is a
(P2,Q2)-total coloring.

It follows χ′′
P,Q(G) ≤ χ′′

O,O1
(G) = χ′′(G) since O ⊆ P and O1 ⊆ Q, that is,

the total chromatic number is an upper bound for the (P,Q)-total chromatic
number of a graph G.

Lemma 2. If H ⊆ G, then χ′′
P,Q(H) ≤ χ′′

P,Q(G).

Proof. The restriction of a (P,Q)-total coloring of G to the elements of
H is a (P,Q)-total coloring of H.

The following lemma implies that one can restrict oneself to connected
graphs, in general.

Lemma 3. If G and H are disjoint, then χ′′
P,Q(G ∪ H) = max{χ′′

P,Q(G),
χ′′
P,Q(H)}.

Proof. (P,Q)-total colorings of G and of H provide a (P,Q)-total col-
oring of G ∪ H since G and H are disjoint which implies χ′′

P,Q(G ∪ H) ≤
max{χ′′

P,Q(G), χ′′
P,Q(H)}. Lemma 2 implies equality.

If one of the properties is the class I of all finite simple graphs then the
(P,Q)-total chromatic number of G attains one of two possible values by
Theorem 1:

(1) χP(G) ≤ χ′′
P,I(G) ≤ χP(G) + 1, χ′

Q(G) ≤ χ′′
I,Q(G) ≤ χ′

Q(G) + 1.

If P = Q = I then χ′′
I,I(G) = 1 if G ∈ O and χ′′

I,I(G) = 2 otherwise by
Theorem 1.

If G ∈ Q then χ′′
P,Q(G) and therefore χ′′

P,I(G) for all graphs G can be
determined as follows.
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Theorem 2. If G ∈ Q, then

χ′′
P,Q(G) =

{

χP(G) if G ∈ O or χP(G) ≥ 3,

χP(G) + 1 if G ∈ P \ O or χP(G) = 2.

Proof. By Theorem 1, χP(G) ≤ χ′′
P,Q(G) ≤ χP(G) + 1.

If χP(G) = 1 then G ∈ P which implies χ′′
P,Q(G) = 1 for G ∈ O and

χ′′
P,Q(G) = 2 for G ∈ P \ O by Theorem 1.

If χP(G) = 2 then G /∈ P and therefore χ′′
P,Q(G) ≥ 3 by Theorem 1.

On the other hand, χ′′
P,Q(G) ≤ χP(G) + 1 = 3.

If χP(G) ≥ 3 then χ′′
P,Q(G) ≥ χP(G). Consider a P-vertex coloring of

G with χP(G) colors. Each edge can be colored with a color different to the
colors of its end-vertices. This is a (P,Q)-total coloring of G with χP(G)
colors since H ∈ Q for all H ⊆ G.

2. P = O or Q = O1

Since O ⊆ P ⊆ I and O1 ⊆ Q ⊆ I, Lemma 1 provides the following bounds:

χ′′
I,I(G) ≤ χ′′

P,I(G) ≤ χ′′
P,Q(G) ≤ χ′′

P,O1
(G) ≤ χ′′

O,O1
(G) = χ′′(G),(2)

χ′′
I,I(G) ≤ χ′′

I,Q(G) ≤ χ′′
P,Q(G) ≤ χ′′

O,Q(G) ≤ χ′′
O,O1

(G) = χ′′(G),(3)

χ′′
P,I(G) ≤ χ′′

O,I(G) ≤ χ′′
O,Q(G),(4)

χ′′
I,Q(G) ≤ χ′′

I,O1
(G) ≤ χ′′

P,O1
(G).(5)

(O,I)- and (I,O1)-total coloring are certain [r, s, t]-colorings which also are
generalizations of ordinary colorings.

Given non-negative integers r, s, and t with max{r, s, t} ≥ 1, an [r, s, t]-
coloring of a finite and simple graph G with vertex set V (G) and edge set
E(G) is a mapping c from V (G) ∪ E(G) to the color set {0, 1, . . . , k − 1},
k ∈ N, such that |c(vi)− c(vj)| ≥ r for every two adjacent vertices vi, vj ,
|c(ei)− c(ej)| ≥ s for every two adjacent edges ei, ej , and |c(vi)− c(ej)| ≥ t
for all pairs of incident vertices and edges, respectively. The [r, s, t]-chromatic

number χr,s,t(G) of G is defined to be the minimum k such that G admits
an [r, s, t]-coloring (see [10, 11]).

By this definition we obtain χ′′
I,I(G) = χ0,0,1(G), χ′′

O,I(G) = χ1,0,1(G),
χ′′
I,O1

(G) = χ0,1,1(G) and χ′′
O,O1

(G) = χ1,1,1(G). The first three of these
[r, s, t]-chromatic numbers were determined in [10].
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Theorem 3.

(a) χ′′
O,I(G) = χ1,0,1(G) =

{

χ(G) if χ(G) 6= 2,

3 = χ(G) + 1 if χ(G) = 2,

(b) χ′′
I,O1

(G) = χ0,1,1(G) = ∆(G) + 1.

Proof. (a) By Theorem 2 we obtain for P = O that χ′′
O,I(G) = χO(G) =

χ(G) if G ∈ O or χ(G) ≥ 3 and χ′′
O,I(G) = χ(G) + 1 if χ(G) = 2.

(b) If χ′(G) = ∆(G) then χ′′
I,O1

(G) ≥ ∆(G)+1 since an additional color
is necessary to color a vertex of maximum degree. If χ′(G) = ∆(G)+1 then
χ′′
I,O1

(G) ≥ χ′(G) = ∆(G) + 1 by Theorem 1.
On the other hand, we have χ′′

I,O1
(G) ≤ ∆(G) + 1 since the edges can

be colored with at most ∆(G) + 1 colors by Vizing’s Theorem and at each
vertex there is a missing edge color which can be used to color this vertex.

To illustrate the results we consider as examples paths Pn, cycles Cn and
complete graphs Kn.

Examples 1.

1. Theorem 3 implies χ′′
O,I(P1) = χ′′

I,O1
(P1) = 1, χ′′

O,I(P2) = 3, χ′′
I,O1

(P2)
= 2 and χ′′

O,I(Pn) = χ′′
I,O1

(Pn) = 3 for n ≥ 3.

2. We have χO(Cn) = χ(Cn) = χ′
O1

(Cn) = χ′(Cn) and χ(Cn) = 2 if n
is even and χ(Cn) = 3 if n is odd. Moreover, we have χ′′

O,I(Cn) =
χ′′
I,O1

(Cn) = 3 by Theorem 3. Therefore, the lower and upper bounds of
(1) are attained for cycles Cn.

3. Theorem 3 implies χ′′
I,O1

(Kn) = n and χ′′
O,I(Kn) =

{

n if n 6= 2,
n+ 1 if n = 2.

If n is odd then n = χ′′
I,O1

(Kn) ≤ χ′′
P,O1

(Kn) ≤ χ′′
O,O1

(Kn) = χ′′(Kn) =
n and n = χ′′

O,I(Kn) ≤ χ′′
O,Q(Kn) ≤ χ′′

O,O1
(Kn) = χ′′(Kn) = n by

Lemma 1. Therefore, if n is odd then χ′′
P,O1

(Kn) = χ′′
O,Q(Kn) = n for

all additive and hereditary properties P and Q.

In Theorems 4 and 5 we also consider complete graphs of even order.

Theorem 4. χ′′
O,Q(Kn) =

{

n if n odd or (n ≥ 4 even and O1 ⊂ Q),

n+ 1 if n = 2 or (n even and Q = O1).

Proof. The case that n is odd is considered in the above example and the
case n = 2 is obvious.
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If n is even and Q = O1 then χ′′
O,Q(Kn) = χ′′(Kn) = n+ 1.

If n ≥ 4 is even and O1 6= Q then P3 ∈ Q. We partition the elements of
Kn with vertex set {v0, v1, . . . , vn−1} in n color classes as follows:

Class Fi, 0 ≤ i ≤ n−1, contains the vertex vi, the edges vi−1vi+1, vi−2vi+2,
. . . , vi−y+1vi+y−1 as well as the edges vi+n/2vi+n/2+1, vi+n/2−1vi+n/2+2, . . . ,
vi+y+1vi−y where y = ⌈n/4⌉ and the indices are reduced modulo n (see
Figure 1).

vi vivi+1vi+1
vi−1vi−1

vi+y

vi+y

vi+n/2
vi+n/2

Figure 1. Color class Fi of Kn for n = 8 and n = 10.

In each of the color classes Fi the vertex vi+y is unmatched. Therefore, we
can add the edge vi+yvi−⌊n/4⌋ in each Fi, 0 ≤ i ≤ n/2− 1 (represented as a
dashed line in Figure 1).

Each vertex and each edge of Kn is contained in exactly one of these
color classes. The induced subgraphs of this partition consist of K1, K2,
and P3. Therefore, this is an (O,Q)-total coloring of the complete graph
Kn with n colors.

Theorem 5. χ′′
P,O1

(Kn) =

{

n if P 6= O or n odd,

n+ 1 if P = O and n even.

Proof. The case that n is odd is treated in the above example, the case
P = O and n even in Theorem 4.

If n is even and P 6= O then K2 ∈ P. First note that χ′′
P,O1

(Kn) ≥
χ′′
I,O1

(Kn) = n by Lemma 1 and Theorem 3.

In the following we provide a (P,O1)-total coloring of Kn with n colors
which implies χ′′

P,O1
(Kn) = n.

For n = 2 and n = 4 see Figure 2.
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Figure 2. (P ,O1)-total colorings of K2 and K4.

If n ≥ 6 then there exists an edge coloring of Kn with n − 1 colors such
that there are n/2 independent edges with pairwise distinct colors. This
can be seen as follows. Consider a drawing of Kn − v ∼= Kn−1 with vertex
set {v0, . . . , vn−2} as a regular (n − 1)-gon. Color parallel edges of Kn−1

with one color and the edges vvi, 0 ≤ i ≤ n − 2, with the missing color
at vi. If n ≡ 2 (mod 4) then the edges v0v1, v2v3, . . . , vn−4vn−3, vn−2v are
independent with mutually distinct colors. If n ≡ 0 (mod 4) then the edges
v0v1, v2v4, v3v6, v5v and if n ≥ 12 also v7v8, v9v10, . . . , vn−3vn−2 are indepen-
dent with pairwise distinct colors.

Assign the color of each of these edges to its end-vertices and then
replace the colors of all these edges by the nth color (see Figure 3 for an
example).
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1
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2 2
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2
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2 3

33

3

3
33

44
4

4

4

4

55
5

5
5

5

6

6

6
v0

v1

v2

v3v4

v

Figure 3. Edge coloring and (P ,O1)-total colorings of K6.

The corresponding results concerning (O,Q)- and (P,O1)-total colorings of
paths and cycles are special cases of the following theorems.

Theorem 6. χ′′
P,Q(Pn) =











1 if n = 1,

2 if Pn ∈ (P ∩ Q) \ O,

3 otherwise.
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Proof. The result follows from Theorem 1 and from χ′′
P,Q(Pn) ≤ χ′′(Pn) ≤

3 (see Lemma 1).

Theorem 7. χ′′
P,Q(Cn) =























2 if Cn ∈ P ∩Q,

4 if (P=O,Q = O1, n 6≡ 0 (mod 3)) or (n=5,

P = O, P4 /∈ Q)or (n = 5,P = Q = O1),

3 otherwise.

Proof. If Cn ∈ P ∩ Q then χ′′
P,Q(Cn) = 2 by Theorem 1 and if Cn /∈

P ∩ Q then 3 ≤ χ′′
P,Q(Cn) ≤ 4 by Theorem 1, Lemma 1, and the fact that

χ′′(Cn) ≤ 4.
If n ≡ 0 (mod 3) then χ′′(Cn) = 3 and therefore χ′′

P,Q(Cn) = 3.
Let n 6≡ 0 (mod 3). If P = O and Q = O1 then χ′′

O,O1
(Cn) = 4.

If P = O and Q ⊃ O1 then color the successive vertices v0, v1, . . . , vn−1

of Cn by colors 1, 2, 3, 1, 2, 3, . . . , 1, 2, 3, 2 if n ≡ 1 (mod 3) and by colors
1, 2, 3, 1, 2, 3, . . . , 1, 2, 3, 2, 1, 2, 3, 2 if n ≡ 2 (mod 3), n ≥ 8, and the edges
with the at their end-vertices missing color of {1, 2, 3}. This is an (O,Q)-
total coloring of Cn since P3 ∈ Q. If n = 5 then color the vertices with
colors 1, 2, 1, 2, 3 (unique up to permutation) and the edges again with the
at their end-vertices missing color of the set {1, 2, 3}. This is an (O,Q)-total
coloring of C5 if P4 ∈ Q. If P4 /∈ Q then χ′′

O,Q(C5) = 4.
By switching the colors of vertices and edges one obtains χ′′

P,O1
(Cn) = 3

if P ⊃ O with the exception of χ′′
P,O1

(C5) = 4 if P3 /∈ P.
If P ⊃ O and Q ⊃ O1 then color the elements v0, v0v1, v1, v1v2, . . .

successively with colors 1, 2, 3, 1, 2, 3, . . . if n 6≡ 2 (mod 3) and with colors
1, 2, 3, 1, 2, 3, . . . , 1, 2, 3, 2, 1, 3, 2 if n ≡ 2 (mod 3) to obtain a (P,Q)-total
coloring of Cn with 3 colors.

3. Total Acyclic Colorings (P = Q = D1)

Total acyclic colorings are (D1,D1)-total colorings where D1 contains the
1-degenerate graphs which are the acyclic graphs. The D1-vertex chromatic
number is the vertex arboricity a(G) = χD1

(G) and the D1-edge chromatic
number is the (edge) arboricity a′(G) = χ′

D1
(G).

We mention some known results on the vertex and edge arboricity:
χD1

(G) = χ′
D1

(G) = 1 if and only if G is acyclic, χD1
(Cn) = χ′

D1
(Cn) =

2, χD1
(Kn) = χ′

D1
(Kn) = ⌈n/2⌉, χD1

(Km,n) = 1 if m = 1 or n = 1,
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χD1
(Km,n) = 2 if m 6= 1 6= n, χ′

D1
(Km,n) = ⌈mn/(m+ n− 1)⌉ (see [13],

e.g.).
We denote induced subgraphs H of G by H ≤ G. Proved upper

bounds are χD1
(G) ≤ maxH≤G{⌊δ(H)/2⌋ + 1} [7] which implies χD1

(G) ≤
⌊∆(G)/2⌋ + 1 and χ′

D1
(G) ≤ ⌊∆(G)/2⌋ + 1. The latter is an implication of

(6) χ′
D1

(G) = max
H≤G

|V (H)|>1

{⌈|E(H)| /(|V (H)| − 1)⌉}

which is due to Nash-Williams [13]. Moreover, χD1
(G) ≤ χ′

D1
(G) (see [5]).

Observe that we have an analogous situation for ordinary colorings:
χ(G) ≤ ∆(G) + 1, χ′(G) ≤ ∆(G) + 1 (Vizing [14]) and χ(G) ≤ χ′(G)
(Brooks [4]).

Theorem 1 implies that χ′′
D1,D1

(G) = 1 if and only if G ∈ O and
χ′′
D1,D1

(G) = 2 if and only if G ∈ D1 \ O (acyclic graphs with edges). For
cycles Cn we have χ′′

D1,D1
(Cn) = 3 by Theorem 7 since Cn /∈ D1.

Theorem 8. χ′′
D1,D1

(K1) = 1, χ′′
D1,D1

(K2) = 2, χ′′
D1,D1

(Kn) = ⌊n/2⌋+2 for

n ≥ 3.

Proof. The results for n = 1 and n = 2 follow from Theorem 1.
Let n ≥ 3. Each color class of a (D1,D1)-total coloring of Kn with c

colors contains 0, 1, or 2 vertices and at most n− 1, n − 2, or n − 3 edges,
respectively. If xi denotes the number of color classes with i vertices we
obtain x0 + x1 + x2 = c (number of color classes), x1 + 2x2 = n (number of
vertices) and (n− 1)x0 + (n− 2)x1 + (n− 3)x2 ≥

(n
2

)

(number of edges). It
follows (n−1)(c−1)−1 ≥

(n
2

)

and therefore c ≥ ⌈n/2 + 1 + 1/(n − 1)⌉. If n
is even then c ≥ n/2+ 2; if n ≥ 3 is odd then 1/(n− 1) ≤ 1/2 and therefore
c ≥ ⌈n/2⌉+ 1 = ⌊n/2⌋ + 2 which implies χ′′

D1,D1
(Kn) ≥ ⌊n/2⌋+ 2 if n ≥ 3.

On the other hand, it holds χ′′
D1,D1

(Kn) ≤ ⌊n/2⌋+ 2 which can be seen
by the following partition of the elements of Kn in ⌊n/2⌋ + 2 classes.

If n is even then class Fi, 0 ≤ i ≤ n
2 − 1, contains vertices vi and vi+n/2

and the n−3 edges of the path (vi+1, vi−1, vi+2, vi−2, . . . , vi+n/2−1, vi−n/2+1)
where all indices are reduced modulo n. The remaining edges v0v1, v1v2,
. . . , vn−1v0 induce a cycle which can be colored with two additional colors
(see Figure 4, upper part).

If n is odd then class Fi, 0 ≤ i ≤ n−3
2 , contains vertices vi and vi−(n−1)/2

and the n − 3 edges of the path (vi+1, vi−1, vi+2, vi−2, . . . , vi+(n−1)/2).
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Moreover, the remaining elements of Kn can be colored using two additional
colors:

vi

vi

vi+1

vi+1

vi−1

vi−1

vi+n/2

vi−(n−1)/2

Figure 4. Color classes of Kn if n is even (above) or odd (below).

vertex v(n−1)/2 and edges v(n−1)/2−jv(n−1)/2+j , j = 1, . . . , (n−1)/2 with one
new color and the edges of the path (v0, v1, . . . , vn−1) with the second new
color (see Figure 4, lower part).

The results for acyclic graphs, cycles and complete graphs suggest the fol-
lowing general conjecture.

Conjecture 1. χ′′
D1,D1

(G) ≤
⌊

∆(G)+1
2

⌋

+ 2.

This conjecture is an analogy to the total coloring conjecture which says
that χ′′(G) ≤ ∆(G) + 2 for all graphs G.

Since m ≤ 3n − 6 for planar graphs G of order n ≥ 3 and size m we
obtain χD1

(G) ≤ χ′
D1

(G) ≤ 3 by (6) which implies χ′′
D1,D1

(G) ≤ 6. We can
improve this to χ′′

D1,D1
(G) ≤ 5 but we do not know whether χ′′

D1,D1
(G) ≤ 4 is

true for all planar graphs. For outerplanar graphs G it holds χ′′
D1,D1

(G) ≤ 3.
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4. (P,Q)-total Colorings of Infinite Graphs — a Compactness
Theorem

All our considerations hold for arbitrary simple infinite graphs. Let us de-
note by I∗ the class of all simple infinite graphs. A graph property P is any
isomorphism-closed nonempty subclass of I∗.

In 1951, de Bruijn and Erdős [8] proved that an infinite graph G is k-
colorable if and only if every finite subgraph of G is k-colorable. Analogous
compactness theorems for generalized colorings were proved in [6]. They
all have been based on the “Set Partition Compactness Theorem” (see [6]),
where the key concept is that of a property being of finite character. A
graph property P is of finite character if a graph in I∗ has property P if
and only if each of its finite induced subgraphs has property P. It is easy
to see that if P is of finite character and a graph has property P then so
does every induced subgraph. A property P is said to be induced-hereditary
if G ∈ P and H ≤ G implies H ∈ P, that is, P is closed under taking in-
duced subgraphs. Thus properties of finite character are induced-hereditary.
However, not all induced-hereditary properties are of finite character. For
example, the graph property of not containing a vertex of infinite degree is
induced-hereditary but not of finite character. Let us also remark that every
property which is hereditary with respect to every subgraph (we say simply
hereditary) is induced-hereditary as well. The properties of being edgeless,
of maximum degree at most k, Kn-free, acyclic, complete, perfect, etc. are
properties of finite character. Each additive hereditary graph property P of
finite character can be characterized (see, e.g., [12]) by the set of connected
minimal forbidden graphs of P, which is defined as follows:

F(P) =
{

G : G connected, G /∈ P but each proper subgraph H of G

belongs to P
}

.

In the paper [6] also a compactness result for generalized colorings of hyper-
graphs has been presented. A simple hypergraph H = (X,E) is a hypergraph
on a vertex set X where all hyperedges e ∈ E are different finite subsets
of the vertex set X. Let P1, . . . ,Pm be properties of simple hypergraphs
(i.e. classes of simple hypergraphs closed under isomorphism). A hyper-
graph H = (X,E) is (P1, . . . ,Pm)-colorable if the vertex set X of H can
be partitioned into sets X1, . . . ,Xm such that the induced subhypergraphs
H[Xi] = (Xi, E(Xi)) of H, where E(Xi) consists of all hyperedges of H all
of whose vertices belong to Xi, has property Pi, i = 1, 2, . . . ,m. A property
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P of hypergraphs is of finite vertex character if a hypergraph has property
P if and only if every finite induced subhypergraph has property P. Then,
using the Set Partition Compactness Theorem, it holds:

Theorem 9. Let H be a simple hypergraph and suppose P1, . . . ,Pm are

properties of hypergraphs of finite vertex character. Then H is (P1, . . . ,Pm)-
colorable if every finite induced subhypergraph of H is (P1, . . . ,Pm)-colorable.

In particular, if P1 = P2 = · · · = Pm = OH , where OH denotes the property
of a hypergraph “to be hyperedgeless”, i.e., E = ∅, we have a compactness
theorem for the regular hypergraph coloring, since OH is of finite character.
Now we will use this result to prove the compactness theorem for (P,Q)-
total colorings:

Theorem 10. Let G ∈ I∗ be a simple infinite graph and suppose P and

Q 6= O are additive properties of finite character. Then G is (P,Q)-totally
k-colorable if and only if every finite induced subgraph of G is (P,Q)-totally
k-colorable.

Proof. Let G = (V (G), E(G)) be a simple infinite graph and let P,Q,Q 6=
O be additive hereditary properties of finite character. Let F(P) and F(Q)
be the sets of minimal forbidden graphs of P and Q, respectively. Let us
define a hypergraph H(G) = (V ∗, E∗) so that V ∗ = V (G) ∪E(G) and a set
e ⊂ V ∗ is an hyperedge of H(G) if and only if

(1) e = {v, h}, v ∈ V (G), h ∈ E(G), v ∈ h, or

(2) G[e] ∈ F(P), e ⊂ V (G), or

(3) G[e] ∈ F(Q), e ⊂ E(G).

By the definition of the hypergraph H(G) of G, a graph G is (P,Q)-totally
k-colorable if the hypergraph H(G) is regularly k-colorable. By Theorem 9,
H(G) is regularly k-colorable if every finite induced subhypergraph of H(G)
is regularly k-colorable. However, if every finite induced subgraph of G
is (P,Q)-totally k-colorable, then obviously every finite induced subhyper-
graph of H(G) is regularly k-colorable.
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