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Abstract

An edge-coloured graph G is rainbow-connected if any two vertices
are connected by a path whose edges have distinct colours. The rain-
bow connection number of a connected graph G, denoted rc(G), is the
smallest number of colours that are needed in order to makeG rainbow-
connected. In this paper we show some new bounds for the rainbow
connection number of graphs depending on the minimum degree and
other graph parameters. Moreover, we discuss sharpness of some of
these bounds.
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1. Introduction

We use [2] for terminology and notation not defined here and consider finite
and simple graphs only.

An edge-coloured graph G is called rainbow-connected if any two vertices
are connected by a path whose edges have different colours. This concept
of rainbow connection in graphs was recently introduced by Chartrand et
al. in [5]. The rainbow connection number of a connected graph G, denoted
rc(G), is the smallest number of colours that are needed in order to make
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G rainbow connected. An easy observation is that if G has n vertices then
rc(G) ≤ n − 1, since one may colour the edges of a given spanning tree
of G with different colours, and colour the remaining edges with one of
the already used colours. Chartrand et al. computed the precise rainbow
connection number of several graph classes including complete multipartite
graphs [5]. The rainbow connection number has been studied for further
graph classes in [4] and for graphs with fixed minimum degree in [4, 9, 11].

Rainbow connection has an interesting application for the secure trans-
fer of classified information between agencies (cf. [7]). While the information
needs to be protected since it relates to national security, there must also
be procedures that permit access between appropriate parties. This two-
fold issue can be addressed by assigning information transfer paths between
agencies which may have other agencies as intermediaries while requiring a
large enough number of passwords and firewalls that is prohibitive to intrud-
ers, yet small enough to manage (that is, enough so that one or more paths
between every pair of agencies have no password repeated). An immedi-
ate question arises: What is the minimum number of passwords or firewalls
needed that allows one or more secure paths between every two agencies so
that the passwords along each path are distinct?

The computational complexity of rainbow connectivity has been studied
in [3, 10]. It is proved that the computation of rc(G) is NP-hard ([3, 10]).
In fact it is already NP-complete to decide if rc(G) = 2. More generally
it has been shown in [10], that for any fixed k ≥ 2, deciding if rc(G) = k
is NP-complete. Moreover, it is NP-complete to decide whether a given
edge-coloured (with an unbounded number of colours) graph is rainbow-
connected [3].

2. Lower Bounds

It is an easy observation that rc(G) ≥ diam(G), where diam(G) denotes
the diameter of a graph G. However, the difference rc(G)− diam(G) can be
arbitrarily large. One example is given by the star K1,n−1 on n ≥ 3 vertices,
which has diam(K1,n−1) = 2, but rc(K1,n−1) = n− 1.

For the rainbow connection numbers of graphs the following results are
known (and obvious).

Proposition 1. Let G be a connected graph of order n. Then

1. 1 ≤ rc(G) ≤ n− 1,
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2. rc(G) ≥ diam(G),

3. rc(G) = 1 ⇔ G is complete,

4. rc(G) = n− 1 ⇔ G is a tree.

We will now show an improved lower bound for the rainbow connection
number. For a given graph G of order n let ni(G) denote the number of
vertices of G which have degree i for 1 ≤ i ≤ n− 1.

Theorem 1. Let G be a connected graph on n ≥ 3 vertices. Then

rc(G) ≥ max{diam(G), n1(G)}.

Proof. If diam(G) = 1, then G is complete. Hence rc(G) = 1 = diam(G) >
0 = n1(G). So we may assume n1(G) > diam(G) ≥ 2, since rc(G) ≥
diam(G) holds (see Proposition 1.2). Then any two vertices of degree one
in G cannot be adjacent, since G is connected and n ≥ 3. Thus d(u, v) ≥ 2
for any two vertices u, v ∈ V (G) with d(u) = d(v) = 1. This implies that
the n1 edges which are incident with the n1 vertices of G of degree one are
all coloured distinct. Therefore, rc(G) ≥ max{diam(G), n1(G)}.

3. Upper Bounds

We first prove the following useful lemma.

Lemma 1 (contraction lemma). Let G be a connected graph of order n and
H be a connected subgraph of G of order k. Let G′ denote the graph which
is obtained from G by contracting H to a single vertex v. Then

rc(G) ≤ rc(G′) + rc(H).

Proof. We consider an edge-colouring of G′(H) with rc(G) (rc(H)) colours
which makes G′(H) rainbow-connected. The two colour sets are chosen to
be disjoint.

Now going back to G, any edge with both endvertices not in H receives
the same colour it had in G′. Any edge with one endvertex in H receives the
colour of the edge of G′ from v to that other endvertex. Any edge with both
endvertices in H receives the colour it has in H. The resulting edge-colouring
makes G rainbow-connected and therefore rc(G) ≤ rc(G′) + rc(H).
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It is known that a cycle Ck with k ≥ 3 vertices has rainbow connection
number rc(Ck) = min{k − 2, ⌈k2 ⌉} (cf. [5]). Hence, if a connected graph G
of order n ≥ k ≥ 3 contains a cycle Ck, then rc(G) ≤ ((n − k + 1) − 1) +
min{k − 2, ⌈k2⌉} = n−max{2, ⌊k2 ⌋} by Proposition 1.1 and Lemma 1.

Corollary 1. Let G be a connected graph with n vertices and circumference
c(G). Then,

rc(G) ≤ n−
⌊c(G)

2

⌋

.

It is well known that c(G) ≥ δ(G) + 1 for every graph G with minimum
degree δ(G) ≥ 2.

Corollary 2. Let G be a connected graph with n vertices and minimum
degree δ(G) ≥ 2. Then

rc(G) ≤ n−
⌊δ(G) + 1

2

⌋

.

For 2-connected graphs Dirac [6] has shown the following lower bound for
the circumference of a graph.

Theorem 2 (Dirac, 1952, [6]). Let G be a 2-connected graph of order n and
minimum degree δ(G). Then

c(G) ≥ min{n, 2δ(G)}.

Corollary 3. Let G be a 2-connected graph of order n and minimum degree
δ(G). Then

rc(G) ≤ n−min
{⌊n

2

⌋

, δ(G)
}

.

In fact a stronger upper bound for the rainbow connection number rc(G) of
a connected graph G has been shown in [4].

Theorem 3 [4]. If G is a connected graph with minimum degree δ(G) then
rc(G) ≤ n− δ(G).

Let us discuss the sharpness of this result. For this purpose we first mention
some known results.
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Theorem 4 [11]. If G is a connected graph with n vertices and δ(G) ≥ 3,
then rc(G) ≤ 3n−1

4 .

Theorem 5 [4]. Any non-complete graph with δ(G) ≥ n
2 + log2 n has

rc(G) = 2.

Theorem 6 [8]. Let G be a connected graph of order n and size m. If
(

n−1
2

)

+ 1 ≤ m ≤
(

n
2

)

− 1, then rc(G) = 2.

For δ = 2 we show the following theorem.

Theorem 7 . Let G be a connected graph of order n ≥ 3 and with minimum
degree δ(G) = 2. If G /∈ {K3, C4,K4 − e, C5}, then rc(G) ≤ n− 3.

Proof. We have c(G) ≥ δ(G) + 1 ≥ 3. If c(G) ≥ 6, then rc(G) ≤ n − 3
by Corollary 1. Hence we may assume that 3 ≤ c(G) ≤ 5. If G contains
two cycles Ck1 and Ck2 having at most one common vertex, then rc(G) ≤
n + 1 −max{2, ⌊k12 ⌋} −max{2, ⌊k22 ⌋} ≤ n− 3 by Lemma 1. Hence we may
assume that any two cycles of G have at least two common vertices.

Let Ck by a cycle of G with maximum length, that is, k = c(G). With
δ(G) ≥ 2 we conclude that G ∼= K3 or k ≥ 4. Hence we may assume n ≥ k ≥
4. If n = k = 4, then G ∼= C4 or G ∼= K4−e. In both cases rc(G) = 2 = n−δ.
If n = k = 5, then G ∼= C5 or C5 + e ⊆ G. Then rc(C5) = 3 = n − δ and
rc(C5 + e) = 2 < n − δ. Hence we may assume n > k ≥ 4. Let H =
G[V (G) \ V (Ck)]. If H is not edgeless, then with δ ≥ 2 there are two cycles
in G having at least two common vertices. Since 4 ≤ k ≤ 5 we conclude that
there is a cycle of order at least (k−1)+2 = k+1 > k = c(G), a contradiction.
Hence we may assume that H is independent. If k = 4 then G ∼= K2,t for
some t ≥ 3. Then rc(G) = min{

√
t, 4} < n − 2 (cf. [5]). If k = 5 then G

contains an induced subgraph F on six vertices, say v1, v2, v3, v4, v5, v6, such
that E(F ) = {v1v2, v2v3, v3v4, v4v5, v5v1, v1v6, v6v3}. Then rc(F ) = 3 and so
rc(G) ≤ n− 3 by Proposition 1.1 and Lemma 1.

Sharpness of Theorem 3

1. δ = 1
Let G be a tree on n ≥ 3 vertices. Then rc(G) = n− 1.

2. δ = 2
By Theorem 7 we have rc(G) = n − 2 if and only if G ∈ {K3, C4,
K4 − e, C5}.
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3. 3 ≤ δ < n
2 + log2 n

Then rc(G) ≤ 3n−1
4 < n − δ by Theorem 4. Hence the bound is not

sharp for this range of δ when n ≥ 12.

4. n
2 + log2 n ≤ δ ≤ n− 3
Then rc(G) = 2 < n − δ by Theorem 5. Hence the bound is not sharp
for this range of δ when n ≥ 14.

5. δ = n− 2
For n ≥ 3 and 1 ≤ t ≤ ⌊n2 ⌋ let G ∼= Kn − tK2. Then δ(G) = n − 2 and
rc(G) = 2 = n− (n− 2) by Theorem 6.

6. δ = n− 1
Then G is complete and thus rc(G) = 1 = n− (n− 1).

We will now generalize Theorem 3 by considering pairs of non-adjacent
vertices. For a connected non-complete graph of order n let σ2(G) =
min{d(u) + d(v) | u, v ∈ V (G) and uv /∈ E(G)}. If G is complete then
let σ2(G) = 2n− 2.

For 2-connected graphs Bermond [1] has shown the following lower
bound for the circumference of a graph.

Theorem 8 (Bermond, 1976, [1]). Let G be a 2-connected graph of order
n ≥ 3. Then

c(G) ≥ min{n, σ2(G)}.

Corollary 4. Let G be a 2-connected graph of order n ≥ 3. Then

rc(G) ≤ n−min
{⌊n

2

⌋

,
⌊σ2(G)

2

⌋}

.

In fact we will now improve and generalize this upper bound for connected
graphs.

Theorem 9. Let G be a connected graph of order n. Then rc(G) ≤ n −
⌊σ2(G)

2 ⌋.

Note that n−⌊σ2(G)
2 ⌋ ≤ n− δ(G) for any connected graph G since σ2(G) ≥

2δ(G). Hence Theorem 9 improves Theorem 3.

Proof. Fixing δ, our proof is by induction on n where the basis of induction
n = δ+1 is trivial since graphs induced by cliques have rainbow connection
number 1. Hence we may assume n > δ + 1.
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Let K be a maximal clique of G consisting only of vertices whose degree is
δ. Since there is at least one vertex with degree δ and since G is connected
we have 1 ≤ k = |K| ≤ δ.

Consider the graph G′ obtained from G by deleting the vertices of K.
Suppose the connected components of G′ are G1, G2, . . . , Gt where Gi has ni

vertices and minimum degree sum si = σ2(Gi) for i = 1, . . . , t. Let Ki ⊆ K
with |Ki| = ki be the vertices of K with a neighbour in Gi, and assume
that |K1| ≥ |Ki| for i = 2, . . . , t (notice that it may be that t = 1 and G′ is
connected).

Consider first the case where K1 = K. By the induction hypothesis,
rc(Gi) ≤ ni − si

2 . Clearly, we may give the edges of K and the edges from
K to G1 the same colour. Hence,

rc(G) ≤ t+

t
∑

i=1

(

ni −
si
2

)

= t+ n− k −
t

∑

i=1

si
2
.

By the maximality of K, each pair of non adjacent vertices of Gi has degree
sum at least σ2(G) − 2(k − 1) in Gi. Hence, si ≥ σ2(G) − 2(k − 1), and
therefore

rc(G) ≤ t+ n− k −
t

∑

i=1

si
2

≤ t+ n− k − t
σ2(G)

2
+ tk − t

= n− t
σ2(G)

2
+ (t− 1)k ≤ n− σ2(G)

2
.

Now assume that |K| > |K1| = k1 > 1. By contracting K1 to a single vertex
v, we obtain a contraction G∗ of G with n − k1 + 1 vertices and minimum
degree sum σ2(G

∗) ≥ σ2(G)− 2(k1 − 1), so by induction

rc(G∗) ≤ n−(k1−1)− σ2(G
∗)

2
≤ n−(k1−1)− σ2(G)

2
+(k1−1) = n− σ2(G)

2
.

Now going back to G, any edge with both endvertices not in K1 receives
the same colour it had in G∗. Any edge with one endvertex in K1 receives
the colour of the edge of G∗ from v to that other endvertex. Any edge with
both endvertices in K1 receives the colour of an edge of G∗ from v to another
vertex in K \K1. The resulting colouring makes G rainbow-connected and

therefore rc(G) ≤ n− σ2(G)
2 .
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Finally, if k1 = 1 (and since |K| > |K1| = k1 we have k ≥ 2), contract the
graph induced by K into a single vertex v and notice that the contracted
graph G∗ has minimum degree sum σ2(G

∗) ≥ σ2(G), and n− k+1 vertices.

Hence, by induction hypothesis, rc(G∗) ≤ n− k+1− σ2(G∗)
2 . Going back to

G and colouring the edges of the graph induced by the clique K with a new
colour, we obtain

rc(G) ≤ n− k − σ2(G)

2
+ 2 ≤ n− σ2(G)

2
.

Our final result is based on the chromatic number of the complement G of
a given graph G.

Theorem 10. Let G be a connected graph with chromatic number χ(G).
Then

rc(G) ≤ 2χ(G)− 1.

Proof. We consider a k-vertex-colouring of G with k = χ(G) colours. Let
Vi for 1 ≤ i ≤ k be the colour classes of G. Then G[Vi] is complete for
1 ≤ i ≤ k. Since G is connected there are k − 1 edges in E(G) connecting
these k complete subgraphs in G, where the endvertices of each of these
k − 1 edges belong to two different complete subgraphs. Now choosing one
colour for all edges of a complete subgraph, k− 1 extra colours for the k− 1
connecting edges and arbitrary colours for the remaining edges we obtain an
edge colouring of G with 2k − 1 colours which makes G rainbow-connected.
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