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Abstract

An adjacent vertex distinguishing edge-coloring of a graph G is a
proper edge-coloring of G such that any pair of adjacent vertices are
incident to distinct sets of colors. The minimum number of colors
required for an adjacent vertex distinguishing edge-coloring of G is
denoted by χ′

a
(G). We prove that χ′

a
(G) is at most the maximum

degree plus 2 if G is a planar graph without isolated edges whose
girth is at least 6. This gives new evidence to a conjecture proposed in
[Z. Zhang, L. Liu, and J. Wang, Adjacent strong edge coloring of graphs,
Appl. Math. Lett., 15 (2002) 623–626.]
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1. Introduction

In this paper we only consider simple graphs, i.e., graphs without loops or
multiple edges. Let G be a graph with vertex set V (G) and edge set E(G).
A proper k-edge-coloring is a mapping φ : E(G) → {1, 2, . . . , k} such that
φ(e) 6= φ(e′) for any two incident edges e and e′. Let Cφ(v) = {φ(xv) | xv ∈
E(G)} denote the set of colors assigned to edges incident to the vertex v.
A proper k-edge-coloring φ is vertex distinguishing if Cφ(u) 6= Cφ(v) for any
pair of distinct vertices u and v. This concept has been studied in papers
such as [1, 4, 7], and [9].

We are concerned with a closely related concept in this paper. A proper
k-edge-coloring φ of G is adjacent vertex distinguishing, or a k-avd-coloring,
if Cφ(u) 6= Cφ(v) whenever u and v are adjacent vertices. The adjacent

vertex distinguishing chromatic index, denoted χ′
a(G), is the smallest integer

k such that G has a k-avd-coloring. Adjacent vertex distinguishing colorings
are variously known as adjacent strong edge coloring [12] and 1-strong edge
coloring [2]. Note that an isolated edge has no avd-coloring and a k-avd-
coloring can be regarded as an m-avd-coloring for any m > k.

The chromatic index χ′(G) of a graph G is the smallest integer k such
that G has a proper k-edge-coloring. Evidently, χ′

a(G) > χ′(G). Let ∆(G)
denote the maximum degree of G. The well-known Vizing Theorem [11]
asserts that ∆(G) 6 χ′(G) 6 ∆(G)+1 for every graph G. In contrast, there
exist infinitely many graphs G such that χ′

a(G) > ∆(G) + 1. For instance,
it is proved in [12] that, if n 6≡ 0 (mod 3) and n 6= 5, then the cycle Cn
satisfies χ′

a(Cn) = 4 = ∆(Cn) + 2. However, χ′

a(C5) = 5 = ∆(C5) + 3.

Zhang, Liu, and Wang [12] completely determined the adjacent vertex
distinguishing chromatic indices for paths, cycles, trees, complete graphs,
and complete bipartite graphs. Based on these examples, they proposed the
following conjecture.

Conjecture 1. If G is a connected graph with at least 6 vertices, then
χ′

a(G) 6 ∆(G) + 2.

Balister, Győri, Lehel, and Schelp [3] established the following three theo-
rems.

Theorem 2. If G is a graph without isolated edges and ∆(G) = 3, then

χ′
a(G) 6 5.
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Theorem 3. If G is a bipartite graph without isolated edges, then χ′
a(G) 6

∆(G) + 2.

Theorem 4. If G is a graph without isolated edges and the chromatic num-

ber of G is k, then χ′

a(G) 6 ∆(G) +O(log k).

The following bound proved by Hatami [10] is better than Theorem 4 for
graphs with extremely large chromatic numbers.

Theorem 5. If G is a graph without isolated edges and ∆(G) > 1020, then
χ′
a(G) 6 ∆(G) + 300.

The better bound χ′

a(G) 6 ∆(G) + 1 has been established for any planar
bipartite graphG with ∆(G) > 12 in [8] and for the multidimensional meshes
and the hypercubes in [5]. Conjecture 1 has also been extended to the general
case for multigraphs in [6]. In the following statement, µ(G) denotes the
maximum number of parallel edges between two adjacent vertices.

Conjecture 6. For any connected multigraph G of at least 3 vertices, G 6=
C5, and of multiplicity µ(G), χ′

a(G) 6 ∆(G) + µ(G) + 1.

In this paper, we prove Conjecture 1 for planar graphs with girth at least 6.
In this case, the upper bound ∆(G) + 2 is tight for infinitely many graphs,
e.g., cycles of length at least six and not a multiple of 3. The assumption
on girth cannot be decreased further as it can be attested by the cycle on
five vertices.

2. Notation

A plane graph is a particular drawing of a planar graph in the Euclidean
plane. For a plane graph G, we denote its set of faces by F (G). The degree

of a vertex v in G, denoted dG(v), is the number of vertices in G that are
adjacent to v. Those vertices are also called the neighbors of v. A k-vertex
is a vertex of degree k. A 1-vertex is also said to be a leaf. Let DG(v)
denote the number of neighbors of v in G that are not leaves. For f ∈ F (G),
we use b(f) to denote the boundary walk of f and write f = [u1u2 · · · un]
if u1, u2, . . . , un are all the vertices of b(f) traversed once in cyclic order.
Thus repeated occurrences of a vertex are allowed. The degree of a face is
the number of edge-steps in its boundary walk. Note that each cut-edge is
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counted twice. Let n2(f) denote the number of occurrences of 2-vertices in
b(f). When v ∈ V (G) is a k-vertex, we say that there are k faces incident to
v. However, these faces are not required to be distinct when v occurs more
than once on a boundary walk. The girth g(G) of a graph G is the length of
a shortest cycle of G. The girth is defined to equal infinity when the graph
has no cycles, i.e., it is a forest. A path x0x1 · · · xkxk+1 of length k + 1 in
G is called a k-chain if dG(x0) > 3, dG(xk+1) > 3, and dG(xi) = 2 for all
i = 1, 2, . . . , k.

3. Main Result

Theorem 7. If G is a plane graph without isolated edges and with girth

g(G) > 6, then χ′

a(G) 6 ∆(G) + 2.

Proof. We note that the theorem encompasses the case for G being a
forest without isolated edges since g(G) = ∞ > 6. In this case the theorem
is already known to be true [12].

Our proof proceeds by reductio ad absurdum. Assume that G is a
counterexample to the theorem whose |V (G)| + |E(G)| is the least possi-
ble. Since χ′

a(G) = max{χ′

a(Gi)} and ∆(G) = max{∆(Gi)}, both maxima
being taken over all components Gi of G, we know that G is a connected
plane graph such that ∞ > g(G) > 6 and χ′

a(G) > ∆(G) + 2. Any proper
subgraph H of G without isolated edges satisfies g(H) > g(G), and hence
χ′
a(H) 6 ∆(H) + 2 6 ∆(G) + 2. We observe that ∆(G) > 4 by Theorem

2 and G is distinct from any star K1,n, for otherwise χ′
a(K1,n) = ∆(K1,n)

when n > 2.
We are going to analyze the structure of G with a sequence of auxiliary

claims. Then we will derive a contradiction using the discharging method.

In the subsequent proofs, we routinely construct appropriate proper
edge-colorings without verifying in detail that they are adjacent vertex dis-
tinguishing because that usually can be supplied in a straightforward man-
ner.

Claim 8. No 2-vertex is adjacent to a leaf.

Proof. Assume to contrary that G contains a 2-vertex v adjacent to a leaf
u. Let w 6= u be the second neighbor of v. Since G is not a star, there
exists a neighbor x 6= v of w. Let H = G − u. Then H is a connected
proper subgraph of G, hence there is a (∆(G) + 2)-avd-coloring φ of H
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with the color set C = {1, 2, . . . ,∆(G) + 2}. We color uv with a color
a ∈ C \ {φ(vw), φ(wx)}. Since |C| = ∆(G) + 2 > 6, the color a exists.
The extended coloring is a (∆(G) + 2)-avd-coloring of G, contradicting the
choice of G. 2

Claim 9. If dG(v) > 3, then DG(v) > 3.

Proof. Assume to the contrary that there is a k-vertex v, k > 3, adjacent
to k − 2 leaves. Since G is not a star, we may suppose that v1, v2, . . . , vk
are the neighbors of v such that dG(v1) > 2, dG(v2) > 1, and dG(v3) =
dG(v4) = · · · = dG(vk) = 1. Let H = G − {v3, v4, . . . , vk}. Then H is a
connected proper subgraph of G, hence there is a (∆(G)+2)-avd-coloring φ
of H with the color set C = {1, 2, . . . ,∆(G) + 2}. Suppose that φ(vv1) = 1
and φ(vv2) = 2. We choose a color a ∈ Cφ(v1) \ {1, 2} if there is any such a,
otherwise let a = 2. Then we choose a color b ∈ Cφ(v2)\{1, 2} if there is any
such b, otherwise let b = 1. Now we color the edges vv3, vv4, . . . , vvk with
distinct colors in C\{1, 2, a, b}. Since |C\{1, 2, a, b}| > |C|−4 = ∆(G)−2 >

dG(v)− 2 = k− 2, such a coloring is possible. Since neither a nor b appears
on an edge incident to v, the extended coloring is a (∆(G)+2)-avd-coloring
of G, a contradiction. 2

Claim 10. There does not exist any k-chain if k > 3.

Proof. Assume to the contrary that v0v1 · · · vk+1 is a k-chain for some
k > 3. Let H = G − v2. Then H is a proper subgraph of G without
isolated edges, hence H admits a (∆(G) + 2)-avd-coloring φ using the color
set C = {1, 2, . . . ,∆(G) + 2}.

If k = 3, i.e., dG(v4) > 3, we color v1v2 with c1 ∈ C \ {φ(v0v1), φ(v3v4)}
and v2v3 with c2 ∈ C \ {c1, φ(v0v1), φ(v3v4)}. If k > 4, i.e., dG(v4) = 2,
we color v2v3 with c3 ∈ C \ {φ(v0v1), φ(v3v4), φ(v4v5)} and v1v2 with c4 ∈
C \ {c3, φ(v0v1), φ(v3v4)}. Since |C| = ∆(G) + 2 > 6, all the colors ci
are available. The extended coloring is a (∆(G) + 2)-avd-coloring of G, a
contradiction. 2

Claim 11. There exists no edge xy with dG(x) = 2 and DG(y) = 3.

Proof. Assume to the contrary that there is an edge xy such that dG(x)
= 2 and DG(y) = 3. Let z 6= y be the second neighbor of x. In addition
to x, let y1, y2 be the neighbors of y having degree at least 2. Denote by
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y3, y4, . . . , yn all neighbors of y that are leaves if any exists. By Claim 8,
dG(z) > 2.

Case 1. dG(z) > 3.
Let H1 = G − xy. Then H1 is a proper subgraph of G without isolated
edges, hence H1 admits a (∆(G) + 2)-avd-coloring φ using the color set
C = {1, 2, . . . ,∆(G)+2}. We may assume that φ(yyi) = i for i = 1, 2, . . . , n.
We see that {n+1, n+2, n+3} ⊆ C since |C| = ∆(G)+2 > dG(y)+2 = n+3.
Without loss of generality, we may further assume that φ(xz) /∈ {n+2, n+3}.

If n+ 2 ∈ Cφ(y1) ∩Cφ(y2), we color xy with n+ 3. If n+ 2 /∈ Cφ(y1) ∪
Cφ(y2), we color xy with n + 2. If n + 3 ∈ Cφ(y1) ∩ Cφ(y2), we color
xy with n + 2. If n + 3 /∈ Cφ(y1) ∪ Cφ(y2), we color xy with n + 3. If
{n + 2, n + 3} ⊆ Cφ(y1) \ Cφ(y2), or {n + 2, n + 3} ⊆ Cφ(y2) \ Cφ(y1), we
color xy with n+ 2.

Finally, we may suppose that n + 2 ∈ Cφ(y1) \ Cφ(y2) and n + 3 ∈
Cφ(y2)\Cφ(y1). If n > 3, we color xy with n+2 and recolor yy3 with n+3.
If n = 2, then DG(y) = dG(y) = 3. We color xy with a ∈ {3, 6} \ {φ(xz)}.
The color a exists since |C| = ∆(G) + 2 > 6.

Case 2. dG(z) = 2.
Let u 6= x be the second neighbor of z. By Claim 10, dG(u) > 3. Let H2 =
G − xz. Then H2 is a proper subgraph of G without isolated edges, hence
H2 admits a (∆(G) + 2)-avd-coloring ψ using the color set C = {1, 2, . . . ,
∆(G) + 2}. We may assume that ψ(yyi) = i for i = 1, 2, . . . , n and ψ(xy) =
n + 1. If ψ(zu) 6= n + 1, we color xz with a color different from n + 1 and
ψ(zu). Suppose that ψ(zu) = n+ 1.

If n > 3, we interchange colors of yy3 and xy, and then color xz with a
color different from n+ 1 and 3.

If n = 2, then DG(y) = dG(y) = 3. If 4 ∈ Cψ(y1) ∩ Cψ(y2), we recolor
xy with 5 and color xz with 4. If 4 /∈ Cψ(y1)∪Cψ(y2), we recolor xy with 4
and color xz with 5. If 5 ∈ Cψ(y1)∩Cψ(y2), we recolor xy with 4 and color
xz with 5. If 5 /∈ Cψ(y1)∪Cψ(y2), we recolor xy with 5 and color xz with 4.
If {4, 5} ⊆ Cψ(y1) \ Cψ(y2) or {4, 5} ⊆ Cψ(y2) \ Cψ(y1), we recolor xy with
4 and color xz with 5.

Finally, we may suppose that 4 ∈ Cψ(y1) \ Cψ(y2) and 5 ∈ Cψ(y2) \
Cψ(y1). We recolor xy with 6 and color xz with 4. 2

Claim 12. There does not exist a vertex v with neighbors v1, v2, . . . , vk,
k > 4, such that dG(v1) = dG(v2) = 2, dG(v3) > 2, dG(v4) > 2, and
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dG(vi) = 1 for all i = 5, 6, . . . , k.

Proof. Assume to the contrary that G contains such a vertex v. For
i = 1, 2, let ui 6= v be the second neighbor of vi. By symmetry between v1
and v2, it suffices to prove the following two cases.

Case 1. dG(u1) = 2.
Let y 6= v1 be the second neighbor of u1. By Claim 10, dG(y) > 3. Let
H1 = G − v1u1. Then H1 is a proper subgraph of G without isolated
edges, hence H1 admits a (∆(G) + 2)-avd-coloring φ using the color set
C = {1, 2, . . . ,∆(G)+2}. We may assume that φ(vvi) = i for i = 1, 2, . . . , k.
If φ(u1y) 6= 1, we color v1u1 with a color different from 1 and φ(u1y).
Suppose that φ(u1y) = 1. Note that {k+1, k+2} ⊆ C since |C| = ∆(G)+2 >

dG(v) + 2 = k + 2. We first color v1u1 with 2. Then we argue as follows.
If k + 1 ∈ Cφ(v3) ∩ Cφ(v4), we recolor vv1 with k + 2. If k + 1 /∈

Cφ(v3) ∪ Cφ(v4), we recolor vv1 with k + 1. If k + 2 ∈ Cφ(v3) ∩ Cφ(v4), we
recolor vv1 with k+1. If k+2 /∈ Cφ(v3)∪Cφ(v4), we recolor vv1 with k+2.
If {k + 1, k + 2} ⊆ Cφ(v3) \ Cφ(v4) or {k + 1, k + 2} ⊆ Cφ(v4) \ Cφ(v3), we
recolor vv1 with k + 1.

Finally, we may suppose that k+1 ∈ Cφ(v3)\Cφ(v4) and k+2 ∈ Cφ(v4)\
Cφ(v3). If dG(u2) ≥ 3, we recolor vv2 with a color a ∈ {k+1, k+2}\{φ(v2u2)}
and vv1 with the only remaining color in {k + 1, k + 2} \ {a}. Assume that
dG(u2) = 2, and let z 6= v2 be the second neighbor of u2. If there exists b ∈
{k+1, k+2}\{φ(v2u2), φ(u2z)}, we recolor vv2 with b and vv1 with the only
remaining color in {k+1, k+2} \ {b}. If {k+1, k+2} = {φ(v2u2), φ(u2z)},
then we exchange the colors of vv1 and vv2 and recolor v1u1 with a color
different from 1 and 2.

Case 2. dG(u1) > 3 and dG(u2) > 3.
Let H2 = G − vv1. Then H2 is a proper subgraph of G without isolated
edges, hence H2 admits a (∆(G) + 2)-avd-coloring ψ using the color set
C = {1, 2, . . . ,∆(G)+2}. We may assume that ψ(vvi) = i for i = 2, 3, . . . , k.
We may also assume that ψ(v1u1) /∈ {k + 1, k + 2}, for otherwise we just
exchange the color ψ(v1u1) with color 1 everywhere. The rest of the proof
goes exactly like the previous case. 2

Claim 13. There does not exist a vertex v with neighbors v1, v2, . . . , vk,
k > 5, such that dG(v1) = dG(v2) = dG(v3) = 2, dG(v4) > 2, dG(v5) > 2,
and dG(vi) = 1 for all i = 6, 7, . . . , k.
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The proof is omitted because it is similar to that of Claim 12.

Claim 14. There does not exist a face f = [x1x2 · · · x6] such that dG(xi) = 2
for all xi except x1 and x4.

Proof. Assume to the contrary that G contains such a 6-face f . By Claim
10, dG(x1) > 3 and dG(x4) > 3. Let H = G − x2x3. Then H is a proper
subgraph of G without isolated edges, hence H admits a (∆(G) + 2)-avd-
coloring φ using the color set C = {1, 2, . . . ,∆(G)+2}. If φ(x1x2) 6= φ(x3x4),
we color x2x3 with a color different from φ(x1x2) and φ(x3x4). Otherwise,
assume φ(x1x2) = φ(x3x4) = 1. We observe that φ(x1x6) 6= φ(x4x5) and
both colors are different from color 1. We interchange the colors of x1x2 and
x1x6, and then properly color x2x3 and recolor x5x6 if necessary. 2

Now we resume the proof of Theorem 7.

Let H be the graph obtained from G by removing all leaves of G. Then
H is a connected subgraph of G. It follows from Claims 8 and 9 that, for
every v ∈ V (H), dH(v) > 2, dH(v) = 2 if dG(v) = 2, and DH(v) = DG(v).
Furthermore, Claims 10 to 14 hold for H.

Using
∑

v∈V (H) dH(v) =
∑

f∈F (H) dH(f) = 2|E(H)| and Euler’s formula
|V (H)| − |E(H)| + |F (H)| = 2, we can derive the following identity.

∑

v∈V (H)

(2dH(v) − 6) +
∑

f∈F (H)

(dH(f)− 6) = −12.(1)

We define a weight function w by w(v) = 2dH(v) − 6 for v ∈ V (H) and
w(f) = dH(f) − 6 for f ∈ F (H). It follows from identity (1) that the sum
of all weights is equal to −12. We will design appropriate discharging rules
and then redistribute weights accordingly. In the redistribution process, we
say that x sends 1 to y if we decrease the weight of x by 1 and increase the
weight of y by 1. Once the discharging is finished, a new weight function w′

is produced. The sum of all weights is kept fixed while the discharging is
in progress since no weights are going to be created or destroyed. However,
after the redistribution is done, we can show that the outcome w′(x) is
nonnegative for all x ∈ V (H) ∪ F (H). This leads to the following obvious
contradiction.

0 6
∑

x∈V (H)∪F (H)

w′(x) =
∑

x∈V (H)∪F (H)

w(x) = −12.(2)
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There are two discharging rules.

(R1) If v is a 2-vertex incident to a face f , then f sends 1 to v for each
occurrence of v in b(f).

A face f = [uvw · · ·] of H is called a light face belonging to v if dH(v) > 4
and either dH(u) = 2 or dH(w) = 2.

(R2) If dH(v) > 4, then v sends 1 to each light face belonging to v.

Now we are going to verify that w′(v) > 0 for any vertex v of H.
If dH(v) = 2, then w(v) = −2 and w′(v) = −2 + 1 + 1 = 0 by (R1).
If dH(v) = 3, then w′(v) = w(v) = 0.
If dH(v) = 4, then w(v) = 2. By Claim 12, v is adjacent to at most

one 2-vertex in G, hence there are at most two light faces belonging to v.
Therefore, w′(v) > 2− 2 = 0 by (R2).

If dH(v) = 5, then w(v) = 4. By Claim 13, v is adjacent to at most two
2-vertices, hence there are at most four light faces belonging to v. Therefore,
w′(v) > 4− 4 = 0 by (R2).

If dH(v) > 6, then there are at most dH(v) light faces belonging to v.
Therefore, w′(v) > 2dH(v)− 6− dH(v) > 0 by (R2).

Next we are going to verify that w′(f) > 0 for any face f of H.
Since g(H) > 6, we have dH(f) > 6. A vertex v ∈ b(f) is called f -good

if it gives 1 to f during discharging. Let σ(f) denote the number of f -good
vertices in b(f). An immediate consequence of Claim 10 is n2(f) 6 ⌊23d(f)⌋.
It is also easy to show by Claims 10 and 11 that there are at least two f -good
vertices if n2(f) > 1, and σ(f) > ⌈13n2(f)⌉ when n2(f) > 1.

It follows that

w′(f) > dH(f)− 6− n2(f) + σ(f)

> dH(f)− 6− n2(f) +

⌈

1

3
n2(f)

⌉

= dH(f)− 6−

⌊

2

3
n2(f)

⌋

> dH(f)− 6−

⌊

2

3

⌊

2

3
dH(f)

⌋⌋

>

⌈

5

9
dH(f)

⌉

− 6.

Thus w′(f) > 0 if dH(f) > 10.
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Assume that dH(f) 6 9. If n2(f) = 0, then trivially w′(f) > w(f) =
dH(f)− 6 > 0. So assume n2(f) > 1.

If n2(f) 6 dH(f)− 4, then w′(f) > w(f) + σ(f)− n2(f) > dH(f)− 6 +
2− n2(f) > 0 by (R1) and (R2).

Suppose that n2(f) > dH(f)−3. If n2(f) > dH(f)−3, then the following
two possibilities may occur.

(1) For some k > 3, b(f) contains a k-chain, or

(2) dH(f) = 6 and there exist two 2-chains.

However, (1) contradicts Claim 10 and (2) contradicts Claim 14. It follows
that n2(f) = dH(f)− 3.

Each of the three vertices in b(f) whose degree is at least 3 must have
a neighbor of degree 2 in H, otherwise the three vertices form a subpath
of b(f), and hence there would exist a k-chain for some k > 3 in b(f),
contradicting Claim 10. By Claim 11, these three vertices have degree at
least 4, and hence they are all f -good. Thus w′(f) = w(f) + 3 − n2(f) =
dH(f)− 6 + 3− dH(f) + 3 = 0.

Acknowledgment

The authors are indebted to the anonymous referees for constructive com-
ments leading to an improvement of this paper.

References

[1] M. Aigner, E. Triesch and Z. Tuza, Irregular assignments and vertex-

distinguishing edge-colorings of graphs, in: Proceedings of Combinatorics ’90,
A. Barlotti et al., eds. (North-Holland, Amsterdam, 1992) 1–9.

[2] S. Akbari, H. Bidkhori and N. Nosrati, r-Strong edge colorings of graphs, Dis-
crete Math. 306 (2006) 3005–3010.
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