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Abstract

We investigate expressions of form A x C' = B x C involving direct
products of digraphs. Lovasz gave exact conditions on C for which
it necessarily follows that A = B. We are here concerned with a
different aspect of cancellation. We describe exact conditions on A for
which it necessarily follows that A = B. In the process, we do the
following: Given an arbitrary digraph A and a digraph C' that admits
a homomorphism onto an arc, we classify all digraphs B for which

AxC=BxC.
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The article [2] describes the exact conditions a graph A must meet in order
that any expression A x C' &2 B x (C necessarily implies A = B. It also
classifies—given graphs A and C—all graphs B for which A x C =2 B x C.
This paper generalizes these results to digraphs. Thus, given that a graph
is just a symmetric digraph, the current article implies the results of [2] but
is considerably more general. We begin by recalling the relevant definitions
and notation.
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1. NOTATION AND NOTIONS

For us, a digraph A is simply a binary relation E(A) on a vertex set V(A),
that is a subset E(A) C V(A) x V(A). For brevity, an ordered pair (a,a’) €
E(A) is denoted ad’, and is visualized as an arrow pointing from a to a’.
Elements of E(A) are called arcs. A reflexive arc aa is called a loop, and is
drawn as a closed curve beginning and ending at a. (We normally do not
embellish such a closed curve with an arrowhead.)

We denote by f(; the digraph with two vertices 0 and 1 and a single arc
01. (The digraph I?; plays a large role in this discussion.) Given a positive
integer n, we denote by C—)'n the digraph whose vertices are {0,1,2,...,n—1}
and whose edges are {01,12,23,..., (n—1)0}. By convention we agree that
a consists of a single vertex with a loop. Some of these digraphs are
illustrated in Figure 1. Notice that C_{ and C_>’2 are symmetric (as relations)
but [72) and C_; (n > 2) are not symmetric.

[ 26 ek

Figure 1. Examples of digraphs.

A symmetric digraph A (i.e., one satisfying aa’ € F(A) if and only if a’a €
E(A) for all a,a’ € V(A)) is called a graph. In drawing graphs it is common
to represent the two arcs aa’ and a’a as a single undirected edge joining a
and a’. As usual, K,, denotes the complete graph on n vertices. By K we
mean the graph obtained from K, by adding a loop at each vertex.

If A and B are digraphs, then A + B denotes the disjoint union of A
and B. If n is a natural number, then nA denotes the digraph formed from
n disjoint copies of A.

The direct product of two digraphs A and B is the digraph A x B whose
vertex set is the Cartesian product V(A) x V(B) and whose arcs are the
pairs (a,b)(a’,b') with aa’ € E(A) and bb' € E(B). A homomorphism from
digraph A to digraph B is a map ¢ : V(A) — V(B) with the property
that aa’ € E(A) implies ¢(a)p(a’) € E(B). We assume the reader to be
familiar with direct products and homomorphisms. For standard references
see [4, 3].
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2. CANCELLATION LAwS OF LOVASZ

In his classic paper [5], Lovész defines a digraph C to be a zero divisor if
there exist non-isomorphic digraphs A and B for which A x C = B x C. For
example, Figure 2 shows that C_>3 is a zero divisor: If A = (?3 and B = SC_>’1 )
then clearly A % B_,> yet A x C_>3 = B x C_>3 (Both products are isomorphic

to three copies of Cj.)

— — —
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Figure 2. Example of a zero divisor.
Here is the main result concerning zero divisors.

Theorem 1 (Lovész [5], Theorem 8). A digraph C is a zero divisor if and

= - — —
only if there is a homomorphism ¢ : C — Cp, + Cp, + Cpy + -+ - + Cp, for
prime numbers pi,p2, ..., Pk

— —
Thus, for instance, K5 is a zero divisor. Also any C, with n > 1 is a
zero divisor. (Even if n is not prime, there is an %—fold homomorphic cover

P C’—;L — 5;; for any prime divisor p of n.) Theorem 1 becomes quite simple
if C is a graph with at least one edge, for in this case no homomorphism
¢ can carry a (symmetric) edge of C' to an (asymmetric) arc of C_; As C_;
is symmetric only for n = 2, it follows that a graph C is a zero divisor if
an only if there is a homomorphism ¢ : C' — a , that is if and only if C is
bipartite.

Corollary 1. A graph C with at least one edge is a zero divisor if and only
if C is bipartite.
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Theorem 1 and its corollary can be regarded as cancellation laws for the

direct product. They give exact conditions on C' (namely the absence of a
—_— — —

homomorphism ¢ : C' — Cp, + Cp, + - -+ Cp, ) under which Ax C = B xC

necessarily implies A = B.

However, this does not fully resolve every question concerning cancel-
lation. One might ask what conditions on A (or B) might guarantee that
Ax C =2 B x (C always implies A =2 B. For example, if A = C_>’1, then
Ax C =B x (C implies A =2 B whether or not C' meets the hypothesis of
Theorem 1. It is reasonable to ask what other digraphs A have this prop-
erty. The answer to that question is the purpose of this paper. Along the
way we will describe a means of classifying—given digraphs A and C—all
digraphs B for which AxC' = B xC. Our methods will require the following
theorems due to Lovasz.

Theorem 2 (Lovész [5], Theorem 6). Let A, B,C and D be digraphs. If
AXx C = B xC and there is a homomorphism from D to C, then A x D =
B x D.

Theorem 3 (Lovész [5], Theorem 7). Let A,B and C be digraphs. If
AXx C = BxC, then there is an isomorphism from A x C to B x C of the
form (a,c) — (Y(a,c),c) for some homomorphism 1) : A x C — B.

3. AN ARC AS A FACTOR

This section addresses the equation A x C' = B x C' where the common
factor C' is the single arc f{_g) . Given a digraph A we describe the structure
of all digraphs B having the property that A x [?2) = B x I?; . From this we
will obtain necessary conditions on B for which A x C' = B x C' (where C
is arbitrary).

Given a digraph A, we denote the set of permutations of V(A) as
Perm(V(A)). The following definition is central to the remainder of this

paper.

Definition 1. Given a digraph A and a permutation © € Perm(V (A)), we
define a digraph A™ as V(A™) = V(A) and E(A™) = {an(d’) : ad’ € E(A)}.
Thus aa’ € E(A) if and only if ar(a’) € E(A™), and aa’ € E(A™) if and only
if ar~1(a') € E(A).
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Figure 3 shows examples. The upper-left displays a digraph A on vertices
{0,1,2}, and the digraphs A™ for each of the six permutations of V(G)
are shown. (Note that Al = A.) In this case the A™ are six pairwise
nonisomorphic graphs.

0 1 2 0 1 2 0 1 2
o7 3% <0 0 (o——) b
A A(012) A(021)

A(01) A12) A(02)

Figure 3. Examples of A and A™.

For another example, take A = (?3 and let m = (021) permute the vertices
cyclicly in the direction opposite to the arcs. Then A™ = 3(71 . (Digraphs A
and B = A™ appear as factors in Figure 2.)

It is perhaps a startling_iact that even though A 2 A™ in general, it is
nonetheless true that A x Ky = A™ x K, for any w. Before proving this,
observe that it is true for the digrapllg A and A™ from Figure 3: Figure 4
confirms that all the products A™ x Ky are isomorphic.

e CH8 b OBt 8
A A(123) 4(132)
7 A7 X
i (o] 1 o i o
Cé\bg 1 2 g 1 : 2 (3)
A(2) A(23) A(3)

Figure 4. Products with A™ as a factor.
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In fact, a somewhat stronger statement can be proved.

Proposition 1. If A and B are digraphs, then A X I?; ~ B x I?; if and
only if B = A™ for some m € Perm(V (4)).

Proof. Suppose B = A" for some m € Perm(V(A)). In showing A x
f(_g) = B x f(_g), there is no harm in assuming further that B = A™. Thus
V(B) = V(A) and E(B) = {an(d’) : ad’ € E(A)}. Define a map ¢ :
V(A x f(;) — V(B x I_(_;) as follows.

(m(a),e) ife=1,
pla.e) = { (a,e) ife=0.

Now, ¢ is clearly bijective. Consider a typical arc of A x I?;, which necessar-
ily has the form (a,0)(a’,1) for some aa’ € E(A). Observe that
o(a,0)p(a’,1) = (a,0)(w(a’),1) is an arc of A™ x I?;, so ¢ is a homo-
morphism. On the other hand, if (a,0)(a’,1) € A" X [72), then aa’ €
E(A™), so ar~'(a’) € E(A). Thus (a,0)(7 1(a’),1) € E(A x f(;) and
o(a,0)p(r~1(a’),1) = (a,0)(a’,1). We therefore have an isomorphism ¢ :
A X I?; — B x I?; .

— —

Conversely, suppose there exists an isomorphism ¢ : A X K9 — B X K.
We will produce a 7 for which B =2 A™. By Theorem 3 we may assume
that ¢ has the form ¢(a,e) = (¢(a,¢),e) for some map 1) : A x I—{g — B.
(Actually this can be deduced quickly in the present simple case where the
common factor C' is [?2) : The vertices of A x [72) with positive out-degree all
belong to V(A) x {0}, so ¢ necessarily sends them to V(B) x {0}. Likewise
vertices of A X f(_g) with positive in-degree all belong to V(A) x {1}, so ¢
necessarily sends them to V(B) x {1}. Thus if (a,¢) is a non-isolated vertex
of Ax I—(_;, then ¢ does not alter its second coordinate. One quickly confirms
that the action of ¢ on the isolated vertices can be modified if necessary so
that it does not alter the second coordinates.)

Now consider maps po, p1 : V(A) — V(B) defined as po(a) = ¢(a,0)
and p1(a) = 9¥(a,1). It is straightforward to verify that bijectivity of ¢ im-
plies that o and p are bijections too. Set m = g1, so ™ € Perm(V (A)).
The proof is completed by showing that the bijection ug : V(A™) — V(B)
is an isomorphism. For this, consider the following chain of equivalences.
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aa' € BE(A™) < ar1(d") € E(A) (definition of A™)
< apy uo(a’) € E(A) (definition of 7)
—
= (a,0) (7 po(a’),1) € B(A x K») (definition of x)
— ¢(a,0)p(u; po(a’),1) € B(B x Ky) (¢ is isomorphism)
—
— (w(aa O)a 0)@/’(#1_1#0(@/)7 1)a 1)_6) E(B X K2) (property of 90)
< (po(a),0)(uo(a’),1) € E(B x Ka) (definition of po, p1)
< pola)uo(a’) € E(B). (definition of x)
Thus pg : A™ — B is an isomorphism, and the proof is complete. [ |

Digraph 172) in Proposition 1 can be replaced with the class of digraphs that
—
admit homomorphisms onto Ks.

Corollary 2. Suppose__{l,B and C are digraphs, and there is a surjective
homomorphism C — Ky. Then A x C =2 B x C if and only if B = A™ for
some m € Perm(V (A)).

Proof. Suppose Ax C = B x(C. Since C has at least one arc, there i is a
homomorphism Kg — C. Therefore Theorem 2 implies A x Kg B x K2
Proposition 1 now guarantees a permutation 7 € Perm(V(A)) for which
B>~ AT,
Conversely suppose B = AT, so A X [?2) = B x I?; by Proposition 1.
Since there is a homomorphism C' — f(; , Theorem 2 implies AxC = BxC.
|
We can not expect to relax the conditions on C' in Corollary 2. The reason
is that the existence of the homomorphism C' — I—(_; means that C' is a zero
divisor. Without such a homomorphsm C might not be a zero divisor, and
then we could only have A x C = A™ x C in the event that A = A™. Still,
one direction of Corollary 2 can be generalized to an arbitrary C, as follows.

Corollary 3. Suppose A, B and C' are digraphs and C has at least one arc.
If Ax C=BxC, then B> A™ for some m € Perm(V (A)).

Proof. (First paragraph of the proof of Corollary 2.) [ |

Taken together, Corollixgies 2 and 3 tell us that the digraphs C' which admit
homomorphisms onto K> are the most “egregious” of all zero divisors. Corol-
lary 2 implies that if C' is such a digraph, then for an arbitrary digraph A,
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there are potentially |V (A)|! different digraphs B for which A x C = B x C.
By contrast, Corollary 3 suggests that if C' does not admit such a homomor-
phism, then there are perhaps fewer such digraphs B.

We now continue our investigation of equations A x C' 2 B x C where C
is a zero divisor which admits a homomorphism onto l—(_; For a given digraph
A, Corollary 2 completely describes the structure of all digraphs B for which
A x C = B x C. However, it does not adequately enumerate them, for it
is possible that A™ = A# for different permutations 7, € Perm(V (A)).
In order to resolve such redundancy, we introduce a factorial operations on
digraphs.

4. THE DIGRAPH FACTORIAL

A version of the following definition was introduced in [2]. It is here modified
slightly and adapted to digraphs.

Definition 2. Given a digraph A, the factorial of A is another digraph,
denoted as A!, and defined as follows. The vertex set of Al is V(A!) =
Perm(V(A)). Given permutations «, 5 € V(A!), there is an arc from «
to [ provided that aa’ € E(A) if and only if a(a)B(a’) € E(A), for all
a,a’ € V(A). We denote an arc from « to 3 as («)(8) to avoid confusion
with composition.

We remark in passing that A! is a subgraph of the digraph exponential A4,
(See Section 2.4 of [3].) Observe that the definition implies that there is a
loop at a vertex a € E(A!) if and only if « is an automorphism of A. In
particular any A! has a loop at the identity permutation id.

As our first example, consider the factorial of the graph K, the com-
plete (symmetric) graph with a loop at each vertex. Here we have both
aa’ € E(A) and a(a)f(a’) € E(A) for all possible a,a’ € V(K}) and all
possible permutations a and (3. Consequently any two «, 3 form an arc of
K;!. Thus K;!' = K|, which factors as

KIN=2K)x K, | xK;_ox---x K3 xKj;xK{

and explains our choice of the word “factorial” for this operation.

Figure 5 shows further examples of digraph factorials. Each part (a),
(b) and (c), shows a digraph A on vertex set {0, 1,2}, with its factorial on
the right.
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0 1 2 id (02) (01) (12) (012) (021)
o

(a) A @ Al C» o o o o

(02) (01) (12) (012) (021)

0 1 2 id
(b) A > > Al o o o o

(02) (01) (12) (012) (021)

@ A aCh e v

Figure 5. Examples of A and Al.

For a given graph A we define a relation ~ on V(A!) by declaring p ~ A
if and only if there is an arc (a)(8) € E(A!) for which 4 = a~!A\g. This
is an equivalence relation as follows. It is reflexive since p = id ~*pid and
(id)(id) € E(A!). It is symmetric as follows. Suppose p ~ A and take
(@)(B) € E(A!) with u = a™'A3, s0o A = (e ) 1up=t. Then A ~ p
provided (a~1)(371) € E(A!). But this is clear: From (a)(8) € E(A!) we
get aa’ € E(A) if and only if a(a)B(a’) € E(A) for all pairs a,a’ € V(A).
Substituting @ and a’ with a~'(a) and 37!(a’), produces a~!(a)B~!(d’) €
E(A) if and only if aa’ € FE(A) for all pairs a,a’ € V(A), which means
(a=1)(B71) € E(A!). Finally we check transitivity. Suppose g ~ A and
A ~ m, so Al has arcs (a)(8) and (7)(8) with u = a=*A\3 and A = y~174.
Thus p = (ya) '7w(68). It is immediate that (ya)(68) € E(A!), so A ~ 7.

Proposition 2. Suppose A is a digraph and p,\ € Perm(V(A)). Then
AP 22 AN if and only if p ~ M.

Proof. Suppose p ~ A, so there is an arc (a)(8) € E(A!) for which
= o '\3. The following chain of equivalences shows that o : A* — A is
an isomorphism.

ad' € E(A*) <= ap (d) € E(A) (definition of A*)
— a(a)fu~ () € B(A) (since (0)(5) € E(AD)
— ala)\Bu~(d') € B(AY) (definition of A*)
— a(a)aa ' \pu"(d') € BE(AY)
— aa)a(d) € E(AM). (a™I\B = p)
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Conversely, suppose ¢ : A* — A* is an isomorphism. Observe y =
(@™ HAA"Lpu), so we will have p ~ X as soon as we can show () (A~ tpu) €
E(A!). For this, consider the following reasoning.

ad' € E(A) <= ap(d) e E(A") (definition of A*)
— p(a)pu(a) € E(AM) (¢ is isomorphism)

— pla)\"tou(d) € E(A). (definition of A*)

From the definition of A! it now follows that (¢)(A™tpu) € E(A!). |

Combining Proposition 2 and Corollary 3 produces the following theorem

concerning zero divisors that admit homomorphisms onto I?; . Given such a
zero divisor C and a digraph A, it classifies all B for which A x C = B x C.

Theorem 4. Suppose A and C are digraphs and there is a surjective homo-
morphism C — .7(_2) Let py,pa, ..., pup € V(A be representatives from the
k equivalence classes of ~. Then the digraphs B (up to isomorphism) for
which A x C =2 B x C are exactly B =AM, AF2 . APk,

Let us look at several examples of this theorem. Consider the digraph A
from Figure 5(a). Here A! has only one arc (id)(id), so the equivalence class
containing any permutation 7 consists only of the element id 'mid = .
Thus there are six equivalence classes, each one containing a single permu-
tation of {0, 1,2}, and consequently six distinct digraphs B = A™ for which
Ax C =B xC. These are listed in Figure 3.

Next consider A in Figure 5(b) The arcs of the factorial are (id)(id),
(02)(id), (id)(02) and (02)(02), so it is not hard to work out the ~ equiva-
lence classes. The equivalence class containing id is

{id7Y4did, (02)7ldid, id7tid(02), (02)7tid(02)} = {id, (02)},
and the class containing (01) is
{id=(01)id, (02)~*(01)id, id~1(01)(02), (02)7*(01)(02)}

= {(01), (012), (021), (12)}.

These are the only equivalence classes. Taking representatives id and (01),
Theorem 4 tells us that there are only two digraphs B for which A x C' =
B x C, and they are B = Al = A and B = AY_ drawn in Figure 6.
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o 3w Aid (Or——0——) AOD

Figure 6. Two graphs B guaranteed by Theorem 4.

Figure 7 shows A4 x C and AV x C, for a particular graph C that admits a

JEEEEN
homomorphism C' — Ks. It is clear that these products are both isomorphic
to A x C.

1% 1D
T oA Oooe A

Figure 7. Ax C= B x C.

5. CANCELLATION DIGRAPHS

Let us call a digraph A a cancellation digraph if whenever A x C' =2 B x C
for digraphs B and C' (where C has at least on edge) it is necessarily true
that A = B. For example, K is a cancellation digraph. The graph A = Ald
from Figure 6 is not a cancellation digraph, for there is a different graph
B =AY with A x C = B x C, as illustrated in Figure 7.

This section presents a characterization of cancellation digraphs.

Observe that if AxC = Bx(C, then Theorem 2 implies A x I—(_g) ~ Bx f(;
By Theorem 4, it must be the case that B = AT for some permutation 7
of V(A). Further, it follows that A is a cancellation digraph if and only
if AT =2 A for all permutations m, that is if and only if ~ has only one
equivalence class. This idea is repackaged in the next theorem.

Proposition 3. Given a digraph A, let ® : E(A!) — V(A!) be defined as
®((a)(B)) = a~'B. Then A is a cancellation digraph if and only if ® is
surjective.



586 R.H. HAMMACK AND K.E. TOMAN

Proof. Tt suffices to prove that the image of ® is {m € V(A!) : 7 ~ id},
for then @ is surjective if and only if every m € V(A!) is equivalent to the
identity, if and only if A™ = A'd = A for every m € V(A!).

Indeed, any element in the image of ® is of form o~ '3 for some arc
(a)(B) € E(A!). As a™18 = a7 lidB, we have '3 ~ id. Conversely, if
id ~ 7 then m = a~tidg for some arc (a)(3) € E(A!), so m = a~!f is in the
image of ®. [

We now construct two families of cancellation digraphs. Given non-negative
integers m and n, form a digraph V! as follows. Begin with the disjoint union
K} + K}, where the bar represents complementation. (So K}, consists of m
isolated vertices, without loops.) Finally establish arcs pointing from each
vertex of K to every vertex of K* . The digraph on the left side of Figure 8
is V2. We also construct a family of digraphs A", by starting with K + K,
and establishing arcs pointing from each vertex of K}, to every vertex of K.
The digraph on the right side of Figure 8 is AZ. Notice that V' = A} = K}
and V) = A% = K7 . but these are the only cases where V,? = AJ.

Figure 8. Examples of cancellation digraphs.

We can use Proposition 3 to show that V! is a cancellation digraph. Our
strategy is to show (id)(w) € E(V,!!) for every permutation 7 € V(V1),
and then, as ®((id)(w)) = =, it follows that map ® is surjective. Therefore
we need to confirm that aa’ € E(V}}) <= id(a)n(a’) € E(V;?) for each
a,a’ € V(V,). Thus consider a,a’ € V(V;?). Suppose aa’ € E(V,?). By
construction of V. it must be that a € V(K}). But a € V(K}) implies
ab is an arc of V,? for any b € V(V"), so ar(a’) = id(a)w(a’) € E(V,?).
Conversely, if aa’ ¢ E(V?) then it must be that a € V(K}), and this
means ab ¢ E(V,") for any b, whence id(a)w(a’) ¢ E(V,?). It follows that
(id)(m) € E(V,2!), so V; is indeed a cancellation digraph.

Next we show that A} is a cancellation digraph. Our strategy is the

same as for V?, except here we show (771)(id) € E(A%!) for any 7 €
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V(AL!). Thus consider a,a’ € V(A). By construction of AJ} we have
aa’ € E(AL) implies o/ € V(K}). But o/ € V(K}) means ba’ is an arc
of A% for any b, so 7 !(a)id(a’) € E(A?,). Conversely, if aa’ ¢ E(A?,)
then it must be that o’ € V(K},), and this means ba’ ¢ E(AL) for any b,
whence 7~ !(a)id(a’) ¢ E(A?,). Tt follows that (7~1)(id) € E(A%!), so A",
is a cancellation digraph.

Theorem 5. A digraph is a cancellation digraph if and only if it is isomor-
phic to some V! or A},.

Proof. We have already noted that V, and A}, are cancellation digraphs.
Now consider any cancellation digraph A. We will make two observations
about its structure. Both observations rely on the following remark.

Remark. If 7 € V(A!) is the transposition that interchanges two vertices
a,a’ € V(A), then A and A™ have the same number of loops at a and a’.
(That is either A and AT each have loops at both a and a’, or neither has a
loop at a nor d’, or each has exactly one loop at a or a’.) To see this, observe
that if b € V(A) —{a,a’}, then bb € E(A) if and only if bb = br(b) € E(AT),
so A has a loop at such a b if and only if A™ has a loop at b. But A = A7
(because A is a cancellation digraph) so A and A™ have the same number of
loops. It follows that A and A™ have the same number of loops at a and a’.

Now we make two observations concerning pairs of vertices a,a’ € V(A).

1. Note aa € E(A) and a’a’ € E(A) if and only if aa’ € E(A) and da €
E(A). To see this, first suppose A has loops at both a and a’. By
the remark, aa € E(AT) and ala’ € E(AT), and this means a7~ 1(a) =
aa’ € E(A) and a'77(a’) = a’a € E(A). Conversely, if aa’ € E(A) and
d'a € E(A) then at(a’) = aa € E(A7) and a/7(a) = a’a’ € E(AT). The
remark implies that A has loops at a and a’.

2. Note aa ¢ E(A) and a'a’ ¢ E(A) if and only if aa’ ¢ E(A) and aa ¢
E(A). To see this, first suppose aa ¢ E(A) and a'a’ ¢ E(A). By the
remark, aa ¢ E(A7) and aa’ ¢ E(A7), and this means at “a) = ad ¢
E(A) and a't71(a’) = d'a € E(A). Conversely, if aa’ ¢ E(A) and
aa ¢ E(A) then ar(a’) = aa ¢ E(AT) and a'7(a) = a’a’ ¢ E(AT). The
remark implies aa ¢ E(A) and a’a’ ¢ E(A

At this point we can see why A = V? or A = A}},. Let L C V(A) be the
vertices of A with loops and let N C V(A) be the vertices without loops.
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Put n = |L| and m = |N|. By Observation 1, A has two arcs between any
two vertices in L. By Observation 2, A has no arcs between any two vertices
in N. Thus the subgraph (L) induced on L is K, and the subgraph (N)
induced on N is K},.

Moreover Observations 1 and 2 taken together imply that there is ex-
actly one arc between any two vertices a € L and a’ € N. We need to show
that either all such arcs are directed from L to N (in which case A = V)
or all are directed from N to L (in which case A = A). Suppose to the
contrary that this is not the case. Then A must have one of the follow-
ing induced subgraphs, where the upper vertices are in L and the lower

are in N.
S50

a ocC

b
Figure 9. Forbidden configurations in a cancellation digraph.

In either case consider the cyclic permutation m = (abc), and note that A™
has fewer loops on the vertices {a, b, c} than does A. Since 7 does not alter
vertices in V(A)—{a, b, c}, it follows that A has a loop at x € V(A)—{a, b, c}
if and only if A™ has a loop at . Thus A has more loops than A™, so A 22 A",
contradicting the fact that A is a cancellation digraph. [ |

6. CONCLUSION

In summary, our main results are as follows, where A is a fixed digraph and
C is a digraph that has at least one edge.

1. (Corollary 2) If there is a surjective homomorphism C — E, then
AxC=BxC(C <= B= A" for some m € Perm(V (A)).

2. (Corollary 3) If C has at least one edge, then A x C = B x C =
B = A™ for some 7 € Perm(V (A)).

3. (Proposition 2) If there is a surjective homomorphism C' — [72), then
the graphs B for which A x C = B x C are precisely B = A*i, where
W1, 42, - - - 5 [t are representatives from the distinct ~ equivalences classes
of V(A!).
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4. (Theorem 5) A digraph A satisfies A x C = B x C = A = B for all
C if and only if A= A7) or A=V, for some m,n.

In conclusion we mention two areas that merit future study. Our first remark
concerns Item 2, above. In the situations where C' is a zero divisor but
there is no homomorphism C' — Iz, it remains to spell out precisely the
permutations 7 for which A x C =2 B x C <= B = A™. This will be the
subject of a future paper.

The second remark concerns a more satisfactory adaptation of these
ideas to graphs. In general, if A is a graph (symmetric digraph), then A™
need not be symmetric. In fact A™ will be a graph if and only if 7 satisfies
ad' € E(A) <= n(a)n 1(a’) € E(A) for all pairs a,a’ € V(A). Such
a m is called an antiautomorphism in [2], where analogues of the present
Propositions 1 and 2, Corollaries 2 and 3, and Theorem 4 are derived for
graphs. However, it is not known if there is a version of Theorem 5 for
graphs.

Indeed the class of “cancellation graphs” appears to be far richer than
the cancellation digraphs described by Theorem 5. The reason is that a
graph C' is a zero divisor only if there is a homomorphism C — C—>’2 (Corol-
lary 1). Thus, roughly speaking, there are fewer zero divisors in the class
of graphs than in the class of digraphs. Consequently we expect the im-
plication A x C = B x C = A = B is less likely to fail in the class of
graphs than in the class of digraphs, so there should be a wider variety of
cancellation graphs than cancellation digraphs. Indeed, this is borne out in
[1], which proves that a bipartite graph is a cancellation graph if and only
if it has no automorphism that reverses the bipartition of one of its com-
ponents. (In this sense, “most” bipartite graphs are cancellation graphs.)
It would be interesting to find a similar characterization for nonbipartite
cancellation graphs.
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