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1 Introduction and Motivation

All graphs considered in this paper are finite and simple (without multiple
edges or loops), and we use standard notation of [6] and [7]. In particular,
G∪H denotes the disjoint union of graphs G and H. The symbol ⊆ stands
for the relation ”to be a subgraph“. For the sake of brevity we shall say ”a
graph G contains the graph H“ instead of ”a graph G contains a subgraph
isomorphic to the graph H“. If G = (V (G), E(G)) is a graph and V ∗ ⊆
V (G), then by G[V ∗] we denote the subgraph induced by the vertex set V ∗,
i.e. the graph with vertex set V ∗ and edge set E∗ = {uv ∈ E(G) : u, v ∈ V ∗}.
Analogously, for an edge set E∗∗ ⊆ E(G) we define the subgraph G[E∗∗] of
G generated by E∗∗ as the graph with vertex set V (G) and edge set E∗∗. A
homomorphism of a graph G to a graph H is a mapping f of the vertex set
V (G) into V (H) which preserves the edges i.e., such that e = {u, v} ∈ E(G)
implies f(e) = {f(u), f(v)} ∈ E(H). If a homomorphism of G to H exists,
we say that G is homomorphic to H and write G→ H.

Let us denote the class of all finite simple graphs by I. A graph property
is a non-empty proper isomorphism-closed subclass of I. We also say that a
graph G has property P whenever G ∈ P. The complementary set P = I\P
of a property P will be called a co-property.

A property P of graphs is called hereditary if it is closed with respect
to the relation ⊆ to be a subgraph, i.e., if H ⊆ G and G ∈ P then H ∈ P.
(An overview of hereditary properties can be found in [1]). It is not difficult
to see that co-properties of hereditary properties of graphs are closed under
taking supergraphs and we shall call them co-hereditary. A property P is
called additive if it is closed under the disjoint union of graphs, i.e., if every
graph has a property P provided all of its connected components have this
property. The set of all additive hereditary properties of graphs forms a
complete distributive lattice (for details see [1]).

We list some important additive hereditary properties.

O = {G ∈ I : G is edgeless, i.e., E(G) = ∅},

Ok = {G ∈ I : each component of G has at most k + 1 vertices},

Sk = {G ∈ I : the maximum degree ∆(G) ≤ k},

Dk = {G ∈ I : G is k-degenerate, i.e., the minimum degree δ(H) ≤ k for
each H ⊆ G},

Ik = {G ∈ I : G does not contain Kk+2},

Ok = {G ∈ I : G is k-colorable},

→ H = {G ∈ I : G is homomorphic to the graph H}.
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Let P be a hereditary property, P 6= I. Then there is a nonnegative integer
c(P) such that Kc(P)+1 ∈ P but Kc(P)+2 /∈ P – it is called the completeness
of P. Obviously

c(Ok) = c(Sk) = c(Dk) = c(Ik) = k

and for additive properties c(P) = 0 if and only if P = O.
It is rather easy to see that any hereditary property P and its associated

co-hereditary property P are uniquely determined by the set of minimal
forbidden subgraphs of the property P defined in the following way:

F (P) = {G ∈ I \ P : each proper subgraph of G belongs to P}.

Note that F (P) may be finite or infinite. For an arbitrary graph theoret-
ical invariant ρ and hereditary property P we can establish the following
invariant (see also [13]):

ρ(P) = min{ρ(F ) : F ∈ F (P)}.

For the chromatic number χ the invariant ψ(P) = χ(P) − 1 is known as
subchromatic number (see e.g. [14]) or index of property (cf. [4]). It is easy
to see that for a nonempty hereditary property P the invariant χ(P) has
value at least two. The properties with χ(P) = 2 are called degenerate, the
properties with χ(P) greater than two are called non-degenerate. A graph
theoretical invariant ρ is called monotone whenever for any pair G1, G2 of
graphs satisfying G1 ⊆ G2 holds ρ(G1) ≤ ρ(G2).

The properties Ik, Ok, Dk, Sk and Ok mentioned above can be uniquely
determined by the graph theoretical invariants ω(G) – the clique number,
χ(G) – the chromatic number, col(G) – the coloring number (see [7]), ∆(G)
– maximum degree and o(G) – the order of largest component of G. It is
known that for any graph G the following holds:

ω(G) ≤ χ(G) ≤ col(G) ≤ ∆(G) + 1 ≤ o(G).

Moreover, it is not so difficult to see that some other well-known invariants
(like choice number, P-choice number, P-chromatic – see e.g. [1]) can be
included into similar chains.

Proposition 11. Let P be a hereditary property of graphs. Let ρ1, ρ2 be
monotone graph theoretical invariants which for any graph G satisfy the
inequality ρ1(G) ≤ ρ2(G). Then ρ1(P) ≤ ρ2(P).
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Proof. Let F ∈ F (P) be a graph with ρ2(F ) = ρ2(P). Then we immedi-
ately have

ρ1(P) ≤ ρ1(F ) ≤ ρ2(F ) = ρ2(P).

Proposition 12. Let P1,P2 be hereditary properties of graphs such that
P1 ⊆ P2. Let ρ be a monotone graph theoretical invariant. Then ρ(P1) ≤
ρ(P2).

Proof. Let F ∈ F (P2) be a graph satisfying ρ(F ) = ρ(P2). Since F /∈ P2,
we have that F /∈ P1. Thus there exists a graph F ∗ ∈ F (P1) such that
F ∗ ⊆ F and we obtain the inequalities

ρ(P1) ≤ ρ(F ∗) ≤ ρ(F ) = ρ(P2).

A generalization of vertex coloring concepts could be done in the following
way: Let P1,P2, . . . ,Pn be properties of graphs. A vertex (P1,P2, . . . ,Pn)-
partition of a graph G ∈ I is a partition V1, V2, . . . , Vn of its vertex set V (G)
such that for each i = {1, 2, . . . , n} the induced subgraph G[Vi] has property
Pi. A property R = P1◦P2◦ · · · ◦Pn is defined as the set of all graphs having
a (P1,P2, . . . ,Pn)-partition. If P1 = P2 = · · · = Pn = P we simply write
Pn instead of P◦P◦ · · · ◦P. A property R is called reducible whenever there
exist properties P1,P2 such that R = P1◦P2. In this notation Ok and Ok

are the sets of k-colorable graphs and graphs with chromatic number greater
than k, respectively. A generalized chromatic number χP(G) is defined as
the smallest positive integer n such that G ∈ Pn. Note that for the property
O we obtain the usual vertex chromatic number χ.

The following two results determine the values of the invariants χ(R)
and c(R) for any reducible hereditary property R.

Theorem 13 [13], [1]. Let P1,P2, . . . ,Pn be hereditary properties of graphs.
Then

χ(P1◦P2◦ · · · ◦Pn) = χ(P1) + χ(P2) + · · · + χ(Pn) − (n− 1).

Theorem 14 [1]. Let P1,P2, . . . ,Pn be hereditary properties of graphs.
Then

c(P1◦P2◦ · · · ◦Pn) = c(P1) + c(P2) + · · · + c(Pn) + (n− 1).
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For two properties P and Q we define the invariant

Φ(P,Q) = max{χP(G) : G ∈ Q},

if such a values exists (see also [4], [5]). If it does not exist, we say Φ(P,Q) =
∞. The function Φ is significant because of the following theorem.

Theorem 15 [5]. Let P and Q be additive hereditary properties of graphs.
Then χP(G) ≤ Φ(P,Q).χQ(G) for all graphs G. Moreover, if Q is in fact
degenerate, then for every integer k ≥ 1, the equality holds for some G
satisfying χQ(G) = k.

Let P1,P2, . . . ,Pn be hereditary properties. An edge (P1,P2, . . . ,Pn)-
decomposition of a graph G ∈ I is the decomposition E1, E2, . . . , En of
its edge set E(G) satisfying that for each i = {1, 2, . . . , n} the induced
subgraph G[Ei] has property Pi. A property Q = P1 ⊕ P2 ⊕ · · · ⊕ Pn is
defined as the set of all graphs having a (P1,P2, . . . ,Pn)-decomposition. If
P1 = P2 = · · · Pn = P we simply write n × P instead of P ⊕ P ⊕ · · · ⊕ P.
Note that the property O is the neutral element for the operation ⊕. More
precisely, if P is a hereditary property then P ⊕ O = P. A generalized
edge-chromatic number χ′

P(G) is defined as the smallest positive integer n
such that G ∈ nxP. A property Q is called decomposable whenever there
exist properties Q1,Q2 6= O such that Q = Q1 ⊕Q2. We remark that many
problems from Ramsey Theory can be generalized in terms of decomposable
properties of graphs. For example the well-known Ramsey number r(k, l) is
equal to the completeness of the property Ik−2 ⊕ Il−2 plus two.

Proposition 16 [1]. Let n be a positive integer. If P1,P2, . . . ,Pn are
hereditary properties of graphs then the properties R = P1◦P2◦ · · · ◦Pn and
Q = P1 ⊕P2 ⊕ · · · ⊕Pn are also hereditary. Moreover, if P1,P2, . . . ,Pn are
also additive then R and Q are additive too.

In connection with the study of Ramsey numbers and Ramsey arrows it is
useful to introduce new symbols. If G,H1,H2, . . . ,Hn are arbitrary graphs
from I then the symbol

G→ (H1,H2, . . . ,Hn)

means that for any decomposition E1, E2, . . . , En of the edge set E(G) of
G there exists an i such that the induced subgraph G[Ei] contains the
graph Hi.
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Let G be a graph and let P1,P2, . . . ,Pn be properties of graphs. The
notation

G→ (P1,P2, . . . ,Pn)

is used for the fact that for every coloring E(G) = E1 ∪E2 ∪ . . .∪En of the
edges of G there exists a color i and a graph Hi ∈ Pi such that Hi ⊆ G[Ei].

Motivated by [3], for a monotone graph theoretical invariant ρ, let us
consider the next two parameters:

rρ(P1,P2, . . . ,Pn) = min{ρ(G) : G ∈ I, G→ (P1,P2, . . . ,Pn)},

Rρ(P1,P2, . . . ,Pn) = min{R : G→ (P1,P2, . . . ,Pn) whenever ρ(G) = R}.

For an arbitrary invariant ρ and for any properties P1,P2, . . . ,Pn the defi-
nitions immediately lead to the following inequality

rρ(P1,P2, . . . ,Pn) ≤ Rρ(P1,P2, . . . ,Pn).

The first result concerning the parameters rχ and Rχ we can state in our
language in the following way:

Theorem 17 [3]. If k1, k2, . . . , kn are positive integers, then

rχ(Ok1 ,Ok2 , . . . ,Okn) = Rχ(Ok1 ,Ok2 , . . . ,Okn) =
n
∏

i=1

ki + 1.

2 Distributive Law for the Operations ◦ and ⊕

The next lemma provides a very important identity – a kind of distributive
law.

Lemma 21. Let P,Q1 and Q2 be additive hereditary properties of graphs.
Then

P ⊕ (Q1◦Q2) = (P ⊕Q1)◦(P ⊕Q2).

Proof. Suppose G belongs to P⊕(Q1◦Q2). Then there exists a decomposi-
tion (E1, E2) of its edge set E(G) such that G[E1] ∈ P and G[E2] ∈ Q1◦Q2.
Since G[E2] has the property Q1◦Q2, there exists a vertex partition (V1, V2)
of V (G) such that G[E2][V1] ∈ Q1 and G[E2][V2] ∈ Q2.
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Now, it suffices to verify that G[V1] ∈ P⊕Q1 and G[V2] ∈ P⊕Q2. So, let us
put E∗

1 = {uv ∈ E(G) : u, v ∈ V1} and E∗
2 = {uv ∈ E(G) : u, v ∈ V2}. It is

easy to check that (E∗
1∩E1, E

∗
1∩E2), (E∗

2∩E1, E
∗
2∩E2) are decompositions of

the edge sets E∗
1 and E∗

2 respectively and we immediately have G[V1][E∗
1 ∩

E1] ⊆ G[E1] ∈ P, G[V1][E∗
1 ∩ E2] = G[E2][V1] ∈ Q1, G[V2][E∗

2 ∩ E1] ⊆
G[E1] ∈ P and G[V2][E∗

2 ∩E2] = G[E2][V2] ∈ Q2. Therefore P ⊕ (Q1◦Q2) ⊆
(P ⊕Q1)◦(P ⊕Q2).

To prove the opposite inclusion suppose that G ∈ (P ⊕ Q1)◦(P ⊕Q2).
It implies that there is a partition (V1, V2) of its vertex set which satisfies
G[V1] ∈ P ⊕Q1 and G[V2] ∈ P ⊕Q2.

Since G[V1] belongs to P ⊕Q1, there exists a decomposition (E11, E12)
of E(G[V1]) such that G[V1][E11] ∈ P and G[V1][E12] ∈ Q1. Due to
similar reasons there is a decomposition (E21, E22) of E(G[V2]) such that
G[V2][E21] ∈ P and G[V2][E22] ∈ Q2. Let us put E ′

1 = E11 ∪ E21 and
E′

2 = E12∪E22∪F where F is the set of edges {uv ∈ E(G) : u ∈ V1, v ∈ V2}.
Then G[E′

1] = G[E11 ∪E21]. But this is a subgraph of the disjoint union of
the graphs G[V1][E11], G[V2][E21] and some extra isolated vertices. Because
of additivity of P we have thatG[E ′

1] ∈ P. In addition, G[E ′
2] = G[E12∪E22],

G[E′
2][V1] = G[V1][E12] ∈ Q1 and G[E′

2][V2] = G[V2][E22] ∈ Q1◦Q2. Thus,
we have (P ⊕Q1)◦(P ⊕Q2) ⊆ P ⊕ (Q1◦Q2).

Remark 22. It is quite easy to see that if we interchange the operations ◦

and ⊕ in the statement of Lemma 2.1, then the identity so obtained is not
true.

Corollary 23. Let P1,P2, . . . ,Pn be additive hereditary properties. If at
least one of them is reducible then the property P1⊕P2⊕· · ·⊕Pn is reducible
too.

By a repeated application of Lemma 21 we can obtain the following inter-
esting and useful identities.

Corollary 24. Let k1, k2, . . . , kn be positive integers and let P1,P2, . . . ,Pn

be additive hereditary properties of graphs. Then

Pk1

1 ⊕Pk2

2 ⊕ · · · ⊕ Pkn

n = (P1 ⊕P2 ⊕ · · · ⊕ Pn)on

i=1
ki .

Corollary 25. Let P1,P2, . . . ,Pn be additive hereditary properties. Then
for any graph G the following three statements are equivalent:

(1) G ∈ Pk1

1 ⊕Pk2

2 ⊕ · · · ⊕ Pkn

n ;
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(2) G ∈ Ok1.k2....kn ⊕ (P1 ⊕P2 ⊕ · · · ⊕ Pn);

(3) χP1⊕P2⊕···⊕Pn
(G) ≤

∏n
i=1 ki.

Proof. The equivalence of (1) and (2) can be proved by double induction
with respect to the number of hereditary properties and their powers. The
equivalence of statements (1) and (3) follows from the definition of general-
ized chromatic number and Corollary 24.

3 Estimations of Some Invariants of Hereditary Properties

In this section we shall study the invariants of additive hereditary properties
and establish some exact values and some bounds of them.

We start with the graph theoretical invariant o(G) – the order of the
largest component of G. Of course, its values is also the order of the largest
tree which is contained in G.

Lemma 31. Let P be an additive hereditary property of graphs. Then

o(P) = c(P) + 2.

Proof. From the definition of the completeness it follows that Kc(P)+1

belongs to P but Kc(P)+2 does not. It means that every tree on at most
c(P) + 1 vertices has property P and o(P) ≥ c(P) + 2. On the other
hand, some connected graph on c(P) + 2 vertices is in F(P) and therefore
o(P) ≤ c(P) + 2.

A straightforward application of Proposition 11 provides us the following
result.

Corollary 32. Let P be an additive hereditary property. Let ρ be a mono-
tone invariant which satisfies ρ(G) ≤ o(G) for every graph G. Then

ρ(P) ≤ c(P) + 2.

The invariant χ(P) is very important for the study of hereditary properties
of graphs because it determines the asymptotic behaviour of the maximum
number of edges of the graphs belonging to P (see e.g. [14]). The calculation
of the chromatic number of reducible hereditary properties is determined by
Theorem 13. The next lemma provides lower and upper bounds for the
chromatic number of decomposable properties.



Generalized Ramsey Theory and ... 207

Lemma 33. Let P1,P2, . . . ,Pn be additive hereditary properties of graphs.
Then

n
∏

i=1

(χ(Pi) − 1) + 1 ≤ χ(P1 ⊕P2 ⊕ · · · ⊕ Pn) ≤ c(P1 ⊕P2 ⊕ · · · ⊕ Pn) + 2.

Proof. The inequality χ(P) ≥ k is equivalent to the statement that every
(k − 1)-colorable graph has the property P. In the language of hereditary
properties this can be expressed as the inclusion Ok−1 ⊆ P. Therefore we
have

Oχ(P1)−1 ⊕Oχ(P2)−1 ⊕ · · · ⊕ Oχ(Pn)−1 ⊆ P1 ⊕P2 ⊕ · · · ⊕ Pn.

On the other hand, from Corollary 24 it follows that

Oχ(P1)−1 ⊕Oχ(P2)−1 ⊕ · · · ⊕ Oχ(Pn)−1 = OΠn

i=1
(χ(Pi)−1).

Hence

OΠn

i=1
(χ(Pi)−1) ⊆ P1 ⊕P2 ⊕ · · · ⊕ Pn

and the invariant χ(P1 ⊕ P2 ⊕ · · · ⊕ Pn) must have value at least
∏n

i=1

(χ(Pi) − 1) + 1.

The upper bound follows immediately from Corollary 32.

The next lemma states that a degenerate property of graphs does not in-
crease the value of the invariant χ of a decomposable property of graphs.

Lemma 34. If P,Q are additive hereditary properties of graphs and P is
degenerate, then

χ(P ⊕Q) = χ(Q).

Proof. By Lemma 33 we have

χ(P ⊕Q) ≥ (χ(P) − 1)(χ(Q) − 1) + 1 = χ(Q) − 1 + 1 = χ(Q).

In order to prove the opposite inequality we first introduce the following
notation: ex(n,P) = {|E(G)| : |V (G)| = n and G ∈ P}. The well-known
Erdös-Simonovits Theorem (see e.g. [14]) states that

ex(n,P) =

(

1 −
1

χ(P) − 1)

)

(

n

2

)

+ o(n2).
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Moreover, it is evident that for decomposable properties holds

ex(n,P ⊕Q) ≤ ex(n,P) + ex(n,Q).

By an easy calculation of the coefficient of
(n
2

)

in ex(n,P⊕Q) we obtain the
inequality:

χ(P ⊕Q) ≤ 1 +
(χ(P) − 1)(χ(Q) − 1)

1 − (χ(P) − 2)(χ(Q) − 2)
= 1 +

χ(Q) − 1

1
= χ(Q).

Theorem 35. Let P1,P2, . . . ,Pn be additive hereditary properties of graphs.
Then P1,P2, . . . ,Pn are degenerate if and only if the hereditary property
P1 ⊕P2 ⊕ · · · ⊕ Pn is degenerate.

Proof. If P1,P2, . . . ,Pn are degenerate, then by an application of
Lemma 34 we obtain that χ(P1 ⊕P2 ⊕· · ·⊕Pn) = 2, i.e., P1 ⊕P2 ⊕· · ·⊕Pn

is degenerate.

If at least one property Pi, i ∈ {1, 2, . . . , n} is not degenerate then by
Lemma 33 the invariant χ(P1⊕P2⊕· · ·⊕Pn) must have value at least three
and P1 ⊕P2 ⊕ · · · ⊕ Pn is not degenerate.

As a consequence of the previous theorem we obtain the following classical
result of Ramsey Theory (see [8]).

Corollary 36. For any collection B1, B2, . . . , Bn of bipartite graphs there
exists a bipartite graph B such that B → (B1, B2, . . . , Bn).

Proof. If we have a collection B1, B2, . . . , Bn of bipartite graphs we can
define degenerate properties P1,P2, . . . ,Pn such that F(Pi) = {Bi} for i =
1, 2, . . . , n. By Theorem 35 we have that the property P1 ⊕ P2 ⊕ · · · ⊕ Pn

is degenerate too. Thus, it has at least one bipartite graph B forbidden.
But this means exactly that for any edge coloring (E1, E2, . . . , En) of E(B)
there must exist a color i such that the graph Bi appears as a subgraph of
B[Ei]. Hence, B → (B1, B2, . . . , Bn).

Remark 37. The reader can easily verify that also the assertion of
Corollary 36 implies the assertion of Theorem 35.

The following result will allow us to determine the chromatic number of the
properties of the type Ik1

⊕ Ik2
⊕ · · · ⊕ Ikn

. In order to simplify the proof
we introduce some concepts from [1] and [9].
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For any graph G ∈ I with vertex set V (G) = {v1, v2, . . . , vn}, we define a
multiplication G:: of G in the following way:

1. V (G::) = W1 ∪W2 ∪ . . . ∪Wn,

2. for each 1 ≤ i ≤ n : |Wi| ≥ 1,

3. for any pair 1 ≤ i < j ≤ n: Wi ∩Wj = ∅,

4. for any 1 ≤ i ≤ j ≤ n, u ∈ Wi, v ∈ Wj: u, v ∈ E(G::) if and only if
vi, vj ∈ E(G).

The sets W1,W2, . . . ,Wn are called the multivertices corresponding to ver-
tices v1, v2, . . . , vn, respectively. The condition 4 immediately yields that
W1,W2, . . . ,Wn are independent sets and any two vertices belonging to the
same multivertex have identical neighborhoods. Furthermore, it is not diffi-
cult to see that G:: is homomorphic to G. In order to emphasize the structure
of G::, we also use the notation G::(W1,W2, . . . ,Wn).

Lemma 38. Let H be an arbitrary graph and let n be a positive integer. If
H belongs to Ik1

⊕ Ik2
⊕ · · · ⊕ Ikn

then → H ⊆ Ik1
⊕ Ik2

⊕ · · · ⊕ Ikn
.

Proof. According to the characterization of graphs having property → H in
[9] we can assume that H is not homomorphic to any of its proper subgraphs.
Let us denote by v1, v2, . . . , vn the vertices of H and let W1,W2, . . . ,Wn

stand for the corresponding multivertices of a multiplication H ::.
Since H belongs to Ik1

⊕ Ik2
⊕ · · · ⊕ Ikn

there exists and edge decom-
position (E1, E2, . . . , En) such that for each i = 1, 2, . . . , n the graph H[Ei]
belongs to Iki

. We extend this coloring of H to the coloring of H :: in such
a way that for any edge e∗ between distinct multivertices Wp,Wq we shall
use the same color as was used for the edge e = vpvq.

Suppose now, that in some color class E∗
l of H :: we have a subgraph

isomorphic to Kkl+2. Then it is easy to see that this subgraph has no
two vertices from the same multivertex of H :: (because each multivertex
is an independent set of vertices). But this implies that in the original
coloring of the graph H we can also find Kkl+2 in the color El and we have
a contradiction.

According to the results in [9], the property → H contains only sub-
graphs of multiplications of H. Hence → H ⊆ Ik1

⊕ Ik2
⊕ · · · ⊕ Ikn

.

Theorem 39. χ(Ik1
⊕ Ik2

⊕ · · · ⊕ Ikn
) = c(Ik1

⊕ Ik2
⊕ · · · ⊕ Ikn

) + 2

Proof. Lemma 33 yields that
χ(Ik1

⊕ Ik2
⊕ · · · ⊕ Ikn

) ≤ c(Ik1
⊕ Ik2

⊕ · · · ⊕ Ikn
) + 2.
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On the other hand, from the definition of the completeness it follows that the
complete graph Kc(I1⊕I2⊕···⊕In)+1 belongs to I1 ⊕ I2 ⊕ · · · ⊕ In. Hence, by
Lemma 38, the property → Kc(I1⊕I2⊕···⊕In)+1 is contained in the property
I1⊕I2⊕· · ·⊕In. But the property → Kn is in fact the set of all n-colorable
graphs – see e.g. [1].

Hence, χ(Ik1
⊕ Ik2

⊕ · · · ⊕ Ikn
) ≥ c(Ik1

⊕ Ik2
⊕ · · · ⊕ Ikn

) + 2.

This result shows that the determination of χ(Ik1
⊕ Ik2

⊕ · · · ⊕ Ikn
) is

equivalent to the determination of Ramsey number.

4 Ramsey Arrows and Decomposable Properties

In this section we show that the study of the defined arrow relation between
a graph and given properties of graphs is interesting mainly for co-hereditary
properties of graphs. For those properties we are moreover able to determine
some values of rρ and Rρ.

The following three assertions follow immediately from the definitions.

Proposition 41. Let G be a graph and let P1,P2, . . . ,Pn be hereditary
properties of graphs. Then for an arbitrary graph G the relation G →
(P1,P2, . . . ,Pn) holds.

Proposition 42. Let G be a graph and let P1,P2, . . . ,Pn be co-hereditary
properties of graphs. Then G → (P1,P2, . . . ,Pn) if and only if G /∈ P1 ⊕
P2 ⊕ · · · ⊕ Pn.

Corollary 43. Let P1,P2, . . . ,Pn be co-hereditary properties of graphs. The
property

T = {G ∈ I : G→ (P1,P2, . . . ,Pn)}

is co-hereditary (i.e., it is closed under taking supergraphs).

According to the Proposition 41 it is not interesting to study the parameters
rρ and Rρ for hereditary properties of graphs. On the other hand, it is
very difficult to handle graph properties in general settings. Hence we shall
concentrate mainly on co-hereditary properties.

In the language of hereditary properties the parameters rρ and Rρ can
for co-hereditary properties be expressed in another manner. Indeed, by
Proposition 42 we have for arbitrary hereditary properties P1,P2, . . . ,Pn

that
rρ(P1,P2, . . . ,Pn) = ρ(P1 ⊕P2 · · · ⊕ Pn),
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Rρ(P1,P2, . . . ,Pn) = sup{ρ(G) : G ∈ P1 ⊕P2 ⊕ · · · ⊕ Pn} + 1.

Remark 44. In the light of the previous two identities and Corollary 24
we can now prove Theorem 17 in the following manner:

rχ(Ok1 ,Ok2 , . . . ,Okn) = χ(Ok1 ⊕Ok2 ⊕ · · · ⊕ Okn) = χ((nxO)Πn

i=1
ki)

= χ(OΠn

i=1
ki) =

n
∏

i=1

ki + 1.

On the other hand, if for some graph G holds χ(G) = Πn
i=1ki + 1 then

obviously G /∈ OΠn

i=1
ki . This implies that

Rχ(Ok1 ,Ok2 , . . . ,Okn) =
n
∏

i=1

ki + 1

and the proof is complete.

Proposition 11 immediately yields the following lemma.

Lemma 45. If P1,P2, . . . ,Pn are additive hereditary properties, ρ1, ρ2 are
two graph theoretical invariants satisfying ρ1(G) ≤ ρ2(G) for any graph G,
then

rρ1
(P1,P2, . . . ,Pn) ≤ rρ2

(P1,P2, . . . ,Pn).

Combining Lemma 45, Proposition 42 and Lemma 31 we obtain the next
assertion.

Corollary 46. Let P1,P2, . . . ,Pn be additive hereditary properties of graphs
and let ρ be a graph theoretical invariant which satisfies the inequality ρ(G) ≤
o(G) for an arbitrary graph G. Then

rρ(P1,P2, . . . ,Pn) ≤ c(P1 ⊕P2 ⊕ · · · ⊕ Pn) + 2.

5 A Result Related to the Generalized Chromatic Number

The next result provides a generalization of Theorem 17 in such a manner
that the usual chromatic number χ is replaced by the generalized chromatic
number χP and the property O by arbitrary degenerate hereditary prop-
erties. The symbol bxc denotes the greatest integer which is less than or
equal to x.
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Theorem 51. Let P1,P2, . . . ,Pn and Q be degenerate properties of graphs
and let k1, k2, . . . , kn be positive integers. Then

rχQ
(Pk1

1 ,Pk2

2 , . . . ,Pkn
n ) =

⌊
∏n

i=1 ki

Φ(P1 ⊕P2 ⊕ · · · ⊕ Pn,Q)

⌋

+ 1,

provided Φ(P1 ⊕P2 ⊕ · · · ⊕ Pn,Q) is finite, and

RχQ
(Pk1

1 ,Pk2

2 , . . . ,Pkn
n ) = Φ(Q,P1 ⊕P2 ⊕ · · · ⊕ Pn)

n
∏

i=1

ki + 1,

provided Φ(Q,P1 ⊕P2 ⊕ · · · ⊕ Pn) is finite.

Proof. First, consider rχQ
(Pk1

1 ,Pk2

2 , . . . ,Pkn
n ). In view of Proposition 42

and Corollary 25, this is the smallest value of χQ(G) for any G for which
χP1⊕P2⊕···⊕Pn

(G) >
∏n

i=1 ki. But by Theorem 15, χP1⊕P2⊕···⊕Pn
(G) ≤

Φ(P1 ⊕P2 ⊕ · · · ⊕ Pn,Q).χQ(G). Hence,

χQ(G) >

∏n
i=1 ki

Φ(P1 ⊕P2 ⊕ · · · ⊕ Pn,Q)
.

Observing that, by Theorem 15, this can be made as sharp as possible,
subject to the constraint that χQ is an integer, leads to the formula for rχQ

.

Similarly, consider RχQ
(Pk1

1 ,Pk2

2 , . . . ,Pkn
n ). This is the smallest value of

χQ(G) such that every G with this value satisfies χP1⊕P2⊕···⊕Pn
>
∏n

i=1 ki.
Again, by Theorem 15, χQ(G) ≤ Φ(Q,P1⊕P2⊕· · ·⊕Pn).χP1⊕P2⊕···⊕Pn

(G).
And a straightforward application of Corollary 25 leads to the formula
for RχQ

.

6 Some Applications

In this section we present some exact values and bounds on the parameters
rρ and Rρ which we can obtain in terms of results which were established in
the previous sections.

It is not so difficult to see that the parameter rρ is always finite. The
next lemma determines for which properties the parameter Rρ is finite.

Lemma 61. Let P1,P2, . . . ,Pn be hereditary properties of graphs. Then

(a) Ro(P1,P2, . . . ,Pn) is finite if and only if there exists a nonnegative
integer k such that P1 ⊕P2 ⊕ · · · ⊕ Pn ⊆ Ok.
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(b) Rcol(P1,P2, . . . ,Pn) is finite if and only if there exists a nonnegative
integer k such that P1 ⊕P2 ⊕ · · · ⊕ Pn ⊆ Dk.

(c) R∆(P1,P2, . . . ,Pn) is finite if and only if there exists a nonnegative
integer k such that P1 ⊕P2 ⊕ · · · ⊕ Pn ⊆ Sk.

(d) Rχ(P1,P2, . . . ,Pn) is finite if and only if there exists a nonnegative
integer k such that P1 ⊕P2 ⊕ · · · ⊕ Pn ⊆ Ok.

(e) Rω(P1,P2, . . . ,Pn) is finite if and only if there exists a nonnegative
integer k such that P1 ⊕P2 ⊕ · · · ⊕ Pn ⊆ Ik.

The proof is based on straightforward applications of the definitions.

By a combination of Lemma 45, Corollary 32 and Theorem 39 we have

the next result. It states that the computation of rρ(Ik1

m1
, Ik2

m2
, . . . , Ikn

mn
) is

in many cases equivalent to the determination of a Ramsey number.

Theorem 62. Let m1,m2, . . . ,mn be nonnegative integers and let k1, k2,
. . . , kn be positive integers. If ρ is a monotone graph theoretical invariant
satisfying χ(G) ≤ ρ(G) ≤ o(G) for any graph G, then

rρ(Ik1

m1
, Ik2

m2
, . . . , Ikn

mn
) = ρ(Ik1

m1
⊕ Ikn

m2
⊕ · · · ⊕ Ikn

mn
)

=

(

n
∏

i=1

ki

)

(c(Im1
⊕ Im2

⊕ · · · ⊕ Imn
) + 1) + 1.

Proof. Applying Proposition 42 and Corollary 24 we get:

rχ(Ik1

m1
, Ik2

m2
, . . . , Ikn

mn
) = χ(Ik1

m1
⊕ Ik2

m2
⊕ · · · ⊕ Ikn

mn
)

= χ
(

(Im1
⊕ Im2

⊕ · · · ⊕ Imn
)Π

n

i=1
ki

)

.

Applying Theorem 13 we obtain

χ
(

(Im1
⊕ Im2

⊕ · · · ⊕ Imn
)Π

n

i=1
ki

)

=

(

n
∏

i=1

ki

)

χ(Im1
⊕ Im2

⊕ · · · ⊕ Imn
) −

(

n
∏

i=1

ki − 1

)

,

and by Theorem 39 we have
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χ
(

(Im1
⊕ Im2

⊕ · · · ⊕ Imn
)Π

n

i=1
ki

)

=

(

n
∏

i=1

ki

)

(c(Im1
⊕ Im2

⊕ · · · ⊕ Imn
) + 2) −

n
∏

i=1

ki + 1,

which is equal to

(

n
∏

i=1

ki

)

(c(Im1
⊕ Im2

⊕ · · · ⊕ Imn
) + 1) + 1.

On the other hand,

ro(Ik1

m1
, Ik2

m2
, . . . , Ikn

mn
) = o(Ik1

m1
⊕ Ik2

m2
⊕ · · · ⊕ Ikn

mn
)

= o
(

(Im1
⊕ Im2

⊕ · · · ⊕ Imn
)Π

n

i=1
ki

)

.

Lemma 31 enables us to write:

o
(

(Im1
⊕ Im2

⊕ · · · ⊕ Imn
)Π

n

i=1
ki

)

= c((Im1
⊕ Im2

⊕ · · · ⊕ Imn
)Π

n

i=1
ki) + 2.

Applying Theorem 14 we obtain

o
(

(Im1
⊕ Im2

⊕ · · · ⊕ Imn
)Π

n

i=1
ki

)

=

(

n
∏

i=1

ki

)

c(Im1
⊕ Im2

⊕ · · · ⊕ Imn
)

+

(

n
∏

i=1

ki − 1

)

+ 2,

which is equal to

(

n
∏

i=1

ki

)

(c(Im1
⊕ Im2

⊕ · · · ⊕ Imn
) + 1) + 1.

And now, the assertion of the theorem follows immediately from Lemma 45.

The following result is proved in [2].

Theorem 63. Let n be a positive integer and let m1,m2, . . . ,mn be non-
negative integers. Then

DΣn

i=1
mi

⊆ Dm1
⊕Dm2

⊕ · · · Dmn
⊆ D2Σn

i=1
mi−1.
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Since χ(Dk) = k + 1 (cf. [10], [12]) we can prove the following bounds.

Theorem 64. Let n and k1, k2, . . . , kn be positive integers and let
m1,m2, . . . ,mn be nonnegative integers. Then

(

n
∏

i=1

ki

)(

n
∑

i=1

mi

)

+ 1 ≤ rχ(Dk1

m1
,Dk2

m2
, . . . ,Dkn

mn
)

≤ Rχ(Dk1

m1
,Dk2

m2
, . . . ,Dkn

mn
) ≤ 2

(

n
∑

i=1

mi

)(

n
∏

i=1

ki

)

+ 1.

Proof. The inequality rχ(Dk1

m1
,Dk2

m2
, . . . ,Dkn

mn
) ≤ Rχ(Dk1

m1
,Dk2

m2
, . . .Dkn

mn
)

follows immediately from the definitions.

Applying Proposition 42 and Corollary 24 we get

rχ(Dk1

m1
,Dk2

m2
, . . . ,Dkn

mn
) = χ(Dk1

m1
⊕Dk2

m2
⊕ · · · ⊕ Dkn

mn
)

= χ
(

(Dm1
⊕Dm2

⊕ · · · ⊕ Dmn
)Π

n

i=1
ki

)

.

Since DΣn

i=1
mi

⊆ Dm1
⊕Dm2

⊕· · · Dmn
by Theorem 63, we have the following

inequality

χ
(

(Dm1
⊕Dm2

⊕ · · · ⊕ Dmn
)Π

n

i=1
ki

)

≥ χ
(

D
Πn

i=1
ki

Σn

i=1
mi

)

.

And by an application of Theorem 13 we obtain

χ
(

D
Πn

i=1
ki

Σn

i=1
mi

)

=

(

n
∏

i=1

ki

)

χ(DΣn

i=1
mi

) −

(

n
∏

i=1

ki − 1

)

=

(

n
∏

i=1

ki

)(

1 +
n
∑

i=1

mi

)

−
n
∏

i=1

ki + 1,

which is exactly
(

n
∏

i=1

ki

)(

n
∑

i=1

mi

)

+ 1.

Since

Rχ(Dk1

m1
,Dk2

m2
, . . . ,Dkn

mn
) = sup{χ(G) : G ∈ Dk1

m1
⊕Dk2

m2
⊕ · · · ⊕ Dkn

mn
} + 1,

using Corollary 24 we have
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sup{χ(G) : G ∈ Dk1

m1
⊕Dk2

m2
⊕ · · · ⊕ Dkn

mn
} + 1

= sup{χ(G) : G ∈ (Dm1
⊕Dm2

⊕ · · · ⊕ Dmn
)Π

n

i=1
ki} + 1.

And now, by arguments similar to those used in the previous case we obtain

sup{χ(G) : G ∈ (Dm1
⊕Dm2

⊕ · · · ⊕ Dmn
)Π

n

i=1
ki} + 1

≤ sup{χ(G) : G ∈ (D2(Σn

i=1
mi)−1)Π

n

i=1
ki} + 1.

As any k-degenerate graph is (k + 1)-colorable we finally have

sup{χ(G) : G ∈ (D2(Σn

i=1
mi)−1)Π

n

i=1
ki} + 1

≤ sup{χ(G) : G ∈ (O2(Σn

i=1
mi)(Πn

i=1
ki)} + 1,

which is exactly 2 (Σn
i=1mi) (Πn

i=1ki) + 1.

The following result will allow us to utilize Theorem 51 and establish
Theorem 68.

Theorem 65 [11]. Let k and m be positive integers. Then Φ(Sk,Sm) =
1 + b m

k+1c.

Corollary 66. Let k,m1,m2, . . . ,mn be positive integers. Then

Φ(Sk,Sm1
⊕ Sm2

⊕ · · · ⊕ Smn
) ≤ 1 +

⌊
∑n

i=1mi

k + 1

⌋

.

Corollary 67. Let k,m1,m2, . . . ,mn be positive integers. Then

Φ(Sm1
⊕ Sm2

⊕ · · · ⊕ Smn
,Sk) ≥ 1 +

⌊

k
∑n

i=1mi + 1

⌋

.

Now, by Theorem 5.1 we have:

Theorem 68. Let l, k1, k2, . . . , kn be positive integers and let m1,m2, . . . ,mn

be nonnegative integers. Then

RχSl
(Sk1

m1
,Sk2

m2
, . . . ,Skn

mn
) ≤

(

1 +

⌊
∑n

i=1mi

l + 1

⌋)

(

n
∏

i=1

ki

)

+ 1.
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